Math 21B-B - Homework Set 7

Section 7.1:

1. (a)

$$
\begin{aligned}
\int \frac{2 y}{y^{2}-25} d y & =\int \frac{1}{u} d u \quad\left(u=y^{2}-25, \quad d u=2 y d y\right) \\
& =\ln |u|+C \\
& =\ln \left|y^{2}-25\right|+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int \frac{\sec y \tan y}{2+\sec y} d y & =\int \frac{1}{u} d u \quad(u=2+\sec y, \quad d u=\sec y \tan y d y) \\
& =\ln |u|+C \\
& =\ln |2+\sec y|+C
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int \frac{\sec x}{\sqrt{\ln (\sec x+\tan x)}} d x= & \int \frac{1}{\sqrt{u}} d u \\
& \left(u=\ln (\sec x+\tan x), d u=\frac{\sec x(\tan x+\sec x)}{\sec x+\tan x} d x=\sec x d x\right) \\
= & 2 \sqrt{u}+C \\
= & 2 \sqrt{\ln (\sec x+\tan x)}+C
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int \frac{e^{\sqrt{r}}}{\sqrt{r}} d r & =\int 2 e^{u} d u \quad\left(u=\sqrt{r}, d u=\frac{1}{2 \sqrt{r}} d r\right) \\
& =2 e^{u}+C \\
& =2 e^{\sqrt{r}}+C
\end{aligned}
$$

(e)

$$
\begin{aligned}
\int \frac{e^{-1 / x^{2}}}{x^{3}} d x & =\int \frac{1}{2} e^{u} d u \quad\left(u=-\frac{1}{x^{2}}, \quad d u=\frac{2}{x^{3}} d x\right) \\
& =\frac{1}{2} e^{u}+C \\
& =\frac{1}{2} e^{-1 / x^{2}}+C
\end{aligned}
$$

2. (a) $\frac{d y}{d x}=1+\frac{1}{x}, \quad y(1)=3$

$$
\begin{aligned}
y & =\int 1+\frac{1}{x} \quad\left(y=\int \frac{d y}{d x} d x\right) \\
& =x+\ln |x|+C
\end{aligned}
$$

We will use the initial condition $y(1)=3$ to find the value of C.

$$
\begin{array}{rll}
y(1)=3 & \Rightarrow & 1+\ln 1+C=3 \\
& \Rightarrow & C=2
\end{array}
$$

Thus we get $y=x+\ln |x|+2$.
(b) $\frac{d^{2} y}{d x^{2}}=\sec ^{2} x, \quad y(0)=0 \quad y^{\prime}(0)=1$

$$
\begin{aligned}
\frac{d y}{d x} & =\int \sec ^{2} x d x \quad\left(\frac{d y}{d x}=\int \frac{d^{2} y}{d x^{2}} d x\right) \\
& =\tan x+C_{1}
\end{aligned}
$$

We will use the initial condition $y^{\prime}(0)=1$ to find C_{1}.

$$
\begin{array}{rll}
y^{\prime}(0)=1 & \Rightarrow & \tan (0)+C_{1}=1 \\
& \Rightarrow \quad C_{1}=1
\end{array}
$$

Thus we get $\frac{d y}{d x}=\tan x+1$. We now integrate $\frac{d y}{d x}$ to find y.

$$
\begin{aligned}
y & =\int \tan x+1 d x \quad\left(y=\int \frac{d y}{d x} d x\right) \\
& =\ln |\sec x|+x+C_{2}
\end{aligned}
$$

We will use the initial condition $y(0)=0$ to find C_{2}.

$$
\begin{aligned}
y(0)=0 & \Rightarrow \quad \ln |\sec (0)|+0+C_{2}=0 \\
& \Rightarrow \quad \ln 1+0+C_{2}=0 \\
& \Rightarrow \quad C_{2}=0
\end{aligned}
$$

Thus we get $y=\ln |\sec x|+x$.
3. The linearization $L(x)$ satisfies

$$
\begin{aligned}
L(x) & =f(0)+f^{\prime}(0) \cdot x \\
& =\ln (1+0)+\frac{1}{0+1} \cdot x \\
& =x
\end{aligned}
$$

