New formulae for Gromov-Witten invariants and Hurwitz numbers

Vincent Bouchard (Harvard)

UC Davis March 2nd, 2009

The tale of an

unconventional tire maker

The raw material: a rubber tree

Manufacturing prcoess: creating objects with nice properties

Application (original motivation): wheels of a car

Thinking outside the box: building an earthship!

Outline: The tale of an unconventional geometer

The recursion

- The raw material: Geometric data
- The manufacturing process: The recursion

2 Applications

- The original motivation: Random matrix theory
- Thinking outside the box: Enumerative geometry

Outline: The tale of an unconventional geometer

The recursion

- The raw material: Geometric data
- The manufacturing process: The recursion

2 Applications

- The original motivation: Random matrix theory
- Thinking outside the box: Enumerative geometry

Definition

A spectral curve C is a triple (C, x, y), where C is a genus \overline{g} compact Riemann surface, and x and y are two holomorphic functions on some open set in C. We assume that the ramification points of x have multiplicity 2.

Examples:

•
$$C = \mathbb{C}_{\infty} = \mathbb{P}^1$$
, $x(p) = p^2$, $y(p) = p$
 $\rightarrow y^2 = x$.

• $\mathcal{C} = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}), \quad x(p) = \wp(p; g_2, g_3), \quad y(p) = \wp'(p; g_2, g_3)$ $\rightarrow y^2 = 4x^3 - g_2x - g_3.$

Definition

A spectral curve C is a triple (C, x, y), where C is a genus \overline{g} compact Riemann surface, and x and y are two holomorphic functions on some open set in C. We assume that the ramification points of x have multiplicity 2.

Examples:

•
$$C = \mathbb{C}_{\infty} = \mathbb{P}^1$$
, $x(p) = p^2$, $y(p) = p$
 $\rightarrow y^2 = x$.

• $\mathcal{C} = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}), \quad x(p) = \wp(p; g_2, g_3), \quad y(p) = \wp'(p; g_2, g_3)$ $\rightarrow y^2 = 4x^3 - g_2x - g_3.$

Definition

A spectral curve C is a triple (C, x, y), where C is a genus \overline{g} compact Riemann surface, and x and y are two holomorphic functions on some open set in C. We assume that the ramification points of x have multiplicity 2.

Examples:

•
$$C = \mathbb{C}_{\infty} = \mathbb{P}^1$$
, $x(p) = p^2$, $y(p) = p$
 $\rightarrow y^2 = x$.

•
$$\mathcal{C} = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z}), \quad x(p) = \wp(p; g_2, g_3), \quad y(p) = \wp'(p; g_2, g_3)$$

 $\rightarrow y^2 = 4x^3 - g_2x - g_3.$

Outline: The tale of an unconventional geometer

The recursion

- The raw material: Geometric data
- The manufacturing process: The recursion

2 Applications

- The original motivation: Random matrix theory
- Thinking outside the box: Enumerative geometry

We choose a symplectic basis of cycles (A_i, B_j) on the genus \overline{g} Riemann surface C, such that

$$A_i \cap B_j = \delta_{i,j}, \qquad i,j = 1,\ldots, \bar{g}.$$

Definition

The Bergmann kernel $B(p_1, p_2)$ is the unique bilinear differential on C having a double pole at $p_1 = p_2$ with no residue, no other poles, and such that, in good local coordinates,

$$B(p_1, p_2) \underset{p_1 \to p_2}{\sim} \frac{\mathrm{d}p_1 \mathrm{d}p_2}{(p_1 - p_2)^2} + \mathrm{reg}, \qquad \oint_{A_i} B(p_1, p_2) = 0 \quad \forall i.$$

Examples:

- $\mathcal{C} = \mathbb{C}_{\infty} = \mathbb{P}^1$: $B(p_1, p_2) = \frac{\mathrm{d} p_1 \mathrm{d} p_2}{(p_1 p_2)^2}$.
- $C = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$: $B(p_1, p_2) = \left(\wp(p_1 - p_2; g_2, g_3) + \frac{3g_3E_2(\tau)E_4(\tau)}{2g_2E_6(\tau)}\right) \mathrm{d}p_1\mathrm{d}p_2$

We choose a symplectic basis of cycles (A_i, B_j) on the genus \overline{g} Riemann surface C, such that

$$A_i \cap B_j = \delta_{i,j}, \qquad i,j = 1,\ldots, \bar{g}.$$

Definition

The Bergmann kernel $B(p_1, p_2)$ is the unique bilinear differential on C having a double pole at $p_1 = p_2$ with no residue, no other poles, and such that, in good local coordinates,

$$B(p_1,p_2) \underset{p_1 \to p_2}{\sim} \frac{\mathrm{d}p_1 \mathrm{d}p_2}{(p_1-p_2)^2} + \mathrm{reg}, \qquad \oint_{A_i} B(p_1,p_2) = 0 \quad \forall i.$$

Examples:

•
$$\mathcal{C} = \mathbb{C}_{\infty} = \mathbb{P}^1$$
: $B(p_1, p_2) = \frac{\mathrm{d} p_1 \mathrm{d} p_2}{(p_1 - p_2)^2}$

•
$$C = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$$
:
 $B(p_1, p_2) = \left(\wp(p_1 - p_2; g_2, g_3) + \frac{3g_3 E_2(\tau) E_4(\tau)}{2g_2 E_6(\tau)}\right) \mathrm{d}p_1 \mathrm{d}p_1$

