## Math 21B-B - Homework Set 2

## Section 5.3:

3. $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(c_{k}^{2}-3 c_{k}\right) \Delta x_{k}$, where $P$ is a partition of $[-7,5]$.

$$
\int_{-7}^{5}\left(x^{2}-3 x^{2}\right) d x
$$

6. $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \sqrt{4-c_{k}^{2}} \Delta x_{k}$, where $P$ is a partition of $[0,1]$.

$$
\int_{0}^{1} \sqrt{4-x^{2}} d x
$$

8. $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(\tan c_{k}\right) \Delta x_{k}$, where $P$ is a partition of $[0, \pi / 4]$.

$$
\int_{0}^{\pi / 4} \tan (x) d x
$$

9. Suppose that $f$ and $g$ are integrable and that:

$$
\int_{1}^{2} f(x) d x=-4, \quad \int_{1}^{5} f(x) d x=6, \quad \int_{1}^{5} g(x)=8
$$

A. $\int_{2}^{2} g(x) d x=0$

Zero Width - Rule 2
B. $\int_{5}^{1} g(x) d x=-\int_{1}^{5} g(x) d x=-8$

Order of Integration - Rule 1
C. $\int_{1}^{2} 3 f(x) d x=3 \int_{1}^{2} f(x) d x=3 \cdot-4=-12$.

Constant Multiple - Rule 3
D. $\int_{2}^{5} f(x) d x=\int_{1}^{5} f(x) d x-\int_{1}^{2} f(x) d x=6-(-4)=10$

Additivity - Rule 5
E. $\int_{1}^{5}[f(x)-g(x)] d x=\int_{1}^{5} f(x) d x-\int_{1}^{5} g(x) d x=6-8=-2$

Sum and Difference - Rule 4
F. $\int_{1}^{5}[4 f(x)-g(x)] d x=\int_{1}^{5} 4 f(x) d x-\int_{1}^{5} g(x) d x=4 \int_{1}^{5} f(x) d x-$
$\int_{1}^{5} g(x) d x=4 \cdot 6-8=24-8=16$
Constant Multiple and Sum/Difference - Rules 3 and 4
10. Suppose that $f$ and $h$ are integrable and that:
$\int_{1}^{9} f(x) d x=-1, \quad \int_{7}^{9} f(x) d x=5, \quad \int_{7}^{9} h(x) d x=4$.
A. $\int_{1}^{9}-2 f(x) d x=-2 \int_{1}^{9} f(x) d x=-2 \cdot-1=2$

Constant Multiple - Rule 3
B. $\int_{7}^{9}[f(x)+h(x)] d x=\int_{7}^{9} f(x) d x+\int_{7}^{9} h(x) d x=5+4=9$

Sum and Difference - Rule 4
C. $\int_{7}^{9}[2 f(x)-3 h(x)] d x=\int_{7}^{9} 2 f(x) d x-\int_{7}^{9} 3 h(x) d x=2 \int_{7}^{9} f(x) d x-$
$3 \int_{7}^{9} h(x) d x=2 \cdot 5-3 \cdot 4=10-12=-2$
Constant Multiple and Sum/Difference - Rules 3 and 4
D. $\int_{9}^{1} f(x) d x=-\int_{1}^{9} f(x) d x=-(-1)=1$

Order of Integration - Rule 1
E. $\int_{1}^{7} f(x) d x=\int_{1}^{9} f(x) d x-\int_{7}^{9} f(x) d x=-1-5=-6$

Additivity - Rule 5
F. $\int_{9}^{7}[h(x)-f(x)] d x=-\int_{7}^{9}[h(x)-f(x)] d x=-\left[\int_{7}^{9} h(x) d x-\int_{7}^{9} f(x) d x\right]=$ $-(4-5)=-(-1)=1$

Order of Integration and Sum/Difference - Rules 1 and 4
19. $\int_{-2}^{1}|x| d x$


$$
\begin{aligned}
\int_{-2}^{1}|x| d x & =\text { Area of left triangle }+ \text { Area of right triangle } \\
& =1 / 2 \cdot 2 \cdot 2+1 / 2 \cdot 1 \cdot 1=2+1 / 2 \\
& =2+1 / 2 \\
& =5 / 2 \text { square units }
\end{aligned}
$$

