Mass Problems

1. Find the mass of the triangular region below. All lengths are in meters, and the density of the region is given by $\delta(x)=x$ grams $/ \mathrm{m}^{2}$. (Note that since the object is 2 -dimensional, its density is its mass per unit area.)

Solution. Since the density is a function of x, we divide the region into thin vertical strips of thickness $d x$ as shown in the following figure:

(Question: What kind of strips would we use if the density were a function of y ?) Since the height of the strip is $1-x$, its area is $(1-x) d x$, and hence its mass is

$$
\begin{aligned}
d m & =(\text { density of strip }) \times(\text { area of strip }) \\
& =x(1-x) d x
\end{aligned}
$$

Hence the total mass of the triangle is

$$
\begin{aligned}
m & =\int d m \\
& =\int_{0}^{1} x(1-x) d x \\
& \left.=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{1}{6} \text { grams }
\end{aligned}
$$

2. Find the mass of the triangular region below. All lengths are in meters, and the density of the region is given by $\delta(x, y)=e^{(x+y)^{2}}$ grams $/ \mathrm{m}^{2}$.

Solution. Note that we can write the density as $\delta(r)=e^{r^{2}}$, where $r=x+y$. For r in $[0,1]$, the graph of $x+y=r$ is a diagonal line that passes through the point $(r, 0)$. This suggests dividing the triangle into thin diagonal strips as shown in the following figure:

In the picture above, the strip is bounded by coordinate axes and the lines $x+y=r$ and $x+y=r+d r$. Its area is $r d r$, which can be seen from the following calculation: Let $A(r)=\frac{1}{2} r^{2}$ be the area of a triangle whose base and height are both r, and let $d A=A(r+d r)-A(r)$. Then

$$
\begin{aligned}
\text { area of strip } & =d A \\
& =r d r
\end{aligned}
$$

where the last line follows from differentiation. It follows that the mass of the strip is

$$
\begin{aligned}
d m & =(\text { density of strip }) \times(\text { area of strip }) \\
& =e^{r^{2}} r d r
\end{aligned}
$$

Hence the total mass of the triangle is

$$
\begin{aligned}
m & =\int d m \\
& =\int_{0}^{1} r e^{r^{2}} d r \\
& \left.=\frac{1}{2} e^{r^{2}}\right]_{0}^{1}=\frac{1}{2}(e-1) \text { grams }
\end{aligned}
$$

3. A thin plate occupies the region of the plane bounded by the circle $x^{2}+y^{2}=1$. Fin 3 the total mass if the density at the point (x, y) is given by $\delta(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$. (Hint: divide the region into thin circular "rings" centered at the origin.)

Answer: 2π.
4. The region bounded by the graph of $y=x^{2}$ and the x-axis, between 0 and 1 , is revolved about the x-axis. The resulting solid has density given by $\delta(x)=x$. (Here the object is 3 -dimensional, so its density is its mass per unit volume.) Find the total mass.

Answer: $\pi / 6$.

