Math 21B-B - Homework Set 6

Section 6.5:
l.y=tanz, 0<z<7; x-axis
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21. x:%, 0<y<In2; y-axis
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24. y = cosx, -5 <z< % T-axis

w/2
AREA:/ 2r coszy/1 + (—sinz)? dz
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w/2
:277/ coszV1 +sin?zdz
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28. We want to consider the area of a surface gotten by revolving the arc AB
about the z-axis (the area corresponds to the amount of crust for that
slice of bread). Therefore we will consider the following area problem:

y=+vVr2—122 a<z<a+h; r-axis

where a and h are numbers such that 0 < h < 2r and —r <a <r —h.
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We are now down because AREA = 27rh, which is independent of a.

a.y=x, —1<x<2; T-axis
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If we were to drop the absolute value, we would find that the integral
/27rf(x) ds = 0. This is because the integrand %3 /14 “59—4 is an
odd function and we are integrating over the (symmetric) interval

V3 <z <V3.

33. x =cost,y=2+sint, 0<t < 2m, T-axis

2m
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0
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= 8&n2



38. x =1In(sect + tant) —sint,y = cost, 0<t < 35 r-axis
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41. a. We construct the tangent line to our curve f at my = w

This is the line with slope f/(my) that passes through the point
(mg, f(myg)), which is given by the equation.

y = f'(mp)z — f' (me)my, + f(my)

To find r1 and r9, we want to plug x;_1 and xj (respectively) into
the equation of the tangent line.

ri = f'(mg)xe—1 — f(me)me + f(my)
= f'(mg)(xr—1 — ma) + f(mi)

= 7 m) 2 fom)

ro = f'(mg)zr — f'(my)me + f(me)
= f'(mu)(xp —mg) + f(my)
Al‘k

= f/(mk)? + f(mx)



b. By the Pythagorean Theorem, we know
Azp® + (ro —11)% = L
By solving for Ly, we get

Lk = \/(Al‘k)Q + (7“2 — 7“1)2

- \/(Aa;k)Q + Kf(mk) + f’(mk)i) - (f(mk) = f'(mg)——

= VB2 + (' () A2

c¢. In order to find the FRUSTRUM SURFACE AREA we need to find y*
(the average height).
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= f(mx)

FRUSTRUM SURFACE AREA = 27y L
= 2 f (mi)\/ (Dag)? + (f (mi) Ay,)?

=2 f(mr) v 1+ (f'(mx))? Az,

d. If we want to approximate the area of the surface generated by re-
volving y = f(z) about the a-axis over [a, b], we partition the interval
into n pieces and add the frustrum surface areas.

AREA ~ Z (Surface Area of kth frustrum)
k=1

= Y <2Wf(mk)\/WAzk)

k=1

To find the actual area of the surface, we will take the limit as n — oo
of our approximation.
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42.

Section 6.6:

4. A force of 90N stretches a spring 1m beyond its natural length. We can
find the spring constant k by using Hooke’s Law:

90 =k
Thus we know that the force it takes to move the spring x meters beyond
its natural length is given by F(x) = 90z. To find the work it takes

to stretch the spring 5m beyond its natural length we take the following
integral:

W:/OSF(q;)dar
5

= / 90x dz
0

= 4507

=1125J



10.

11.

12.

Note that since the force is acting toward the origin, F(z) = —z%. To find
the work done as the particle moves from point b to point a, we can use
the following integral:

b
W—/ —%dm
b

75@
k Ok
b a
_ k(a—0)
o ab

We know that the general formula for the work done by the piston will
(p2,V2)
look something like W = F(z)dx.
(p1,V1)

First notice that force is a constant function given by F' = p - A. Next,
if we let x represent the height of the cylinder then the volume of the
cylinder is given by V = Axz. Thus by looking at the differentials we get
that dV = Adz. Substituting this information into our original integral
equation for work we get:

(p2,V2) dv
w= [ e ()
(p1,V1) A

(p2,V2)
= / pdV
(p1,V1)

We want to find the work done in compressing the gas from V; = 243in.?
to Vo = 32in.3, where p; = 501b/in.3.

We assume that the p and V obey the gas law, which states that pV 14 = c.
We can solve for ¢ using the fact that p; = 50 and V7 = 243:

c=50-243"* = 50 - 2187 = 109350
Thus we have pV4 = 109350. If we solve for p in terms of V, we get that

p = 109350V ~14. Using the integral from (11), we find that the work
done to compress the gas from (p1, V1) to (p2, V2) is given by:



15.

(p2,V-2)
W = pdV
(p1,V1)

32
= / 109350V~ dV
243

243
- / 109350V ~ 4 qv
3

2
_ —0.4 243
= 273375V 04,

11
= 273375 ( — — -

5)
= 273375 ——;
36

= —37968.75 in-1b

a. Work to empty the tank by pumping the water back to ground level.

Consider a horizontal “slab” of water at level y with width Ay. The
force Fyqp to lift the slab is given by:

Fslab =62.4- Vslab
=624 -Ay-10-12
—62.4-120 Aylb

To compute the work needed to pump this slab out of the tank, we
recall that Fy,p must act over a distance of yft. Thus we have:

Wslab = Fslab -d=1624- 120yAy ft )

To approximate the total work W necessary to empty the tank, we
could use a Riemann sum f(y) = 7488y over the interval 0 < y < 20.

20
W= 64.2-120yAy ft-1b
0

To find the exact value, we take the limit of the this sum over pro-
gressively finer partitions.
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20
W = / 64.2 - 120y dy
0

20
:/ 7488y dy
0

= 3744y’
= 3744 - 400
= 1497600 ft - Ib

. The pump moves 250 ft — Ib/sec, the time it will take to empty the
tank is:

: __ 1497600 ft-lb ~ :
time = m = 5990.4 sec ~ 1hr 40min

. The amount of work it takes to empty out the first half of the tank

is given by:

10
Work:/ 7488y dy
0

= 37444
= 3744 - 100
= 374400 ft-1b

To see how much time this amount of work will take we use:

t = 300 — 1497 .6 sec

The last thing to note is that 1497.6 sec ~ 25 min.

11



d. i If water weighs 62.26 1b/ft"
20
W:/ 62.26 - 120y dy
0

20
:/ 74712y dy
0

= 3735.24%|)
= 3735.6 - 400
— 1494240 ft-1h

‘ 1494240
250
= 5976.96 sec

~ 1hr 40min

ii. If water weighs 62.591b/ft?
20
W = / 62.59 - 120y dy
0

20
= / 7510.8y dy
0

= 37554472
— 3755.4 - 400
— 1502160 ft-Ib

. 1502160
250
= 6008.64 sec

~ 1hr 40min

x2
25. We know to begin with that W = / F(x)dz. Using Newton’s second
1
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law, this gives us:
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35780000
1000M
Wo— / 0002 G dr
6

370000 r
1000MG 35780000
B r 6370000
1 1
= (5.975 x 10%%) (6.6720 x 107"} [ ——— + —
(5075 x 107 ( )\ 55 o

~ 5.144 x 10107

38. a. Let p be the z-coordinate of the second electron. Then r? = (p—1)2.
0
W = / F(r)dr
-1

023 % 10720
-1 (P - 1)
1

= (23x107%) . ———
( il

0

1 —29
=3 (23 x 107%)
=115 x 107
b. We will use the fact that W = W7 4+ W5 where W is the work against
the fixed electron (—1,0) and W is the work against the second fixed

electron (1,0). We will let p be the z-coordinate of the third electron.
Then 72 = (p+1)? and 752 = (p — 1)2.
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