22. $\int_{-1}^{1}\left(1+\sqrt{1-x^{2}}\right) d x$


$$
\begin{aligned}
\int_{-1}^{1}\left(1+\sqrt{1-x^{2}}\right) d x & =\text { Area of semicircle }+ \text { Area of Rectangle } \\
& =1 / 2 \cdot \pi \cdot 1^{2}+1 \cdot 2 \\
& =\frac{\pi}{2}+2 \text { square units }
\end{aligned}
$$

55. $f(x)=x^{2}-1$ on $[0, \sqrt{3}]$

$$
\begin{aligned}
& \\
& a v(f)=\left(\frac{1}{\sqrt{3}-0}\right) \int_{0}^{\sqrt{3}}\left(x^{2}-1\right) d x \\
&=\left(\frac{1}{\sqrt{3}}\right)\left[\int_{0}^{\sqrt{3}} x^{2} d x-\int_{0}^{\sqrt{3}} 1 d x\right] \\
&=\left(\frac{1}{\sqrt{3}}\right)\left[\left.\left(\frac{1}{3}\right) x^{3}\right|_{0} ^{\sqrt{3}}-\left.x\right|_{0} ^{\sqrt{3}}\right] \\
&=\left(\frac{1}{\sqrt{3}}\right)\left[\left(\frac{1}{3}\right)(3 \sqrt{3}-0)-(\sqrt{3}-0)\right] \\
&=\left(\frac{1}{3}\right)(\sqrt{3}-\sqrt{3}) \\
&= 0
\end{aligned}
$$

62. $h(x)=-|x|$ on
(A.) $[-1,0]$,
(B.) $[0,1]$,
(C.) $[-1,1]$.

A.

$$
\begin{aligned}
a v(f) & =\left(\frac{1}{0-(-1)}\right) \int_{-1}^{0}-|x| d x \\
& =(1) \int_{-1}^{0}-(-x) d x \\
& =\int_{-1}^{0} x d x \\
& =\left.\frac{1}{2} x^{2}\right|_{-1} ^{0} \\
& =0-\frac{1}{2} \\
& =-\frac{1}{2}
\end{aligned}
$$

B.

$$
\begin{aligned}
\operatorname{av}(f) & =\left(\frac{1}{1-0}\right) \int_{0}^{1}-|x| d x \\
& =(1) \int_{0}^{1}-x d x \\
& =-\left.\frac{1}{2} x^{2}\right|_{0} ^{1} \\
& =-\frac{1}{2}
\end{aligned}
$$

C.

$$
\begin{aligned}
\operatorname{av}(f) & =\left(\frac{1}{1-(-1)}\right) \int_{-1}^{1}-|x| d x \\
& =\left(\frac{1}{2}\right)\left[\int_{-1}^{0}-|x| d x+\int_{0}^{1}-|x| d x\right] \\
& =\left(\frac{1}{2}\right)\left[\int_{-1}^{0}-(-x) d x+\int_{0}^{1}-x d x\right] \\
& =\left(\frac{1}{2}\right)\left[\int_{-1}^{0} x d x+\int_{0}^{1}-x d x\right] \\
& =\left(\frac{1}{2}\right)\left[\left.\frac{1}{2} x^{2}\right|_{-1} ^{0}-\left.\frac{1}{2} x^{2}\right|_{0} ^{1}\right] \\
& =\left(\frac{1}{2}\right)\left[\left(0-\left(\frac{1}{2}\right)\right)-\left(\frac{1}{2}-0\right)\right] \\
& =\left(\frac{1}{2}\right)\left[-\frac{1}{2}-\frac{1}{2}\right] \\
& =\left(\frac{1}{2}\right)(-1) \\
& =-\frac{1}{2}
\end{aligned}
$$

