
Math 21B-B - Homework Set 7

Section 6.7:

1. Calculate the fluid force on one side of the triangular plate:

Note that in this coordinate system, we have −5 ≤ y ≤ −2. We have that
strip depth = −y and L(y) = 2(y + 5) (using the fact that the right leg
of the triangle lies on the line y = x − 5 and the fact that our triangle is
symmetric over the y-axis).

Fluid Force =
∫ b

a

w · (strip depth) · L(y) dy

=
∫ −2

−5

62.4 · −y · (2y + 10) dy

=
∫ −2

−5

−124.8y2 − 624y dy

= −41.6y3 − 312y2
∣∣−2

−5

= [(−41.6 · −8)− (312 · 4)]− [(−41.6 · −125)− (312 · 25)]
= 1684.8 lb

11. a. What is the fluid force on the gate when the liquid is 2 ft deep?

We will assume that the vertex of the gate is along the bottom edge
of the cubical tank. Using the coordinates given in the illustration
in the book, we know that the water level is at the line y = 2. To
calculate the force we are concerned with 0 ≤ y ≤ 1. We have that
the strip depth = 2 − y and L(y) = 2

√
y (using the symmetry of

the gate over the y-axis).

Fluid Force =
∫ 1

0

50 · (2− y) · 2√y dy

=
∫ 1

0

200
√

y − 100y3/2 dy

=
400
3

y3/2 − 40y5/2

∣∣∣∣1
0

=
400
3
− 40

=
280
3

≈ 93.33 lb
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b. What is the maximum height to which the container can be filled
without exceeding its design limitation? Suppose that the water level
is at y = h for some positive number h. Then to calculate the force
on the gate we are still just concerned with 0 ≤ y ≤ 1 and we have
that strip depth = h − y and L(y) = 2

√
y. Thus treating h as a

number we can calculate the force on the gate in terms of h by using
our integral formula:

Fluid Force =
∫ 1

0

50 · (h− y) · 2√y dy

=
∫ 1

0

100h
√

y − 100y3/2 dy

=
200h

3
y3/2 − 40y5/2

∣∣∣∣1
0

=
200h

3
− 40

We know that the gate is designed to withstand Fluid Force ≤ 160
lb. We substitute our above result for the force into this inequality
to find the maximum height to which the container can be filled.

Fluid Force ≤ 160
200h

3
− 40 ≤ 160

200h

3
≤ 200

h ≤ 3

Therefore, we see that the maximum height is h = 3ft.

17. Consider the amount of force on the end when the tank is completely full.
In that case we have that −2 ≤ y ≤ 0, where strip depth = −y and
L(y) = 2

√
4− y2 (by the symmetry of the semicircular ends).
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Fluid Force =
∫ 0

−2

62.4 · (−y) · 2
√

4− y2 dy

=
∫ 0

−2

62.4(−2y)
√

4− y2 dy

=
∫ 4

0

62.4
√

u du (u = 4− y2, du = −2y dy)

= 41.6 u3/2
∣∣∣4
0

= 41.6 · 8
= 332.8 lb

If we plug this force into Hooke’s Law we can see how far we will compress
the spring from its resting state:

Force = (spring constant) · (distance)

332.8 = 100x

x ≈ 3.33 ft

This means that the spring will only be compressed 3.33 ft < 5 ft when
the tank is full. Therefore, we know that the tank will overflow.

20. Recall that the weight density of olive oil is 57 lb/ft3. In specific, note
that the units involve feet, so we will need to convert the sidelengths of
the can into feet. Thus we have that the base of the can is 23

48 ft × 7
24 ft

and the base is 5
6 ft.

If the can is full, we can assume that the base is at a constant depth.
Therefore, we can compute the force on the base by the formula F = whA.

Fbase = 57 · 5
6
· 23
48
· 7
24

=
45885
6912

≈ 6.64 lb
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Now to compute the force on the two pairs of sides,
we will need to use our integral formula because the
depth varies along the sides. Let Fx denote the force
on the pair of 23

48 ft× 5
6 ft sides and Fy denote the force

on the pair of 7
24 ft× 5

6 ft sides.

Fx =
∫ 0

−5/6

57 · (−y) · 23
48

dy

=
∫ 0

−5/6

−1311
48

y dy

= −1311
96

y2

∣∣∣∣0
−5/6

=
1311
96

·
(
−5

6

)2

=
32775
3456

≈ 9.48 lb

Fy =
∫ 0

−5/6

57 · (−y)
7
24

dy

=
∫ 0

−5/6

−399
24

y dy

= −399
48

y2

∣∣∣∣0
−5/6

=
399
48

·
(
−5

6

)2

=
9975
1728

≈ 5.77 lb

Section 7.1:

3. ∫
2y

y2 − 25
dy =

∫
1
u

du (u = y2 − 25, du = 2y dy)

= ln |u|+ C

= ln |y2 − 25|+ C
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6. ∫
sec y tan y

2 + sec y
dy =

∫
1
u

du (u = 2 + sec y, du = sec y tan y dy)

= ln |u|+ C

= ln |2 + sec y|+ C

8. ∫
sec x√

ln(sec x + tanx)
dx =

∫
1√
u

du (u = ln(sec x + tanx), du =
sec x(tanx + sec x)

sec x + tanx
dx = sec x dx)

= 2
√

u + C

= 2
√

ln(sec x + tanx) + C

15. ∫
e
√

r

√
r

dr =
∫

2eu du (u =
√

r, du =
1

2
√

r
dr)

= 2eu + C

= 2e
√

r + C

20. ∫
e−1/x2

x3
dx =

∫
1
2

eu du (u = − 1
x2

, du =
2
x3

dx)

=
1
2

eu + C

=
1
2

e−1/x2
+ C

51.
dy

dx
= 1 +

1
x

, y(1) = 3

y =
∫

1 +
1
x

(
y =

∫
dy

dx
dx

)
= x + ln |x|+ C

We will use the initial condition y(1) = 3 to find
the value of C.

y(1) = 3 ⇒ 1 + ln 1 + C = 3
⇒ C = 2
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Thus we get y = x + ln |x|+ 2.

