Announcements

- HW3
- Q1R
- Midterm 1 Review

4 Exponential and Logarithmic Functions

\[a^x \quad \log_a x \]
\[e^x \quad \ln x \]
\[a^x a^y = a^{x+y} \quad \ln xy = \ln x + \ln y \]
\[(a^x)^y = a^{xy} \quad \ln x^n = n \ln x \]
\[e^{\ln x} = x \quad \ln e^x = x \]

The natural exponential function is

\[
f(x) = e^x \quad \left(= \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \exp(x) \right)
\]

Change of Base Formula

\[
\log_a x = \frac{\ln x}{\ln a}
\]

DO NOT ATTEMPT!

- \((a + b)^x \neq a^x + b^x\)
- \(\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}\)
- \(\frac{a^x}{a^x + b} \neq \frac{1}{1 + b}\)
- \(a^x = a^y \to x = y \quad a^x + a^y = a^z \not\to x + y = z\)
- \(\ln(x + y) \neq \ln x + \ln y\)
- \(\ln(x^n) \neq (\ln x)^n\)

Derivative of Exponential and Logarithmic Functions

Let \(u\) be a differentiable function of \(x\).

\[
\frac{d}{dx} [e^x] = e^x \\
\frac{d}{dx} [e^u] = e^u \frac{du}{dx} \\
\frac{d}{dx} [a^x] = (\ln a) a^x \\
\frac{d}{dx} [a^u] = (\ln a) a^u \frac{du}{dx} \\
\frac{d}{dx} [\ln x] = \frac{1}{x} \\
\frac{d}{dx} [\ln u] = \frac{1}{u} \frac{du}{dx} \\
\frac{d}{dx} [\log_a x] = \left(\frac{1}{\ln a}\right) \frac{1}{x} \\
\frac{d}{dx} [\log_a u] = \left(\frac{1}{\ln a}\right) \frac{1}{u} \frac{du}{dx}
\]
l’Hôpital’s Rule

Let \((a, b)\) be an interval that contains \(c\). Let \(f\) and \(g\) be differentiable in \((a, b)\), except possibly at \(c\).

When \(x = c\) directly substituted into \(\frac{f(x)}{g(x)}\) produces \(0/0\) or \(\pm\infty/\pm\infty\), then we say that the limit of \(\frac{f(x)}{g(x)}\) as \(x\) approaches \(c\) produces an indeterminate form.

Rule. If the limit of \(\frac{f(x)}{g(x)}\) as \(x\) approaches \(c\) produces an indeterminate form, then

\[
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}
\]

provided the limit exists or is infinite.

Rule. If the limit of \(\frac{f(x)}{g(x)}\) as \(x\) approaches \(\infty\) produces an indeterminate form, then

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}
\]

provided the limit exists or is infinite. The same applies when \(x\) approaches \(-\infty\).

- Remember that the rule is to take the derivatives of the numerator and denominator separately

\[
\lim \frac{f'(x)}{g'(x)} \quad \text{NOT} \quad \lim \left(\frac{f(x)}{g(x)} \right)'
\]

- Sometimes it is necessary to apply l’Hôpital’s Rule more than once to remove an indeterminate form.

- L’Hôpital’s Rule can be used to compare the rates of growth of two functions.

Problems

A. Finding slopes of tangent lines
B. Finding min or max
C. Finding points of inflection
D. Implicit Differentiation

Applications

A. Modeling a population To model the growth of a population an exponential function is often used. One way to model the growth of a populations whose quantity is restricted is called the logistic growth model

\[
f(t) = \frac{a}{1 + be^{-kt}}, \quad t \geq 0
\]

B. Compounding interest

An amount of \(P\), the principal, is deposited into an account at an annual interest rate of \(r\). The balance \(A_n\) after \(t\) years is

\[
A_n = P \left(1 + \frac{r}{n} \right)^{nt}
\]

where \(n\) is the number of compoundings in a year. The limit of \(A_n\) as \(n \to \infty\) is the balance \(A\) after \(t\) years of continuous compounding, or

\[
A = \lim_{n \to \infty} A_n = \lim_{n \to \infty} P \left(1 + \frac{r}{n} \right)^{nt} = Pe^{rt}
\]