65. Use the Max-Min Inequality to find upper and lower bounds for the value of

$$
\int_{0}^{1} \frac{1}{1+x^{2}} d x
$$

Notice that the integrand $f(x)=\frac{1}{1+x^{2}}$ is a decreasing function
$\left(f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} \leq 0\right.$ for $\left.x \in[0,1]\right)$. Therefore, on the interval $f$ has a maximum at $x=0$ and has a minimum at $x=1$.

$$
\begin{aligned}
& \max f=f(0)=1 \\
& \min f=f(1)=\frac{1}{2}
\end{aligned}
$$

Thus the Max-Min Inequality gives:

$$
\frac{1}{2} \leq \int_{0}^{1} \frac{1}{1+x^{2}} d x \leq 1
$$

66. Use the Max-Min Inequality to find upper and lower bounds for the the value of

$$
\int_{0}^{0.5} \frac{1}{1+x^{2}} d x \quad \text { and } \quad \int_{0.5}^{1} \frac{1}{1+x^{2}} d x
$$

Using the observation (from 65) that $f(x)=\frac{1}{1+x^{2}}$ is decreasing on $[0,0.5]$ and $[0.5,1]$, we get the following two inequalities:

$$
\begin{aligned}
& 0.4 \leq \int_{0}^{0.5} \frac{1}{1+x^{2}} d x \leq 0.5 \\
& 0.25 \leq \int_{0.5}^{1} \frac{1}{1+x^{2}} d x \leq 0.4
\end{aligned}
$$

Therefore, by adding the two inequalities we get the new (and improved) estimate:

$$
0.65 \leq \int_{0}^{1} \frac{1}{1+x^{2}} d x \leq 0.9
$$

71. We know that $\sin x \leq x$ for $x \geq 0$. Therefore we can get the upper bound:

$$
\begin{aligned}
\int_{0}^{1} \sin x d x & \leq \int_{0}^{1} x d x \\
& =\left.\frac{1}{2} x^{2}\right|_{0} ^{1} \\
& =\frac{1}{2}-0 \\
& =\frac{1}{2}
\end{aligned}
$$

## Section 5.4:

1. $\int_{-2}^{0}(2 x+5) d x=\left.\left(x^{2}+5 x\right)\right|_{-2} ^{0}=(0+0)-(4-10)=6$
2. $\int_{-3}^{4}\left(5-\frac{x}{2}\right) d x=\left.\left(5 x-\frac{x^{2}}{4}\right)\right|_{-3} ^{4}=(20-4)-\left(-15-\frac{9}{4}\right)=16+\frac{69}{4}=$ $\frac{133}{4}$
3. $\int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi}=-\cos (\pi)+\cos (0)=1+1=2$
4. $\int_{0}^{\pi / 3} 2 \sec ^{2} x d x=\left.2 \tan x\right|_{0} ^{\pi / 3}=2 \tan (\pi / 3)-2 \tan (0)=2 \cdot \sqrt{3}-2 \cdot 0=2 \sqrt{3}$
5. $\int_{1}^{-1}(r+1)^{2} d r=-\int_{-1}^{1}\left(r^{2}+2 r+1\right) d r=-\left[\left.\left(\frac{1}{3} r^{3}+r^{2}+r\right)\right|_{-1} ^{1}\right]=$ $-\left[\left(\frac{1}{3}+1+1\right)-\left(-\frac{1}{3}+1-1\right)\right]=-\left[\frac{7}{3}+\frac{1}{3}\right]=-\frac{8}{3}$
6. $\int_{1}^{2}\left(\frac{1}{x}-e^{-x}\right) d x=\left.\left(\ln x+e^{-x}\right)\right|_{1} ^{2}=\left(\ln 2+e^{-2}\right)-\left(0+e^{-1}\right)$ $\ln 2+\frac{1}{e^{2}}-\frac{1}{e}$
7. $\int_{0}^{1} \frac{4}{1+x^{2}} d x=\left.4 \arctan x\right|_{0} ^{1}=4 \arctan (1)-4 \arctan (0)=4 \cdot \frac{\pi}{4}-4 \cdot 0=\pi$
8. $\int_{2}^{5} \frac{x}{\sqrt{1+x^{2}}} d x=\int_{2}^{5} x\left(1+x^{2}\right)^{-1 / 2} d x=\left.\frac{1}{2} \cdot 2 \cdot \sqrt{1+x^{2}}\right|_{2} ^{5}=\left.\sqrt{1+x^{2}}\right|_{2} ^{5}=$ $\sqrt{26}-\sqrt{5}$
9. $\int_{0}^{1} x e^{x^{2}} d x$

