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Abstract

The Mystery

In 2007 physicists Bertrand Eynard and Nicolas Orantin
discovered, from their work on statistical mechanics and
random matrix theory, a beautiful universal recursion formula
based on a plane analytic curve (i.e., a Riemann surface), the
Cauchy differentiation kernel, and the residue calculus on it.

The mystery is that it is not clear what this formula is
calculating.
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The Conjectures

Then string theorists Bouchard, Dijkgraaf, Klemm, Mariño,
Pasquetti, Vafa, and others conjectured that the Eynard-Orantin
recursion was computing various important geometric
quantities, such as the Hurwitz numbers, the Gromov-Witten
invariants of toric Calabi-Yau spaces, and knot invariants. It is
also speculated that the recursion may have something to do
with the hyperbolic volume conjecture of the knot complement.

The Mathematical Work

In this talk I will report that the first cases of the conjectures
have been solved very recently by mathematicians.

Instead of starting from describing the general theory, I will start
with giving you a simple example of the theory. This example
shows the nature of the recursion and where it is coming from.
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Counting the Number of Tilings of a Topological
Surface

Question

How many different ways are there to tile a compact topological
surface of genus g by n distinct (i.e., colored) tiles?

n = the number of tiles = the number of colors.
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A tiling Γ of a surface has many different names: Map,
Cell-Decomposition, Feynman Diagram, Ribbon Graph, Strebel
Differential, Grothendieck’s Dessin d’Enfant....{

v = the number of vertices of Γ

e = the number of edges of Γ

Euler’s Formula
v − e + n = 2− 2g

Let
Z (g,n,e) = the number of tilings with e edges.

The number of edges is the least when v = 1, and the largest
when Γ is trivalent (2e = 3v).

2g − 2 + n + 1 ≤ e ≤ 2(3g − 3 + n) + n

The simplest cases are g = 0,n = 3 and g = n = 1.
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g = 0,n = 3,e = 3

Z (0,3,3) = 3 + 1 = 4.

If a homeomorphism of the surface changes one tiling to
another, then we identify them.
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g = n = 1,e = 3

Z (1,1,3) = 1
6 .

If a tiling has an automorphism group G, then this tiling
contributes 1/|G| to the total number.
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Some Calculations

Z (0,4,6) = 64
Z (0,4,5) = 144
Z (0,4,4) = 99
Z (0,4,3) = 20

Z (3,1,15) =
5005

3

Z (3,1,14) =
25025

2
Z (3,1,13) = 41118

Z (3,1,12) =
929929

12

Z (3,1,11) =
183955

2

Z (3,1,10) =
283767

4

Z (3,1,9) =
317735

9
Z (3,1,8) = 10813

Z (3,1,7) =
25443

7

Z (3,1,6) =
445

4
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The Counting Formula

Provide a variable ti for each tile i and define

Z (ti , tj) =
(ti + 1)(tj + 1)

2(ti + tj)
,

and the Free Energy

Fg,n(t1, . . . , tn) =
∑

Γ tiling

(−1)e(Γ)

|Aut(Γ)|
∏
η∈Γ

z(t+
η , t
−
η ).

t +

t −
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Remark-Why the Free Energy important?
One reason is because it is related to the Euler characteristic of
the moduli space of pointed algebraic curves. Define

z = z(t , t) =
(t + 1)2

4t
.

Then

Fg,n(t , t , . . . , t) =
∑

Γ tiling of
type (g,n)

(−1)e(Γ)

|Aut(Γ)|
ze(Γ).

In particular, a special value of the Free Energy is

Fg,n(1,1, . . . ,1) = (−1)nχ
(
Mg,n

)
= −(2g − 2 + n − 1)!

(2g − 2)!
· ζ(1− 2g),

Where ζ(s) is the Riemann zeta function.
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Theorem 1. Topological Recursion Formula (M-Penkava)

There is an effective recursion in terms of 2g − 2 + n.

Fg,n(tN) = − 1
16

∫ t1

−1

[
n∑

j=2

tj
t2 − t2

j

(
(t2 − 1)3

t2
∂

∂t
Fg,n−1(t , tN\{1,j})

−
(t2

j − 1)3

t2
j

∂

∂tj
Fg,n−1(tN\{1})

)

+
n∑

j=2

(t2 − 1)2

t2
∂

∂t
Fg,n−1(t , tN\{1,j})

+
1
2

(t2 − 1)3

t2
∂2

∂u1∂u2

(
Fg−1,n+1(u1,u2, tN\{1})

+
stable∑

g1+g2=g
ItJ=N\{1}

Fg1,|I|+1(u1, tI)Fg2,|J|+1(u2, tJ)

)∣∣∣∣∣
u1=u2=t

]
dt .
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Topological Recursion = Removing a Pair of Pants

(g,n) =⇒ (g,n − 1)

(g,n) =⇒ (g − 1,n + 1)

(g,n) =⇒ (g1,n1)+(g2,n2){
g = g1 + g2

n = n1 + n2 − 1
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Theorem 2. Laurent Polynomial – Unexpected!