Vincent Bouchard (Harvard) New formulae for GW invariants and Hurwitz numbers

We choose a symplectic basis of cycles (A_i, B_j) on the genus \overline{g} Riemann surface C, such that

$$A_i \cap B_j = \delta_{i,j}, \qquad i,j = 1,\ldots, \bar{g}.$$

Definition

The Bergmann kernel $B(p_1, p_2)$ is the unique bilinear differential on C having a double pole at $p_1 = p_2$ with no residue, no other poles, and such that, in good local coordinates,

$$B(p_1,p_2) \underset{p_1 \to p_2}{\sim} \frac{\mathrm{d}p_1 \mathrm{d}p_2}{(p_1-p_2)^2} + \mathrm{reg}, \qquad \oint_{A_i} B(p_1,p_2) = 0 \quad \forall i.$$

Examples:

•
$$\mathcal{C} = \mathbb{C}_{\infty} = \mathbb{P}^1$$
: $B(p_1, p_2) = \frac{\mathrm{d} p_1 \mathrm{d} p_2}{(p_1 - p_2)^2}$.

•
$$\mathcal{C} = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$$
 :

 $B(p_1, p_2) = \left(\wp(p_1 - p_2; g_2, g_3) + \frac{3g_3 E_2(\tau) E_4(\tau)}{2g_2 E_6(\tau)}\right) \mathrm{d}p_1 \mathrm{d}p_2$

We choose a symplectic basis of cycles (A_i, B_j) on the genus \overline{g} Riemann surface C, such that

$$A_i \cap B_j = \delta_{i,j}, \qquad i,j = 1,\ldots, \bar{g}.$$

Definition

The Bergmann kernel $B(p_1, p_2)$ is the unique bilinear differential on C having a double pole at $p_1 = p_2$ with no residue, no other poles, and such that, in good local coordinates,

$$B(p_1,p_2) \underset{p_1 \to p_2}{\sim} \frac{\mathrm{d}p_1 \mathrm{d}p_2}{(p_1-p_2)^2} + \mathrm{reg}, \qquad \oint_{A_i} B(p_1,p_2) = 0 \quad \forall i.$$

Examples:

•
$$C = \mathbb{C}_{\infty} = \mathbb{P}^1$$
: $B(p_1, p_2) = \frac{\mathrm{d} p_1 \mathrm{d} p_2}{(p_1 - p_2)^2}$.
• $C = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$:
 $B(p_1, p_2) = \left(\wp(p_1 - p_2; g_2, g_3) + \frac{3g_3 E_2(\tau) E_4(\tau)}{2g_2 E_6(\tau)} \right) \mathrm{d} p_1 \mathrm{d} p_2$.

Let $a_m \in C$ be the ramification points of x, and parameterize by q and \bar{q} the two branches of x near a_m (that is, $x(q) = x(\bar{q})$).

Definition

The recursion kernel $K_m(p, q)$ is a meromorphic one-form in p defined locally near a_m by

$$\mathcal{K}_m(p,q) = -rac{1}{2}rac{\int_{q'=ar{q}}^q B(p,q')}{(y(q)-y(ar{q}))\mathrm{d}x(q)}.$$

Example:

•
$$\mathcal{C} = \mathbb{C}_{\infty} = \mathbb{P}^1$$
, $x(p) = p^2$, $y(p) = p$

ightarrow only one ramification point: $a_1=0$, and ar q=-q

$$\rightarrow K_1(p,q) = \frac{1}{4} \frac{\mathrm{d}p}{q(q^2-p^2)\mathrm{d}q}.$$

Let $a_m \in C$ be the ramification points of x, and parameterize by q and \bar{q} the two branches of x near a_m (that is, $x(q) = x(\bar{q})$).

Definition

The recursion kernel $K_m(p, q)$ is a meromorphic one-form in p defined locally near a_m by

$$\mathcal{K}_m(p,q) = -rac{1}{2}rac{\int_{q'=ar{q}}^q B(p,q')}{(y(q)-y(ar{q}))\mathrm{d}x(q)}.$$

Example:

•
$$\mathcal{C} = \mathbb{C}_{\infty} = \mathbb{P}^1$$
, $x(p) = p^2$, $y(p) = p$

 \rightarrow only one ramification point: $a_1 = 0$, and $\bar{q} = -q$ $\rightarrow K_1(p,q) = \frac{1}{4} \frac{\mathrm{d}p}{q(q^2 - p^2)\mathrm{d}q}.$

Let $a_m \in C$ be the ramification points of x, and parameterize by q and \bar{q} the two branches of x near a_m (that is, $x(q) = x(\bar{q})$).

Definition

The recursion kernel $K_m(p, q)$ is a meromorphic one-form in p defined locally near a_m by

$$\mathcal{K}_m(p,q) = -rac{1}{2}rac{\int_{q'=ar{q}}^q B(p,q')}{(y(q)-y(ar{q}))\mathrm{d}x(q)}.$$

Example:

•
$$\mathcal{C} = \mathbb{C}_{\infty} = \mathbb{P}^1, \quad x(p) = p^2, \quad y(p) = p$$

ightarrow only one ramification point: $a_1=0$, and $ar{q}=-q$

$$ightarrow K_1(p,q) = rac{1}{4} rac{\mathrm{d}p}{q(q^2-p^2)\mathrm{d}q}$$

Let $a_m \in C$ be the ramification points of x, and parameterize by q and \bar{q} the two branches of x near a_m (that is, $x(q) = x(\bar{q})$).