Notice that $\frac{d}{d x} x^{2}=2 x$, and we have an $x^{2}$ in the exponent and an $x$ in the product. Thus, keeping in mind the chain rule we get:

$$
\begin{aligned}
& f(x)=x e^{x^{2}} \quad \Rightarrow \quad F(x)=\frac{1}{2} e^{x^{2}} \\
& \int_{0}^{1} x e^{x^{2}} d x=F(1)-F(0)=\frac{1}{2} e-\frac{1}{2}=\frac{1}{2}(e-1) . \\
& \text { 34. } \int_{1}^{2} \frac{\ln x}{x} d x
\end{aligned}
$$

Notice that $\frac{d}{d x} \ln x=\frac{1}{x}$, and we have an $\ln x$ and a $\frac{1}{x}$. Thus, keeping in mind the chain rule we get:

$$
\begin{aligned}
& f(x)=\frac{\ln x}{x} \quad \Rightarrow \quad F(x)=\frac{1}{2}(\ln x)^{2} \\
& \int_{1}^{2} \frac{\ln x}{x}=F(2)-F(1)=\frac{1}{2}(\ln 2)^{2}-0=\frac{1}{2}(\ln 2)^{2} .
\end{aligned}
$$

35. $\frac{d}{d x} \int_{0}^{\sqrt{x}} \cos t d t$
a.

$$
\begin{aligned}
\int_{0}^{\sqrt{x}} \cos t d t & =\left.\sin t\right|_{0} ^{\sqrt{x}} \\
& =\sin (\sqrt{x})-\sin (0) \\
& =\sin (\sqrt{x})
\end{aligned}
$$

Therefore we get:

$$
\begin{aligned}
\frac{d}{d x} \int_{0}^{\sqrt{x}} \cos t d t & =\frac{d}{d x} \sin (\sqrt{x}) \\
& =\cos (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}
\end{aligned}
$$

b. Let $u=\sqrt{x}$

$$
\begin{aligned}
\frac{d}{d x} \int_{0}^{\sqrt{x}} \cos t d t & =\left(\frac{d}{d u} \int_{0}^{u} \cos t d t\right) \cdot \frac{d u}{d x} \\
& =\cos u \cdot \frac{d u}{d x} \\
& =\cos (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}
\end{aligned}
$$

38. $\frac{d}{d \theta} \int_{0}^{\tan \theta} \sec ^{2} y d y$
a.

$$
\begin{aligned}
\int_{0}^{\tan \theta} \sec ^{2} y d y & =\left.\tan y\right|_{0} ^{\tan \theta} \\
& =\tan (\tan \theta)-\tan (0) \\
& =\tan (\tan \theta)
\end{aligned}
$$

Therefore we get:

$$
\begin{aligned}
\frac{d}{d \theta} \int_{0}^{\tan \theta} \sec ^{2} y d y & =\frac{d}{d \theta} \tan (\tan \theta) \\
& =\sec ^{2}(\tan \theta) \cdot \sec ^{2} \theta
\end{aligned}
$$

b. Let $u=\tan \theta$

$$
\begin{aligned}
\frac{d}{d \theta} \int_{0}^{\tan \theta} \sec ^{2} y d y & =\left(\frac{d}{d u} \int_{0}^{u} \sec ^{2} y d y\right) \cdot \frac{d u}{d \theta} \\
& =\sec ^{2} u \cdot \frac{d u}{d \theta} \\
& =\sec ^{2}(\tan \theta) \cdot \sec ^{2} \theta
\end{aligned}
$$