Fg,n(t1, . . . , tn) is a Laurent polynomial, and its leading terms
are given by

F top
g,n(tN) =

∑
Γ trivalent tiling
of type (g,n)

(−1)e(Γ)

|Aut(Γ)|
∏
η∈Γ

t+
η t−η

2
(
t+
η + t−η

)
=

(−1)n

25g−5+2n

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏

j=1

(2dj)!

dj !

(
tj
2

)2dj +1

.

This formula is identical to the Kontsevich’s “Boxed Formula” of
his paper on the Witten Conjecture. Indeed, our recursion
formula restricts to the top degree terms and recovers the
Witten-Kontsevich theory, i.e., the Virasoro Constraint Condition
onMg,n.
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Theorem 3. The Laplace Transform

Fg,n(t1, . . . , tn) is the Laplace transform of the number of
lattice points in the canonical orbi-polytope decomposition
of the moduli space

Mg,n × Rn
+
∼=

∐
Γ Tiling of
type (g,n)

Re(Γ)
+

Aut(Γ)

due to Harer, Mumford, Strebel, and Thurston.
The variable tj is the Laplace dual coordinate of the
perimeter length of the j-th tile.
Our recursion formula is the Laplace transform of the
combinatorial formula that corresponds to the
edge-removal operation of a tiling.
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The Combinatorial Part of the Theory

Let Γ be a tiling of a compact Riemann surface of genus g with
n colored tiles indexed by the set N = {1,2, . . . ,n}, and
e = e(Γ) labeled edges indexed by E = {1,2, . . . ,e}. Define

aiη = the number of times Edge η appears in Face i ,

and the N × E incidence matrix of the tiling

AΓ = [aiη]i∈N,η∈E .

The number of lattice points in question is

Ng,n(p) =
∑

Γ tiling of type (g,n)

∣∣{x ∈ Ze(Γ)
+ | AΓx = p}

∣∣
|Aut(Γ)|

for each collection p ∈ Zn
+ of the perimeter length of tiles.
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Theorem: The Edge-Removal Formula (C-M-S)

p1Ng,n(pN) =
1
2

n∑
j=2

[ p1+pj∑
q=0

q(p1 + pj − q)Ng,n−1(q,pN\{1,j})

+ H(p1 − pj)

p1−pj∑
q=0

q(p1 − pj − q)Ng,n−1(q,pN\{1,j})

− H(pj − p1)

pj−p1∑
q=0

q(pj − p1 − q)Ng,n−1(q,pN\{1,j})

]

+
1
2

∑
0≤q1+q2≤p1

q1q2(p1 − q1 − q2)

[
Ng−1,n+1(q1,q2,pN\{1})

+
stable∑

g1+g2=g
ItJ=N\{1}

Ng1,|I|+1(q1,pI)Ng2,|J|+1(q2,pJ)

]
.
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Here

H(x) =

{
1 x > 0
0 x ≤ 0

is the Heaviside function.

Remark

The counting function Ng,n(p) is a complicated piece-wise
polynomial function. For example, if p1 + p2 + · · ·+ pn is odd,
then Ng,n(p) = 0.

The Free Energy

Compared to Ng,n(p), the Free Energy Fg,n(tN) is a much nicer,
and easy to deal-with, function, which is indeed a Laurent
polynomial.
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Combinatorics vs. the Free Energy

The interesting situation we have here, however, is that it is
easy to prove the combinatorial recursion formula using the
edge-removal operation, but there is no direct proof of the
topological recursion for the Free Energy. We are able to prove
it only by using the Laplace transform of the combinatorial
formula.
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The Mystery

This is just the tip of the iceberg.

Our recursion formula is an example of the universal recursion
formula discovered by physicists Eynard and Orantin, based on
a plane curve

x = y +
1
y
.

The Theme

The Laplace transform changes a combinatorial problem to an
equation in complex analysis. The Free Energy Fg,n appears
there as a holomorphic function, defined on the n-symmetric
product of a particular Riemann surface. The Free Energies
satisfy a universal recursion relation on 2g − 2 + n in terms of
the residue calculus.
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Topological Recursion of Eynard and Orantin, 2007

The Input

A plane analytic curve

C = {(x , y) ∈ C2 | f (x , y) = 0}

(erroneously???) called the Spectral Curve of the theory,
due to the influence of Krichever.
Fay’s Fundamental Form of the Second Kind, or simply the
Cauchy Differentiation Kernel on C2

W0,2(t1, t2) =
dt1 ⊗ dt2
(t1 − t2)2 + holomorphic.