Definition

The recursion kernel $K_m(p, q)$ is a meromorphic one-form in p defined locally near a_m by

$$\mathcal{K}_m(p,q) = -rac{1}{2}rac{\int_{q'=ar{q}}^q B(p,q')}{(y(q)-y(ar{q}))\mathrm{d}x(q)}.$$

Example:

•
$$C = \mathbb{C}_{\infty} = \mathbb{P}^1$$
, $x(p) = p^2$, $y(p) = p$
 \rightarrow only one ramification point: $a_1 = 0$, and $\bar{q} = -q$
 $\rightarrow K_1(p,q) = \frac{1}{4} \frac{\mathrm{d}p}{q(q^2 - p^2)\mathrm{d}q}$.

Definition: the recursion

Given a spectral curve C = (C, x, y), we define the meromorphic forms:

$$\omega_1^{(0)}(p_1) = y(p_1) dx(p_1), \qquad \omega_2^{(0)}(p_1, p_2) = B(p_1, p_2),$$

and using H as a collective notation $H = \{p_1, \dots, p_h\}$, by recursion on g and h, for $2g - 2 + h \ge 0$,

$$\begin{split} \omega_{h+1}^{(g)}(p,H) &= \sum_{m} \underset{q \to a_m}{\operatorname{Res}} K_m(p,q) \Big[\omega_{h+2}^{(g-1)}(q,\bar{q},H) \\ &+ \sum_{l=0}^{g} \underset{J \subset H}{\sum}' \omega_{1+|J|}^{(g-l)}(q,J) \omega_{1+h-|J|}^{(l)}(\bar{q},H\backslash J) \Big], \end{split}$$

where \sum' means that we exclude the terms $(I, J) = (g, \emptyset), (0, H)$.

The recursion (pictorial representation)

$$\begin{split} \omega_{h+1}^{(g)}(p,H) &= \sum_{m} \underset{q \to a_m}{\mathsf{Res}} \mathcal{K}_m(p,q) \Big[\omega_{h+2}^{(g-1)}(q,\bar{q},H) \\ &+ \sum_{I=0}^{g} \underset{J \subset H}{\sum}' \omega_{1+|J|}^{(g-I)}(q,J) \omega_{1+h-|J|}^{(I)}(\bar{q},H\backslash J) \Big], \end{split}$$

Definition: the invariants

For $g \ge 2$, we define the invariants $F_g := \omega_0^{(g)}$ by

$$F_g = rac{1}{2-2g}\sum_m \mathop{\mathrm{Res}}_{q o a_m} \omega_1^{(g)}(q) \Phi(q),$$

where $\mathrm{d}\Phi(q) = \omega_1^{(0)}(q) = y(q)\mathrm{d}x(q)$.

The $\omega_h^{(g)}(p_1,\ldots,p_h)$ and F_g have many nice properties [EO]. Some examples:

- ω_h^(g)(p₁,..., p_h) is a meromorphic one-form in each of its variable, with poles only at the ramification points, with order at most 6g 6 + 2h + 2, and vanishing residue;
- $\omega_h^{(g)}(p_1,\ldots,p_h)$ is symmetric in its *h* variables;
- Any two curves C = (C, x, y) and C̃ = (C̃, x̃, ỹ) which are related by a conformal mapping C → C̃ preserving the symplectic form dx ∧ dy = dx̃ ∧ dỹ have the same invariants F_g;
- More properties, related to integrable systems,

The $\omega_h^{(g)}(p_1, \ldots, p_h)$ and F_g have many nice properties [EO]. Some examples:

- ω_h^(g)(p₁,..., p_h) is a meromorphic one-form in each of its variable, with poles only at the ramification points, with order at most 6g 6 + 2h + 2, and vanishing residue;
- $\omega_h^{(g)}(p_1,\ldots,p_h)$ is symmetric in its *h* variables;
- Any two curves C = (C, x, y) and C̃ = (C̃, x̃, ỹ) which are related by a conformal mapping C → C̃ preserving the symplectic form dx ∧ dy = dx̃ ∧ dỹ have the same invariants F_g;
- More properties, related to integrable systems,

The $\omega_h^{(g)}(p_1, \ldots, p_h)$ and F_g have many nice properties [EO]. Some examples:

- ω_h^(g)(p₁,..., p_h) is a meromorphic one-form in each of its variable, with poles only at the ramification points, with order at most 6g 6 + 2h + 2, and vanishing residue;
- $\omega_h^{(g)}(p_1,\ldots,p_h)$ is symmetric in its *h* variables;
- Any two curves C = (C, x, y) and C̃ = (C̃, x̃, ỹ) which are related by a conformal mapping C → C̃ preserving the symplectic form dx ∧ dy = dx̃ ∧ dỹ have the same invariants F_g;
- More properties, related to integrable systems,

The $\omega_h^{(g)}(p_1,\ldots,p_h)$ and F_g have many nice properties [EO]. Some examples:

- $\omega_h^{(g)}(p_1, \ldots, p_h)$ is a meromorphic one-form in each of its variable, with poles only at the ramification points, with order at most 6g 6 + 2h + 2, and vanishing residue;
- $\omega_h^{(g)}(p_1,\ldots,p_h)$ is symmetric in its *h* variables;
- Any two curves C = (C, x, y) and C̃ = (C̃, x̃, ỹ) which are related by a conformal mapping C → C̃ preserving the symplectic form dx ∧ dy = dx̃ ∧ dỹ have the same invariants F_g;
- More properties, related to integrable systems,

The $\omega_h^{(g)}(p_1,\ldots,p_h)$ and F_g have many nice properties [EO]. Some examples:

- $\omega_h^{(g)}(p_1, \ldots, p_h)$ is a meromorphic one-form in each of its variable, with poles only at the ramification points, with order at most 6g 6 + 2h + 2, and vanishing residue;
- $\omega_h^{(g)}(p_1,\ldots,p_h)$ is symmetric in its *h* variables;
- Any two curves C = (C, x, y) and C̃ = (C̃, x̃, ỹ) which are related by a conformal mapping C → C̃ preserving the symplectic form dx ∧ dy = dx̃ ∧ dỹ have the same invariants F_g;
- More properties, related to integrable systems,

- **1** Raw material: A spectral curve C = (C, x, y)
- ⁽²⁾ Manufacturing process: From this raw material we construct an infinite tower of meromorphic forms $\omega_h^{(g)}(p_1, \ldots, p_h)$ and invariants F_g
- Quality control testing: The invariants satisfy many nice properties.