4. The linearization $L(x)$ satisfies

$$
\begin{aligned}
L(x) & =f(0)+f^{\prime}(0) \cdot x \\
& =e^{0}+e^{0} \cdot x \\
& =1+x
\end{aligned}
$$

Section 7.2:

1. (a) $\frac{d p}{d h}=k p(k$ constant $) \quad p=p_{0}$ when $h=0$

Using the Law of Exponential Change (p.428) we know that $p=$
$p_{0} e^{k h}$. In the problem we are given that $p(0)=1013$ and $p(20)=90$.
We will use these initial conditions to find the values of p_{0} and k.

$$
\begin{aligned}
p(0)=1013 & \Rightarrow \quad p_{0} e^{0}=1013 \\
& \Rightarrow \quad p_{0}=1013
\end{aligned}
$$

Thus, $p(h)=1013 e^{k h}$

$$
\begin{aligned}
p(20)=90 & \Rightarrow \quad 1013 e^{20 k}=90 \\
& \Rightarrow \quad e^{20 k}=\frac{90}{1013} \\
& \Rightarrow \quad 20 k=\ln \left(\frac{90}{1013}\right) \\
& \Rightarrow \quad k=\frac{1}{20} \ln \left(\frac{90}{1013}\right) \approx-0.121
\end{aligned}
$$

Thus, $p(h) \approx 1013 e^{-0.121 h}$
(b) $p(50)=1013 e^{(-0.121)(50)} \approx 2.389$ milibars
(c) $900=1013 e^{-0.121 h}$

$$
\begin{aligned}
& \Leftrightarrow \frac{900}{1013}=e^{-0.121 h} \\
& \Leftrightarrow \ln \left(\frac{900}{1013}\right)=-0.121 h \\
& \Leftrightarrow h \approx 0.977 \mathrm{~km}
\end{aligned}
$$

2. $\frac{d V}{d t}=-\frac{1}{40} V \quad \Rightarrow \quad V=V_{0} e^{-t / 40}$

We want to find t such that $V(t)=0.1 V_{0}$.

$$
\begin{aligned}
0.1 V_{0}=V_{0} e^{-t / 40} & \Rightarrow \quad 0.1=e^{-t / 40} \\
& \Rightarrow \quad \ln (0.1)=-\frac{t}{40} \\
& \Rightarrow \quad t=-40 \ln (0.1) \approx 92.1 \mathrm{sec}
\end{aligned}
$$

3. We will let the population of the bacteria colony be given by $p(t)=e^{k t}$ where t in measured in hours (we are told $p_{0}=1$).

We know that the p doubles every half hour. Thus $p(0.5)=2$. We can use this information to find the value of k.

$$
\begin{array}{rll}
2=e^{0.5 k} & \Rightarrow & \ln (2)=0.5 k \\
& \Rightarrow & k=2 \ln (2) \\
& \Rightarrow & k=\ln (4)
\end{array}
$$

Thus we have that $p(t)=e^{\ln (4) t}$. In 24 hours there are $p(24)=e^{\ln (4) \cdot 24}=$ $4^{24} \approx 2.81475 \times 10^{14}$ bacteria.
4. (a) Let $A(t)$ be the account balance at time t, in thousands of dollars. Then A satisfies the differential equation

$$
\begin{equation*}
\frac{d A}{d t}=r A+1 \tag{1}
\end{equation*}
$$

(The second term on the right-hand side is 1 because you are investing at a rate of $\$ 1,000$ per year and the units of A are thousands of dollars.) To solve (2), divide both sides of the equation by $r A+1$ and then integrate:

$$
\begin{aligned}
\frac{\frac{d A}{d t}}{r A+1} & =1 \\
\int \frac{\frac{d A}{d t}}{r A+1} d t & =\int d t \\
\int \frac{d A}{r A+1} & =\int d t \quad\left(\text { since } d A=\frac{d A}{d t} d t\right) \\
\frac{1}{r} \ln (r A+1) & =t+C \\
\ln (r A+1) & =r t+r C \\
r A+1 & =e^{r t+r C}=B e^{r t}
\end{aligned}
$$

where we write B for the constant $e^{r C}$. Solving for A gives

$$
A=\frac{1}{r}\left(B e^{r t}-1\right) .
$$

Next, we solve for B using the initial condition $A(0)=1$:

$$
\begin{aligned}
1 & =\frac{1}{r}\left(B e^{r \cdot 0}-1\right) \\
1 & =20(B-1) \\
\Rightarrow B & =\frac{21}{20} .
\end{aligned}
$$