23 The Mystery Topological Recursion of Eynard and Orantin, 2007

The Output

An infinite sequence of meromorphic symmetric differentials of
degree n

Wg,n(t1, . . . , tn) defined on Cn,

g = 0,1,2,3 . . . , and n = 0,1,2,3, . . . .

and

the Free Energies Fg,n(t1, . . . , tn) that are defined by

d⊗nFg,n(t1, . . . , tn) = Wg,n(t1, . . . , tn).

These are the Primitives in the sense of Kyoji Saito, and are
conjectured to be related to a nonlinear integrable system of
the KdV/KP type.
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Λ1(C) = sheaf of meromorphic 1-forms on C
Hn = H0(Cn,Symn(Λ1(C))

)
= the space of meromorphic

symmetric differentials of degree n.

A bilinear operator
K : H ⊗ H −→ H

naturally extends to

K : Hn1+1 ⊗ Hn2+1 3 V (t0, t1, . . . , tn1)⊗W (s0, s1, . . . , sn2)

7−→ K(t0,s0)V (t0, t1, . . . , tn1)⊗W (s0, s1, . . . , sn2) ∈ Hn1+n2+1

K : Hn+1 3W (t0, t1, . . . , tn) 7−→ K(t0,t1)W (t0, t1, . . . , tn) ∈ Hn.
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The Eynard Kernel K : H ⊗ H−→H for C

K
(
f1(t1)dt1, f2(t2)dt2

)
=

1
2πi

r∑
λ=1

∮
|t−aλ|<ε

Kλ(t , t1)

(
f1(t)dt ⊗ f2

(
sλ(t)

)
dsλ(t)

+ f2(t)dt ⊗ f1
(
sλ(t)

)
dsλ(t)

)
,

where

Kλ(t , t1) =
1
2

(∫ sλ(t)

t
W0,2(t , t1) dt

)
⊗dt1·

1(
y(t)− y

(
sλ(t)

))
dx(t)

,

a1, . . . ,ar = the simple ramification points of the x-projection,
sλ = local deck transformation around aλ.
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The Eynared-Orantin Topological Recursion

The Topological Recursion

Wg,n = K (Wg,n−1,W0,2) + K (Wg−1,n+1)

+
stabel∑

g1+g2=g
n1+n2=n−1

K (Wg1,n1+1,Wg2,n2+1)

The topological Recursion determines Wg,n(z1, . . . , zn)
recursively w.r.t. 2g − 2 + n from Wg,n−1,Wg−1,n+1, and pairs
(Wg1,n1 ,Wg2,n2) such that g = g1 + g2,n = n1 + n2 − 1, by an
integral transform using the kernel function defined on C.
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Where does it come from?

The topological recursion comes from statistical mechanics and
Random Matrix Theory / Matrix Models.

Define the partition function by

Z =

∫
HN×N

exp
(
− N traceV (M)

)
dM,

where HN×N is a real N2-dimensional space of N × N matrices
with a measure dM (such as the space of Hermitian matrices),
and V (x) is a function in one variable that defines the potential
function of the theory. Let us denote

〈F (M)〉 =

∫
HN×N

F (M) exp
(
− N traceV (M)

)
dM.
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Then the correlation function of resolvents

Wn(x1, · · · , xn) =

〈
tr
(

1
x1 −M

)
· · · tr

(
1

xn −M

)〉
cumulant

has a large N expansion

Wn(x1, . . . , xn) =
∑
g≥0

N2−2g−nWg,n(x1, . . . , xn).

The coefficients Wg,n satisfy the topological recursion with the
resolvent curve C as the input, that is defined as the Riemann
surface of the analytic function

W1(x) =

〈
tr
(

1
x −M

)〉
.

Thus if we know C, then we can calculate Z = W0 and all Wn’s.
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Mystery #1

Bouchard-Mariño Conjecture, September 2007

Take the plane curve x = ye−y as an input.

Then Wg,n(t1, . . . , tn) is the generating function of Hurwitz
numbers of genus g and an arbitrary profile µ given by a
partition of length n.
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A Big Surprise
A Hurwitz cover is a meromorphic function f : Σ −→ P1 on a
Riemann surface Σ of genus g with a prescribed order µi at
each pole xi . The Hurwitz number counts such covers.

f

The Topological Recursion for x = ye−y gives a Previously
Unknown effective method of counting Hurwitz numbers

Fg,n(t1, . . . , tn) =
∑

n1,...,n`

〈τn1 · · · τn`Λ
∨
g (1)〉g,`

∏̀
i=1

ξ̂ni (ti),

where Λ∨g (1) = 1− λ1 + · · ·+ (−1)gλg , and ξ̂n(t) are certain
holomorphic functions.
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Mystery Continues

Geometric Setting

(X , ω) = Toric Calabi-Yau 3-fold as a Kähler manifold.