Are these objects of any use?

What are they computing?

- **1** Raw material: A spectral curve C = (C, x, y)
- ⁽²⁾ Manufacturing process: From this raw material we construct an infinite tower of meromorphic forms $\omega_h^{(g)}(p_1, \ldots, p_h)$ and invariants F_g
- Quality control testing: The invariants satisfy many nice properties.

Are these objects of any use?

What are they computing?

1 The recursion

- The raw material: Geometric data
- The manufacturing process: The recursion

2 Applications

- The original motivation: Random matrix theory
- Thinking outside the box: Enumerative geometry

Random matrix theory in a nutshell (I)

- 0-dimensional QFT, with basic field a $N \times N$ Hermitian matrix
- Free energy:

$$F = \log Z = \log \left(\frac{1}{\operatorname{vol} U(N)} \int \mathrm{d} M \mathrm{e}^{-rac{1}{g_s} V(M)}
ight),$$

with V(M) a polynomial potential

• F has a perturbative expansion (large N expansion)

$$F = \sum_{g=0}^{\infty} \sum_{h=1}^{\infty} F_{g,h} g_s^{2g-2} t^h := \sum_{g=0}^{\infty} F_g g_s^{2g-2},$$

with *t* the 't Hooft parameter $t = Ng_s$ (fatgraph expansion) • Goal: solve for *F* and for the correlation functions

$$W_n(x_1,\ldots,x_n) = \langle \mathrm{Tr} \frac{1}{x_1 - M} \cdots \mathrm{Tr} \frac{1}{x_n - M} \rangle$$

which also have a genus g expansion

Random matrix theory in a nutshell (II)

• The $W_{n,g}$ satisfy a set of differential equations, called loop equations. At genus 0, it becomes an algebraic equation:

$$(W_{1,0}(x))^2 = V'(x)W_{1,0}(x) - P_{1,0}(x),$$

with $P_{1,0}(x)$ some polynomial

• In terms of $y(x) = V'(x) - 2W_{1,0}(x)$, it defines a spectral curve

$$y(x)^2 = (V'(x))^2 - 4P_{1,0}(x).$$

Theorem [Eynard-Orantin]

The $\omega_h^{(g)}(p_1, \ldots, p_h)$ and F_g computed by the recursion applied to this spectral curve correspond respectively to the correlation functions and free energies of the matrix integral in the large N expansion.

Random matrix theory in a nutshell (II)

• The $W_{n,g}$ satisfy a set of differential equations, called loop equations. At genus 0, it becomes an algebraic equation:

$$(W_{1,0}(x))^2 = V'(x)W_{1,0}(x) - P_{1,0}(x),$$

with $P_{1,0}(x)$ some polynomial

In terms of y(x) = V'(x) - 2W_{1,0}(x), it defines a spectral curve

$$y(x)^2 = (V'(x))^2 - 4P_{1,0}(x).$$

Theorem [Eynard-Orantin]

The $\omega_h^{(g)}(p_1,\ldots,p_h)$ and F_g computed by the recursion applied to this spectral curve correspond respectively to the correlation functions and free energies of the matrix integral in the large N expansion.

"Forget" about matrix integrals and spectral curves, and consider the recursion *per se*.

My goal:

- Convince you that for some choices of spectral curves, the $\omega_h^{(g)}(p_1, \ldots, p_h)$ and F_g have a completely different interpretation as generating functions of Gromov-Witten invariants and Hurwitz numbers.
 - Describe the enumerative invariants
 - Sketch the string theory framework underpinning the invariants, and how dualities may be used to compute generating functions
 - State our main conjecture relating enumerative geometry and the recursion

"Forget" about matrix integrals and spectral curves, and consider the recursion *per se*.

My goal:

- Convince you that for some choices of spectral curves, the $\omega_h^{(g)}(p_1, \ldots, p_h)$ and F_g have a completely different interpretation as generating functions of Gromov-Witten invariants and Hurwitz numbers.
 - Describe the enumerative invariants
 - Sketch the string theory framework underpinning the invariants, and how dualities may be used to compute generating functions
 - State our main conjecture relating enumerative geometry and the recursion
"Forget" about matrix integrals and spectral curves, and consider the recursion *per se*.

My goal:

- Convince you that for some choices of spectral curves, the $\omega_h^{(g)}(p_1, \ldots, p_h)$ and F_g have a completely different interpretation as generating functions of Gromov-Witten invariants and Hurwitz numbers.
 - Describe the enumerative invariants
 - Sketch the string theory framework underpinning the invariants, and how dualities may be used to compute generating functions
 - State our main conjecture relating enumerative geometry and the recursion

The recursion

- The raw material: Geometric data
- The manufacturing process: The recursion

2 Applications

- The original motivation: Random matrix theory
- Thinking outside the box: Enumerative geometry

What is enumerative geometry?

The art of counting geometric structures satisfying a certain set of geometric conditions.

Examples:

- What is the number of intersection points of two lines in \mathbb{P}^2 ?
- Let X be a general quintic threefold (hypersurface of degree 5 in P⁴). How many lines are contained in X?

What is enumerative geometry?