52.
d2y

dx2
= sec2 x, y(0) = 0 y′(0) = 1

dy

dx
=

∫
sec2 x dx

(
dy

dx
=

∫
d2y

dx2
dx

)
= tan x + C1

We will use the initial condition y′(0) = 1 to
find C1.

y′(0) = 1 ⇒ tan(0) + C1 = 1
⇒ C1 = 1

Thus we get
dy

dx
= tanx + 1. We now integrate

dy

dx
to find y.

y =
∫

tanx + 1 dx

(
y =

∫
dy

dx
dx

)
=

∫
sinx

cos x
+ 1 dx

=
∫
− 1

u
+ 1 du (u = cos x, du = − sinx dx)

= − ln |u|+ u + C2

= − ln | cos x|+ cos x + C2

= ln | sec x|+ cos x + C2

We will use the initial condition y(0) = 0 to find
C2.

y(0) = 0 ⇒ ln | sec(0)|+ cos(0) + C2 = 0
⇒ ln(1) + 1 + C2 = 0
⇒ 1 + C2 = 0
⇒ C2 = −1

Thus we get y = ln | sec x|+ cos x− 1.

57. a.

L(x) = f(0) + f ′(0) · x

= ln(1 + 0) +
1

0 + 1
· x

= x
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b. Let f(x) = ln(1 + x) and consider f ′(x) and f ′′(x).

f ′(x) = 1
1+x f ′′(x) = − 1

(1+x)2

On the interval [0, 0.1] we see that f(x) is increasing (by f ′(x)) and
concave down (by f ′′(x)). Using what we know about the graphs of
f(x) and L(x), we can see that the maximum approximation error
on [0, 0.1] occurs at x = 0.1.

Therefore, the maximum error = L(0.1)− f(0.1) ≈ 0.00469.

58. a.

L(x) = f(0) + f ′(0) · x
= e0 + e0 · x
= 1 + x

Section 7.2:

2. a.
dp

dh
= kp (k constant) p = p0 when h = 0

Using the Law of Exponential Change (p509) we know that p =
p0 ekh. In the problem we are given that p(0) = 1013 and p(20) = 90.
We will use these initial conditions to find the values of p0 and k.

p(0) = 1013 ⇒ p0 e0 = 1013
⇒ p0 = 1013

Thus, p(h) = 1013ekh

p(20) = 90 ⇒ 1013 e20k = 90

⇒ e20k =
90

1013

⇒ 20k = ln
(

90
1013

)
⇒ k =

1
20

ln
(

90
1013

)
≈ −0.121

Thus, p(h) ≈ 1013e−0.121h

b. p(50) = 1013 e(−0.121)(50) ≈ 2.389 milibars
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c. 900 = 1013 e−0.121h

⇔ 900
1013 = e−0.121h

⇔ ln
(

900
1013

)
= −0.121h

⇔ h ≈ 0.977 km

6. dV
dt = − 1

40 V ⇒ V = V0 e−t/40

We want to find t such that V (t) = 0.1V0.

0.1V0 = V0 e−t/40 ⇒ 0.1 = e−t/40

⇒ ln(0.1) = − t

40
⇒ t = −40 ln(0.1) ≈ 92.1 sec

7. We will let the population of the bacteria colony be given by p(t) = ekt

where t in measured in hours (we are told p0 = 1).

We know that the p doubles every half hour. Thus p(0.5) = 2. We can
use this information to find the value of k.

2 = e0.5k ⇒ ln(2) = 0.5k

⇒ k = 2 ln(2)
⇒ k = ln(4)

Thus we have that p(t) = eln(4)t. In 24 hours there are p(24) = eln(4)·24 =
424 ≈ 2.81475× 1014 bacteria.

21. We know that the temperature (as a function of time) is given by:

H(t) = 20 + (90− 20) e−kt = 20 + 70e−kt

.

We know that H(10) = 60. Using this information, we can solve for the
constant k.

20 + 70e−10k = 60 ⇒ 70e−10k = 40

⇒ e−10k =
4
7

⇒ −10k = ln
(

4
7

)
⇒ k = − 1

10
ln

(
4
7

)
⇒ k ≈ 0.05596
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Thus, we have H(t) = 20 + 70e−0.05596t.

a.

20 + 70e−0.05596t = 35 ⇒ 70e−0.05596t = 15

⇒ e−0.05596t =
3
14

⇒ −0.05596t = ln
(

3
14

)
⇒ t ≈ 27.5 min

We know that it took 10 minutes for the temperature to reach 60◦C,
so it takes an additional 17.5 minutes for the temperature to reach
35◦C.

b. Now we are changing HS to −15◦C.

H(t) = −15 + (90 + 15)e−0.05596t = −15 + 105e−0.05596t

−15 + 105e−0.05596t = 35 ⇒ 105e−0.05596t = 50

⇒ e−0.05596 =
10
21

⇒ −0.05596t = ln
(

10
21

)
⇒ t ≈ 13.26 min
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