X̃ = Mirror dual of X .
X̃ as a complex manifold is a conic fibration on C2

X̃ =
{

(x , y ,u, v) ∈ C4 ∣∣ uv = f (x , y)
}
,

which degenerates on a plane curve C ⊂ C2

C =
{

(x , y) ∈ C2 ∣∣ 0 = f (x , y)
}

called the Mirror Curve.
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Mirror Symmetry of Toric Calabi-Yau Geometry

Calabi-Yau Space X Mirror of X

mirror

C

Conic Fibration
of a Plane
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Mystery #2

Remodeling Conjecture, Bouchard-Klemm-Mariño-Pasquetti,
September 2007

Take a toric Calabi-Yau 3-fold (X , ω) as an input.

Find its mirror dual X̃ , and identify the mirror curve C.

Then

The Open and Closed Gromov-Witten Invariants of X

||

The Eynard-Orantin Invariants Wg,n and the Free Energies Fg,n

defined on the Mirror Curve C
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The Discovery

The Bouchard-Mariño Conjecture was Solved in Fall 2009!

1 Borot-Eynard-M-Safnuk: Found a matrix integral
expression for Hurwitz numbers.

2 Eynard-M-Safnuk: The topological recursion is the Laplace
transform of a combinatorial equation known as the
cut-and-join equation in representation theory.

3 M-Zhang: Found that Fg,n(t1, . . . , tn) are the Laplace
transform of Hurwitz numbers, and are indeed polynomials
in the coordinate of the spectral curve x = ye−y . As
corollaries, we obtained an extremely simple proof of the
Witten conjecture and the λg-conjecture in one stroke.



35 Mathematical Work Some Conjectures Are Solved!

Further Developments in 2010

1 Zhou and Chen (independently): Using the method of
Eynard-M-Safnuk, proved the BKMP Remodeling
Conjecture for X = C3.

2 Zhu: Based on M-Zhang, discovered that Fg,n for X = C3 is
again a polynomial in the coordinate of the mirror curve C,
and obtained new results on the tautological intersection
numbers onMg,n.

3 Ooguri-Sulkowski-Yamazaki: Discovered a new matrix
model for the Donaldson-Thomas invariants (counting BPS
states) of Calabi-Yau spaces, and gave a physical evidence
for the general case of the BKMP Remodeling Conjecture.
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Mystery Continues! Dijkgraaf-Fuji-Manabe
Topological Recursion in Knot Theory and the Volume
Conjecture

The Eynard-Orantin recursion computs knot invariants that
have the same information of the colored Jones
polynomials JN(K ,q) for all values of the dimension N of
irreducible representations of G = SL(2,C).
The spectral curve is the subvariety of the character variety
Hom(π1(T 2),G)/G = C∗ × C∗ consisting of the flat
connections that extend to flat connections on the 3-fold
obtained by removing a tubular neighborhood of the knot K
from S3.
F0,1 is essentially the hyperbolic volume of the knot
complement vol(S3 \ K ).
F0,2 gives the Reidemeister torsion.
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Dijkgraaf-Fuji-Manabe related the Eynard-Orantin theory and
the Kashaev-Murakami-Murakami Volume Conjecture.

The Volume Conjecture

1
π

lim
N→∞

∣∣∣log JN(K ,e
2πi
N )
∣∣∣

N
= vol(S3 \ K ).

A similar theory exists for torus knots. The Eynard-M-Safnuk
theorem appears as the special case of unknot!
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Mirror Symmetry of String Theories

Quantum Geometry Complex Analysis

Mirror Symmetry

A-Model String 
Theory

B-Model String
Theory
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Mirror Symmetry

Quantum Geometry

Mirzakhani recursion for
the Weil-Petersson volume
of the moduli of bordered
hyperbolic surfaces
Lattice point counting in
Mg,n × Rn

+

Simple Hurwitz numbers
and the cut-and-join
equation
Gromov-Witten Invariants
of toric Calabi-Yau 3-folds
Quantum knot invariants

Complex Analysis

Intersection theory on
Mg,n

Residue calculus on the
“Spectral Curve” and the
Eynard-Orantin recursion
Nonlinear Integrable PDEs
of the KdV and KP type,
and Frobenius manifolds
Donaldson-Thomas
Invariants
Volume of the knot
complements,
Reidemeister torsion, ...
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Pierre-Simon Laplace (1749 - 1827)

What is Mirror Symmetry?

In Terms of Mathematics

Mirror Symmetry
|| ???

Laplace Transform

The Laplace transform changes
mathematics of counting to
Complex Analysis.
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Laplace Transform: Gauss −→ Riemann
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Thank you very much for your attention!
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