The art of counting geometric structures satisfying a certain set of geometric conditions.

Examples:

- What is the number of intersection points of two lines in $\mathbb{P}^2?$
- Let X be a general quintic threefold (hypersurface of degree 5 in ℙ⁴). How many lines are contained in X?

What is enumerative geometry?

The art of counting geometric structures satisfying a certain set of geometric conditions.

Examples:

- \bullet What is the number of intersection points of two lines in $\mathbb{P}^2?$
- Let X be a general quintic threefold (hypersurface of degree 5 in ℙ⁴). How many lines are contained in X?

Gromov-Witten invariants in one slide

Gromov-Witten invariants are concerned with the problem of counting the number of curves of a certain genus g and a given homology class $\beta \in H_2(X, \mathbb{Z})$ in a projective algebraic variety X.

More precisely (but still roughly):

- Generically, the moduli space of curves in X is not well behaved (not compact, ...)
- There exists a nice compactification, due to Kontsevich, which consists in considering the moduli space of (0-pointed) stable maps $f : \Sigma_g \to X$, where Σ_g is a genus g curve with $f_*(\Sigma_g) = \beta$. We denote this moduli space by $M_g(X, \beta)$.

Gromov-Witten invariants in one slide

Gromov-Witten invariants are concerned with the problem of counting the number of curves of a certain genus g and a given homology class $\beta \in H_2(X, \mathbb{Z})$ in a projective algebraic variety X.

More precisely (but still roughly):

- Generically, the moduli space of curves in X is not well behaved (not compact, ...)
- There exists a nice compactification, due to Kontsevich, which consists in considering the moduli space of (0-pointed) stable maps $f: \Sigma_g \to X$, where Σ_g is a genus g curve with $f_*(\Sigma_g) = \beta$. We denote this moduli space by $M_g(X, \beta)$.

Gromov-Witten invariants in one slide

Gromov-Witten invariants are concerned with the problem of counting the number of curves of a certain genus g and a given homology class $\beta \in H_2(X, \mathbb{Z})$ in a projective algebraic variety X.

More precisely (but still roughly):

- Generically, the moduli space of curves in X is not well behaved (not compact, ...)
- There exists a nice compactification, due to Kontsevich, which consists in considering the moduli space of (0-pointed) stable maps $f: \Sigma_g \to X$, where Σ_g is a genus g curve with $f_*(\Sigma_g) = \beta$. We denote this moduli space by $M_g(X, \beta)$.

(Well I need a second one :-)

• Gromov-Witten invariants are defined as integrals

$$N_{g,eta} = \int_{[M_g(X,eta)]^{virt}} 1.$$

• We can form the generating functions

$$F_g = \sum_{\beta \in H_2(X,\mathbb{Z})} q^{\beta} N_{g,\beta},$$

with q a formal variable.

• You have now discovered A-model topological string theory!

• Gromov-Witten invariants are defined as integrals

$$N_{g,eta} = \int_{[M_g(X,eta)]^{virt}} 1.$$

• We can form the generating functions

$$F_{g} = \sum_{eta \in H_{2}(X,\mathbb{Z})} q^{eta} N_{g,eta},$$

with q a formal variable.

• You have now discovered A-model topological string theory!

• Gromov-Witten invariants are defined as integrals

$$N_{g,eta} = \int_{[M_g(X,eta)]^{virt}} 1.$$

• We can form the generating functions

$$F_{g} = \sum_{eta \in H_{2}(X,\mathbb{Z})} q^{eta} N_{g,eta},$$

with q a formal variable.

• You have now discovered A-model topological string theory!

Roughly, topological string theory is a theory of maps from Riemann surfaces (string worldsheets) to a target space X, which must be a Calabi-Yau threefold.

Two types of topological string theory: A-model and B-model:

- The path integral of the A-model localizes on stable maps
- Its free energy has the form

$$F = \sum_{g=0}^{\infty} \lambda^{2g-2} F_g,$$

where λ is the string coupling constant, and the F_g are the Gromov-Witten generating functions of X!

Vincent Bouchard (Harvard)

New formulae for GW invariants and Hurwitz numbers

Roughly, topological string theory is a theory of maps from Riemann surfaces (string worldsheets) to a target space X, which must be a Calabi-Yau threefold.

Two types of topological string theory: A-model and B-model:

- The path integral of the A-model localizes on stable maps
- Its free energy has the form

$$F = \sum_{g=0}^{\infty} \lambda^{2g-2} F_g,$$

where λ is the string coupling constant, and the F_g are the Gromov-Witten generating functions of X!

Vincent Bouchard (Harvard)

New formulae for GW invariants and Hurwitz numbers

Roughly, topological string theory is a theory of maps from Riemann surfaces (string worldsheets) to a target space X, which must be a Calabi-Yau threefold.

Two types of topological string theory: A-model and B-model:

- The path integral of the A-model localizes on stable maps
- Its free energy has the form

$$F = \sum_{g=0}^{\infty} \lambda^{2g-2} F_g,$$

where λ is the string coupling constant, and the F_g are the Gromov-Witten generating functions of X!

Vincent Bouchard (Harvard) New formulae for GW invariants and Hurwitz numbers

Roughly, topological string theory is a theory of maps from Riemann surfaces (string worldsheets) to a target space X, which must be a Calabi-Yau threefold.

Two types of topological string theory: A-model and B-model:

- The path integral of the A-model localizes on stable maps
- Its free energy has the form

$$F = \sum_{g=0}^{\infty} \lambda^{2g-2} F_g,$$

where λ is the string coupling constant, and the F_g are the Gromov-Witten generating functions of X!

