Take this test as you would take a test in class. When you are done, check your work against the answers given in the back of the book.

1. Four students answer a true-false question on an exam. The random variable x is the number of answers of true among the four students.
 (a) Write the sample space for the possible outcomes.
 (b) Find the frequency distribution for the random variable x.
 (c) Find the probability distribution for the random variable x.

2. A card is chosen at random from a standard 52-card deck of playing cards. What is the probability that the card will be red and not a face card?

In Exercises 3 and 4, sketch a graph of the probability distribution and find the indicated probabilities.

3.
 \[
 \begin{array}{c|cccc}
 x & 1 & 2 & 3 & 4 \\
 \hline
 P(x) & \frac{3}{16} & \frac{2}{16} & \frac{5}{16} & \frac{5}{16} \\
 \end{array}
 \]
 (a) $P(x < 3)$
 (b) $P(x \geq 3)$

4.
 \[
 \begin{array}{c|cccccc}
 x & 7 & 8 & 9 & 10 & 11 \\
 \hline
 P(x) & 0.21 & 0.13 & 0.19 & 0.42 & 0.05 \\
 \end{array}
 \]
 (a) $P(7 \leq x \leq 10)$
 (b) $P(x > 8)$

In Exercises 5 and 6, find the expected value, variance, and standard deviation for the given probability distribution.

5.
 \[
 \begin{array}{c|cccc}
 x & 0 & 1 & 2 & 3 \\
 \hline
 P(x) & \frac{2}{10} & \frac{4}{10} & \frac{3}{10} & \frac{3}{10} \\
 \end{array}
 \]

6.
 \[
 \begin{array}{c|cccc}
 x & -2 & -1 & 0 & 1 \\
 \hline
 P(x) & 0.141 & 0.305 & 0.257 & 0.063 \\
 \end{array}
 \]
 \[
 \begin{array}{cccc}
 & 2 \\
 \hline
 P(x) & 0.234 \\
 \end{array}
 \]

In Exercises 7–9, use a graphing utility to graph the function. Then determine whether the function f represents a probability density function over the given interval. If f is not a probability density function, identify the condition(s) that is (are) not satisfied.

7. $f(x) = \frac{1}{16}$, $[0, 8]$
8. $f(x) = \frac{3-x}{6}$, $[-1, 1]$
9. $f(x) = \frac{3}{4}e^{-3x/4}$, $[0, \infty)$

In Exercises 10–12, find the indicated probabilities for the probability density function.

10. $f(x) = \frac{2x}{9}$, $[0, 3]$
 (a) $P(0 \leq x \leq 1)$
 (b) $P(2 \leq x \leq 3)$

11. $f(x) = 4(x - x^3)$, $[0, 1]$
 (a) $P(0 < x < 0.5)$
 (b) $P(0.25 < x < 1)$

12. $f(x) = 2xe^{-x^2}$, $[0, \infty)$
 (a) $P(x < 1)$
 (b) $P(x \geq 1)$

In Exercises 13–15, find the mean, variance, and standard deviation of the probability density function.

13. $f(x) = \frac{1}{14}$, $[0, 14]$
14. $f(x) = 3x - \frac{3}{2}x^2$, $[0, 1]$
15. $f(x) = e^{-x}$, $[0, \infty)$

16. An intelligence quotient or IQ is a number that is meant to measure intelligence. The IQs of students in a school are normally distributed with a mean of 110 and a standard deviation of 10. Use a symbolic integration utility to find the probability that a student selected at random will have an IQ within one standard deviation of the mean.