Thus

$$
A(t)=20\left(\frac{21}{20} e^{0.05 t}-1\right)
$$

Next we find the value of t such that $A(t)=20$:

$$
\begin{aligned}
20 & =20\left(\frac{21}{20} e^{0.05 t}-1\right) \\
1 & =\frac{21}{20} e^{0.05 t}-1 \\
2 & =\frac{21}{20} e^{0.05 t} \\
40 & =21 e^{0.05 t} \\
\ln (40) & =\ln (21)+0.05 t \\
t & =20(\ln (40)-\ln (21)) \text { years. }
\end{aligned}
$$

(b) Let $A(t)$ be the account balance at time t. Then A satisfies the differential equation

$$
\begin{equation*}
\frac{d A}{d t}=r A+1 / A \tag{2}
\end{equation*}
$$

To solve (2), divide both sides of the equation by $r A+1 / y$ and then integrate:

$$
\begin{aligned}
\frac{\frac{d A}{d t}}{r A+1 / A} & =1 \\
\int \frac{\frac{d A}{d t}}{r A+1 / A} d t & =\int d t \\
\int \frac{d A}{r A+1 / A} & =\int d t \quad\left(\text { since } d A=\frac{d A}{d t} d t\right) \\
\int \frac{A}{r A^{2}+1} d A & =t+C \\
\frac{1}{2 r} \ln \left(r A^{2}+1\right) & =t+C \\
\ln \left(r A^{2}+1\right) & =2 r t+2 r C \\
r A^{2}+1 & =e^{2 r t+2 r C}=B e^{2 r t}
\end{aligned}
$$

where we write B for the constant $e^{2 r C}$. Solving for A gives

$$
\begin{equation*}
A=\sqrt{\frac{1}{r}\left(B e^{2 r t}-1\right)} \tag{3}
\end{equation*}
$$

Next, we solve for B using the initial condition $A(0)=1$:

$$
\begin{aligned}
1 & =\sqrt{\frac{1}{r}\left(B e^{2 r \cdot 0}-1\right)} \\
1 & =10(B-1) \\
\Rightarrow B & =\frac{11}{10}
\end{aligned}
$$

Subsituting $B=11 / 10$ and $r=1 / 10$ into equation (3) gives

$$
\begin{aligned}
A(t) & =\sqrt{10\left(\frac{11}{10} e^{t / 5}-1\right)} \\
& =\sqrt{11 e^{t / 5}-10}
\end{aligned}
$$

So

$$
\begin{aligned}
A(10) & =\sqrt{11 e^{10 / 5}-10} \\
& =\sqrt{11 e^{2}-10} \text { dollars }
\end{aligned}
$$

(c) Let $r=0.10$ and $s=0.05$. Let $A(t)$ be the account balance at time t, in thousands of dollars. Then A satisfies the differential equation

$$
\begin{equation*}
\frac{d A}{d t}=r A-s A=(r-s) A \tag{4}
\end{equation*}
$$

Equation (4) is the differential equation for exponential growth with rate $r-s$. With the initial condition $A(0)=1$, the solution is

$$
A(t)=e^{(r-s) t}
$$

The fees $d f$ collected between t and $t+d t$ is $s A(t) d t$, so the total fees collected is

$$
\begin{aligned}
\int d f & =\int_{0}^{10} s A(t) d t \\
& =\int_{0}^{10} 0.05 e^{0.05 t} d t \\
& \left.=e^{0.05 t}\right]_{0}^{10} \\
& =(\sqrt{e}-1) \text { thousand dollars. }
\end{aligned}
$$