Dualities and mirror symmetry

• Mirror symmetry is an example of a duality, whereby two different theories produce the same physical observables.

Dualities and mirror symmetry

• Mirror symmetry is an example of a duality, whereby two different theories produce the same physical observables.

Mirror symmetry and the B-model

- In our context, mirror symmetry can be understood as the statement that there exists another topological string theory, the B-model topological string theory on Y, which is mirror dual to the A-model on X, where Y is a different Calabi-Yau threefold (the mirror of X).
- By duality, the two theories have the same free energy F

Strategy [dates back to CdOGP]

The F_g 's are difficult to calculate in the A-model \rightarrow use the mirror B-model, where the calculation is much easier!

Mirror symmetry and the B-model

- In our context, mirror symmetry can be understood as the statement that there exists another topological string theory, the B-model topological string theory on Y, which is mirror dual to the A-model on X, where Y is a different Calabi-Yau threefold (the mirror of X).
- By duality, the two theories have the same free energy F

Strategy dates back to CdOGP

The F_g 's are difficult to calculate in the A-model \rightarrow use the mirror B-model, where the calculation is much easier!

Mirror symmetry and the B-model

- In our context, mirror symmetry can be understood as the statement that there exists another topological string theory, the B-model topological string theory on Y, which is mirror dual to the A-model on X, where Y is a different Calabi-Yau threefold (the mirror of X).
- By duality, the two theories have the same free energy F

Strategy [dates back to CdOGP]

The F_g 's are difficult to calculate in the A-model \rightarrow use the mirror B-model, where the calculation is much easier!

Strategy in picture

Toric Calabi-Yau threefolds

Consider the A-model on a (noncompact) toric Calabi-Yau threefold X (example: $X = K_{\mathbb{P}^2}$).

• The mirror is the B-model on a family of noncompact Calabi-Yau threefolds Y given by a hypersurface

$$\{ww' = H(x, y; t)\} \subset (\mathbb{C})^2 \times (\mathbb{C}^*)^2,$$

where H(x, y; t) is a Laurent polynomial in $x, y \in \mathbb{C}^*$ [Hori-Vafa, Givental].

 The singular locus of the fibration over (C*)² is a family of curves Σ (mirror curve) given by

$$\{H(x,y;t)=0\}\subset (\mathbb{C}^*)^2.$$

Consider the A-model on a (noncompact) toric Calabi-Yau threefold X (example: $X = K_{\mathbb{P}^2}$).

• The mirror is the B-model on a family of noncompact Calabi-Yau threefolds Y given by a hypersurface

$$\{ww' = H(x, y; t)\} \subset (\mathbb{C})^2 \times (\mathbb{C}^*)^2,$$

where H(x, y; t) is a Laurent polynomial in $x, y \in \mathbb{C}^*$ [Hori-Vafa, Givental].

 The singular locus of the fibration over (C*)² is a family of curves Σ (mirror curve) given by

$$\{H(x,y;t)=0\}\subset (\mathbb{C}^*)^2.$$

Consider the A-model on a (noncompact) toric Calabi-Yau threefold X (example: $X = K_{\mathbb{P}^2}$).

• The mirror is the B-model on a family of noncompact Calabi-Yau threefolds Y given by a hypersurface

$$\{ww' = H(x, y; t)\} \subset (\mathbb{C})^2 \times (\mathbb{C}^*)^2,$$

where H(x, y; t) is a Laurent polynomial in $x, y \in \mathbb{C}^*$ [Hori-Vafa, Givental].

• The singular locus of the fibration over $(\mathbb{C}^*)^2$ is a family of curves Σ (mirror curve) given by

$$\{H(x,y;t)=0\}\subset (\mathbb{C}^*)^2.$$

Mirror B-model geometry

The threefold *Y*: $\{ww' = H(x, y; t)\} \subset (\mathbb{C})^2 \times (\mathbb{C}^*)^2$ The singular locus Σ : $\{H(x, y; t) = 0\} \subset (\mathbb{C}^*)^2$

- Generating functions F_g of GW invariants of X ↔ genus g free energies of A-model on X
- Mirror symmetry says that A-model on X and B-model on Y have same F_g's
- If X is a toric CY threefold, Y is a fibration over (ℂ*)², with singular locus given by a curve in (ℂ*)²

- Generating functions F_g of GW invariants of X ↔ genus g free energies of A-model on X
- Mirror symmetry says that A-model on X and B-model on Y have same F_g's
- If X is a toric CY threefold, Y is a fibration over (C^{*})², with singular locus given by a curve in (C^{*})²

- Generating functions F_g of GW invariants of X ↔ genus g free energies of A-model on X
- Mirror symmetry says that A-model on X and B-model on Y have same F_g's
- **3** If X is a toric CY threefold, Y is a fibration over $(\mathbb{C}^*)^2$, with singular locus given by a curve in $(\mathbb{C}^*)^2$

Conjecture I [BKMP]

Let *C* be the spectral curve defined by the singular locus of the noncompact Calabi-Yau threefold *Y* mirror to a toric Calabi-Yau threefold *X*. The F_g 's computed by the recursion are the B-model genus *g* amplitudes, which are mapped by the mirror map to the generating functions of genus *g* Gromov-Witten invariants of *X*.

Conjecture II [BKMP]

The $\omega_n^{(g)}(p_1, \ldots, p_n)$ computed by the recursion are the open B-model genus g, h hole amplitudes, which are mapped by the mirror map to the generating functions of genus g, h hole open Gromov-Witten invariants of X.