43. $y=\int_{\sqrt{x}}^{0} \sin \left(t^{2}\right) d t=-\int_{0}^{\sqrt{x}} \sin \left(t^{2}\right) d t$

Let $u=\sqrt{x}$. Then we get:
$\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=-\sin \left(u^{2}\right) \cdot \frac{d u}{d x}=-\sin (x) \cdot \frac{1}{x \sqrt{x}}=-\frac{\sin (x)}{2 \sqrt{x}}$
51. $y=-x^{2}-2 x \quad$ where $\quad-3 \leq x \leq 2$

First, notice that $y=-x^{2}-2 x=-x(x+2)$. Therefore in the interval $[-3,2]$, the function has zeroes at $x=0$ and $x=-2$.

$$
\begin{aligned}
\text { Area } & =-\int_{-3}^{-2}\left(-x^{2}-2 x\right) d x+\int_{-2}^{0}\left(-x^{2}-2 x\right) d x-\int_{0}^{2}\left(-x^{2}-2 x\right) d x \\
& =-\left.\left(-\frac{1}{3} x^{3}-x^{2}\right)\right|_{-3} ^{-2}+\left.\left(-\frac{1}{3} x^{3}-x^{2}\right)\right|_{-2} ^{0}-\left.\left(-\frac{1}{3} x^{3}-x^{2}\right)\right|_{0} ^{2} \\
& =-\left[\left(\frac{8}{3}-4\right)-(9-9)\right]+\left[(0-0)-\left(\frac{8}{3}-4\right)\right]-\left[\left(-\frac{8}{3}-4\right)-(0-0)\right] \\
& =\frac{4}{3}+\frac{4}{3}+\frac{20}{3} \\
& =\frac{28}{3}
\end{aligned}
$$

52. $y=3 x^{2}-3 \quad$ where $\quad-2 \leq x \leq 2$

First notice that $y=3\left(x^{2}-1\right)=3(x-1)(x+1)$. Therefore in the interval $[-2,2]$, the function has zeroes at $x= \pm 1$.

$$
\begin{aligned}
\text { Area } & =\int_{-2}^{-1}\left(3 x^{2}-3\right) d x-\int_{-1}^{1}\left(3 x^{2}-2\right) d x+\int_{1}^{2}\left(3 x^{2}-3\right) d x \\
& =\left.\left(x^{3}-3 x\right)\right|_{-2} ^{-1}-\left.\left(x^{3}-3 x\right)\right|_{-1} ^{1}+\left.\left(x^{3}-3 x\right)\right|_{1} ^{2} \\
& =[(-1+3)-(-8+6)]-[(1-3)-(-1+3)]+[(8-6)-(1-3)] \\
& =4+4+4 \\
& =12
\end{aligned}
$$

56. $y=x^{1 / 3}-x \quad$ where $\quad-1 \leq x \leq 8$

First notice that $y=x^{1 / 3}-x=x^{1 / 3}\left(1-x^{1 / 3}\right)\left(1+x^{1 / 3}\right)$, so the on $[-1,8]$ the function has zeroes at $x=0, \pm 1$.

$$
\begin{aligned}
\text { Area } & =-\int_{-1}^{0}\left(x^{1 / 3}-x\right) d x+\int_{0}^{1}\left(x^{1 / 3}-x\right) d x-\int_{1}^{8}\left(x^{1 / 3}-x\right) d x \\
& =-\left.\left(\frac{3}{4} x^{4 / 3}-\frac{1}{2} x^{2}\right)\right|_{-1} ^{0}+\left.\left(\frac{3}{4} x^{4 / 3}-\frac{1}{2} x^{2}\right)\right|_{0} ^{1}-\left.\left(\frac{3}{4} x^{4 / 3}-\frac{1}{2} x^{2}\right)\right|_{1} ^{8} \\
& =-\left[(0-0)-\left(\frac{3}{4}-\frac{1}{2}\right)\right]+\left[\left(\frac{3}{4}-\frac{1}{2}\right)-(0-0)\right]-\left[(12-32)-\left(\frac{3}{4}-\frac{1}{2}\right)\right] \\
& =\frac{1}{4}+\frac{1}{4}+\frac{81}{4} \\
& =\frac{83}{4}
\end{aligned}
$$

73. a. $v=\frac{d s}{d t}=\frac{d}{d t} \int_{0}^{t} f(x) d x=f(t)$.

