

1. Prove that for all sets A, B and C we have

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

2. Prove that there exists no smallest positive real number. Does there exist a smallest positive rational number? Given a real number x , does there exist a smallest real number $y > x$?

3. Prove that

$$[a, b] = \{y \in \mathbf{R} : \text{there exist } s, t \in [0, 1] \text{ such that } s + t = 1 \text{ and } y = sa + tb\}.$$

4. Let a_1, a_2, \dots be a bounded sequence of real numbers. Define

$$\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \sup\{a_n, a_{n+1}, \dots\}. \quad (1)$$

- (a) Show that the limsup is defined (i.e., show that the limit on the right-hand side of the equation exists).
- (b) Show that this definition of limsup is equivalent to the definition given in problem 18 on page 62 of Rosenlicht.
- (c) When is it true that

$$\limsup_{n \rightarrow \infty} (a_n + b_n) \leq \limsup_{n \rightarrow \infty} a_n + \limsup_{n \rightarrow \infty} b_n$$

$$\limsup_{n \rightarrow \infty} c a_n = c \limsup_{n \rightarrow \infty} a_n ?$$

- 5. Find a subset of \mathbf{R} that is neither open nor closed.
- 6. Prove that the set $\{(x, 0) : x \in \mathbf{R}\}$ is not an open subset of \mathbf{R}^2 .
- 7. Find all subsets of \mathbf{R} that are both open and closed.
- 8. Find an interval $[a, b]$ in \mathbf{R} such that the intersection $[a, b] \cap \mathbf{Q}$ is both an open and closed subset of the metric space \mathbf{Q} .
- 9. Let E be a metric space and S a non-empty subset of E . For points $p \in E$, define the **distance** from p to S by

$$d(p, S) = \inf\{d(p, s) : s \in S\}.$$

Show that the set $\{y : d(y, S) < 1\}$ is open.

10. Construct a set with exactly three cluster points.