Conjecture I [BKMP]

Let *C* be the spectral curve defined by the singular locus of the noncompact Calabi-Yau threefold *Y* mirror to a toric Calabi-Yau threefold *X*. The F_g 's computed by the recursion are the B-model genus *g* amplitudes, which are mapped by the mirror map to the generating functions of genus *g* Gromov-Witten invariants of *X*.

Conjecture II [BKMP]

The $\omega_n^{(g)}(p_1, \ldots, p_n)$ computed by the recursion are the open B-model genus g, h hole amplitudes, which are mapped by the mirror map to the generating functions of genus g, h hole open Gromov-Witten invariants of X.

- Computational evidence: in [BKMP], we computed the F_g and $\omega_n^{(g)}(p_1, \ldots, p_n)$ for many X and found perfect agreement with GW invariants obtained through other mathematical means (when possible)
- Theoretical evidence: the B-model can be understood as a quantum Kodaira-Spencer theory [BCOV], which, for Y, reduces to the quantum theory of a chiral boson living on the spectral curve. The amplitudes of this theory satisfy the recursion [Mariño, Dijkgraaf-Vafa]
- More dualities: for some toric threefolds X, there is a large N duality where the A-model is dual to a Chern-Simons theory. Then, in some cases the Chern-Simons theory has a matrix model representation, and it can be shown that the spectral curve of the matrix model is the mirror curve of X
- The conjecture has been proved for a simple toric X [Eynard]

- Computational evidence: in [BKMP], we computed the F_g and $\omega_n^{(g)}(p_1, \ldots, p_n)$ for many X and found perfect agreement with GW invariants obtained through other mathematical means (when possible)
- Theoretical evidence: the B-model can be understood as a quantum Kodaira-Spencer theory [BCOV], which, for Y, reduces to the quantum theory of a chiral boson living on the spectral curve. The amplitudes of this theory satisfy the recursion [Mariño, Dijkgraaf-Vafa]
- More dualities: for some toric threefolds X, there is a large N duality where the A-model is dual to a Chern-Simons theory. Then, in some cases the Chern-Simons theory has a matrix model representation, and it can be shown that the spectral curve of the matrix model is the mirror curve of X
- The conjecture has been proved for a simple toric X [Eynard]

- Computational evidence: in [BKMP], we computed the F_g and $\omega_n^{(g)}(p_1, \ldots, p_n)$ for many X and found perfect agreement with GW invariants obtained through other mathematical means (when possible)
- Theoretical evidence: the B-model can be understood as a quantum Kodaira-Spencer theory [BCOV], which, for Y, reduces to the quantum theory of a chiral boson living on the spectral curve. The amplitudes of this theory satisfy the recursion [Mariño, Dijkgraaf-Vafa]
- More dualities: for some toric threefolds X, there is a large N duality where the A-model is dual to a Chern-Simons theory. Then, in some cases the Chern-Simons theory has a matrix model representation, and it can be shown that the spectral curve of the matrix model is the mirror curve of X
- The conjecture has been proved for a simple toric X [Eynard]

- Computational evidence: in [BKMP], we computed the F_g and $\omega_n^{(g)}(p_1, \ldots, p_n)$ for many X and found perfect agreement with GW invariants obtained through other mathematical means (when possible)
- Theoretical evidence: the B-model can be understood as a quantum Kodaira-Spencer theory [BCOV], which, for Y, reduces to the quantum theory of a chiral boson living on the spectral curve. The amplitudes of this theory satisfy the recursion [Mariño, Dijkgraaf-Vafa]
- More dualities: for some toric threefolds X, there is a large N duality where the A-model is dual to a Chern-Simons theory. Then, in some cases the Chern-Simons theory has a matrix model representation, and it can be shown that the spectral curve of the matrix model is the mirror curve of X
- The conjecture has been proved for a simple toric X [Eynard]

A tragedy of mathematics is a beautiful conjecture ruined by an ugly fact.

Some consequences

The conjecture provides a new and unexpected recursion structure in GW theory, with many ramifications. Some examples:

- solves GW theory on toric CY threefolds
- GW theory of X (including higher genus) is fully encoded in a spectral curve (the mirror curve)
 → integrable systems? [Dubrovin, Givental]
- solves open GW theory, which is not well understood mathematically yet (but may be soon [Walcher, Morrison, Cavalieri, Tseng, ...])
- is valid all over the moduli space

 → solves orbifold (open) GW theory for some orbifolds
 [BKMP], in the spirit of the Crepant Resolution Conjecture
 [Ruan, Bryan, Coates, ...]
- solves Seiberg-Witten theory with gravitational corrections, through its relation with topological string theory [HK]
- solves GW theory on toric CY threefolds
- GW theory of X (including higher genus) is fully encoded in a spectral curve (the mirror curve)
 → integrable systems? [Dubrovin, Givental]
- solves open GW theory, which is not well understood mathematically yet (but may be soon [Walcher, Morrison, Cavalieri, Tseng, ...])
- is valid all over the moduli space

 → solves orbifold (open) GW theory for some orbifolds
 [BKMP], in the spirit of the Crepant Resolution Conjecture
 [Ruan, Bryan, Coates, ...]
- solves Seiberg-Witten theory with gravitational corrections, through its relation with topological string theory [HK]

- solves GW theory on toric CY threefolds
- GW theory of X (including higher genus) is fully encoded in a spectral curve (the mirror curve)
 → integrable systems? [Dubrovin, Givental]
- solves open GW theory, which is not well understood mathematically yet (but may be soon [Walcher, Morrison, Cavalieri, Tseng, ...])
- is valid all over the moduli space

 → solves orbifold (open) GW theory for some orbifolds
 [BKMP], in the spirit of the Crepant Resolution Conjecture
 [Ruan, Bryan, Coates, ...]
- solves Seiberg-Witten theory with gravitational corrections, through its relation with topological string theory [HK]