Therefore $v(5)=f(5)=2 \mathrm{~m} / \mathrm{s}$.
b. Recall that the acceleration is the rate of change of the velocity, so $a=\frac{d f}{d t}$. Since $f$ has a negative slope at $t=5$, the acceleration is negative at $t=5$.
c. Since $s=\int_{0}^{t} f(x) d x$, we know that the position at $t=3$ can be represented as the area under the graph on $[0,3]$. Notice that on this interval, $f$ is a straight line and so the value of the integral is just the area of a triangle formed by $f(x)$, the $x$-axis and $x=3$.
Therefore $s(3)=\frac{1}{2} \cdot 3 \cdot 3=\frac{9}{2}$
d. We want to know when $s$ has a maximum and we will determine this by looking at $f(x)$, which is the derivative of the $s$. We know $f$ is positive on $[0,6]$ and negative on $[6,9]$, which means that $s$ goes from increasing to decreasing at $t=6$. By the first derivative test, we know that $s$ must have relative max at $t=6$.
e. At $x \approx 4$ and $x \approx 7$ since $s^{\prime \prime}(x)=f^{\prime}(x)$ is zero at these points.
f. The particle is moving towards the origin when it has negative velocity $\rightarrow f$ is negative. Hence it is moving towards the origin on $[6,9]$. Similarly the particle is moving away from the origin when $f$ is positive, hence on $[0,6]$.
g. Judging by the graph of $f$, we know that the particle is to the right of the origin (on the positive side) because the $s(9)=\int_{0}^{9} f(x) d x>0$ (the area above the $x$-axis is greater than the area below it).
76. Find $\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} \frac{t^{2}}{t^{4}+1} d t$

Notice that $\lim _{x \rightarrow 0} \int_{0}^{x} \frac{t^{2}}{t^{4}+1} d t=0$ by the rules of integrals and $\lim _{x \rightarrow 0} x^{3}=0$. Thus if you think of the expression inside the limit as a fraction, we have that both the numerator and the denominator go to 0 . Hence we can apply l'Hôpital's Rule to the limit and get:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} \frac{t^{2}}{t^{4}+1} d t & =\lim _{x \rightarrow 0}\left[\left(\int_{0}^{x} \frac{t^{2}}{t^{4}+1} d t\right) / x^{3}\right] \\
& =\lim _{x \rightarrow 0}\left[\left(\frac{x^{2}}{x^{4}+1}\right) /\left(3 x^{2}\right)\right] \\
& =\lim _{x \rightarrow 0} \frac{1}{3\left(x^{4}+1\right)} \\
& =\frac{1}{3}
\end{aligned}
$$

81. Suppose $f^{\prime}(x) \geq 0$ for all values of $x$, and that $f(1)=0$. Define:

$$
g(x)=\int_{0}^{x} f(t) d t
$$

a. True. It follows from the FTC, part I.
b. True. Differentiable $\Rightarrow$ Continuous.
c. True. We know that $g^{\prime}(1)=f(1)=0$, so the tangent line at $x=0$ is horizontal.
d. False. We know that $f$ crosses the $x$-axis at $x=1$ and that $f$ is always increasing. Therefore $g^{\prime}(x)=f(x)$ is negative for $x<1$ and $g^{\prime}(x)=f(x)$ is positive for $x>1$. By the first derivative test, this is a minimum, not a max.

Note that you could also use the fact that $g^{\prime}(1)=0$ and $g^{\prime \prime}(1)>0$
e. True. See (d.)
f. False. $g^{\prime \prime}(x)=f^{\prime}(x)>0$, and hence does not change sign.
g. True. $g^{\prime}(x)=f(x)$ and we know that the $f(1)=0$ and is increasing.