- solves GW theory on toric CY threefolds
- GW theory of X (including higher genus) is fully encoded in a spectral curve (the mirror curve)
 → integrable systems? [Dubrovin, Givental]
- solves open GW theory, which is not well understood mathematically yet (but may be soon [Walcher, Morrison, Cavalieri, Tseng, ...])
- is valid all over the moduli space

 → solves orbifold (open) GW theory for some orbifolds
 [BKMP], in the spirit of the Crepant Resolution Conjecture
 [Ruan, Bryan, Coates, ...]
- solves Seiberg-Witten theory with gravitational corrections, through its relation with topological string theory [HK]

- solves GW theory on toric CY threefolds
- GW theory of X (including higher genus) is fully encoded in a spectral curve (the mirror curve)
 → integrable systems? [Dubrovin, Givental]
- solves open GW theory, which is not well understood mathematically yet (but may be soon [Walcher, Morrison, Cavalieri, Tseng, ...])
- is valid all over the moduli space

 → solves orbifold (open) GW theory for some orbifolds
 [BKMP], in the spirit of the Crepant Resolution Conjecture
 [Ruan, Bryan, Coates, ...]
- solves Seiberg-Witten theory with gravitational corrections, through its relation with topological string theory [HK]

A corollary of the conjecture: Hurwitz theory

Simple Hurwitz numbers:

- count number of covers of \mathbb{P}^1 by genus g Riemann surfaces with arbitrary ramification at one point
- generating functions of simple Hurwitz numbers can be obtained as a particular limit of open A-model topological string theory on C³ (topological vertex) [Mariño-Vafa, Liu-Zhou]

Corollary of our conjecture

Generating functions of simple Hurwitz numbers should be computed by the recursion, for a particular choice of spectral curve! The spectral curve turns out to be

$$x = y e^{-y},$$

which defines the Lambert W-function y(x) = -W(-x).

Simple Hurwitz numbers:

- count number of covers of P¹ by genus g Riemann surfaces with arbitrary ramification at one point
- generating functions of simple Hurwitz numbers can be obtained as a particular limit of open A-model topological string theory on C³ (topological vertex) [Mariño-Vafa, Liu-Liu-Zhou]

Corollary of our conjecture

Generating functions of simple Hurwitz numbers should be computed by the recursion, for a particular choice of spectral curve! The spectral curve turns out to be

$$x = y e^{-y},$$

which defines the Lambert W-function y(x) = -W(-x).

Simple Hurwitz numbers:

- \bullet count number of covers of \mathbb{P}^1 by genus g Riemann surfaces with arbitrary ramification at one point
- generating functions of simple Hurwitz numbers can be obtained as a particular limit of open A-model topological string theory on C³ (topological vertex) [Mariño-Vafa, Liu-Zhou]

Corollary of our conjecture

Generating functions of simple Hurwitz numbers should be computed by the recursion, for a particular choice of spectral curve! The spectral curve turns out to be

$$x = y e^{-y},$$

which defines the Lambert W-function y(x) = -W(-x).

Summary

- A recursion was proposed which produces invariants and forms on spectral curves with nice properties [EO]
 - Comes from Random Matrix Theory, where it computes correlation functions and free energies of matrix integrals in the large *N* limit
- Using the relation between GW theory and topological string theory and mirror symmetry, we conjectured (and checked in many cases) new applications of the recursion in GW theory
 - A consequence is that the recursion should also govern generating functions of simple Hurwitz numbers
 - Many ramifications remain to be explored
 - The conjecture remains to be proved! (or disproved ...)
- The recursion has many more applications in other areas, such as more complicated matrix models, 2D topological gravity and Mirzakhani's recursion, Seiberg-Witten theory, ... [Eynard, Orantin, Huang-Klemm, Mulase-Safnuk, ...]

Summary

- A recursion was proposed which produces invariants and forms on spectral curves with nice properties [EO]
 - Comes from Random Matrix Theory, where it computes correlation functions and free energies of matrix integrals in the large *N* limit
- Using the relation between GW theory and topological string theory and mirror symmetry, we conjectured (and checked in many cases) new applications of the recursion in GW theory
 - A consequence is that the recursion should also govern generating functions of simple Hurwitz numbers
 - Many ramifications remain to be explored
 - The conjecture remains to be proved! (or disproved ...)
- The recursion has many more applications in other areas, such as more complicated matrix models, 2D topological gravity and Mirzakhani's recursion, Seiberg-Witten theory, ... [Eynard, Orantin, Huang-Klemm, Mulase-Safnuk, ...]

Summary

- A recursion was proposed which produces invariants and forms on spectral curves with nice properties [EO]
 - Comes from Random Matrix Theory, where it computes correlation functions and free energies of matrix integrals in the large *N* limit
- Using the relation between GW theory and topological string theory and mirror symmetry, we conjectured (and checked in many cases) new applications of the recursion in GW theory
 - A consequence is that the recursion should also govern generating functions of simple Hurwitz numbers
 - Many ramifications remain to be explored
 - The conjecture remains to be proved! (or disproved ...)
- The recursion has many more applications in other areas, such as more complicated matrix models, 2D topological gravity and Mirzakhani's recursion, Seiberg-Witten theory, ... [Eynard, Orantin, Huang-Klemm, Mulase-Safnuk, ...]

Thank you!

References:

- VB, A. Klemm, M. Mariño, S. Pasquetti, 0709.1453, 0807.0597
- VB, M. Mariño, 0709.1458
- M. Mariño, hep-th/0602127
- B. Eynard, N. Orantin, and collaborators, ...