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The tale of an

unconventional tire maker
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The raw material: a rubber tree
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Manufacturing prcoess: creating objects with nice properties
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Application (original motivation): wheels of a car
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Thinking outside the box: building an earthship!
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Outline: The tale of an unconventional geometer

1 The recursion
The raw material: Geometric data
The manufacturing process: The recursion

2 Applications
The original motivation: Random matrix theory
Thinking outside the box: Enumerative geometry
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Geometric data

Definition

A spectral curve C is a triple (C, x , y), where C is a genus ḡ
compact Riemann surface, and x and y are two holomorphic
functions on some open set in C. We assume that the ramification
points of x have multiplicity 2.

Examples:

C = C∞ = P1, x(p) = p2, y(p) = p

→ y2 = x .

C = C/(Z + τZ), x(p) = ℘(p; g2, g3), y(p) = ℘′(p; g2, g3)

→ y2 = 4x3 − g2x − g3.
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The Bergmann kernel

We choose a symplectic basis of cycles (Ai ,Bj) on the genus ḡ
Riemann surface C, such that

Ai ∩ Bj = δi ,j , i , j = 1, . . . , ḡ .

Definition

The Bergmann kernel B(p1, p2) is the unique bilinear differential
on C having a double pole at p1 = p2 with no residue, no other
poles, and such that, in good local coordinates,

B(p1, p2) ∼
p1→p2

dp1dp2

(p1 − p2)2
+ reg,

∮
Ai

B(p1, p2) = 0 ∀i .

Examples:

C = C∞ = P1 : B(p1, p2) = dp1dp2

(p1−p2)2 .

C = C/(Z + τZ) :

B(p1, p2) =
(
℘(p1 − p2; g2, g3) + 3g3E2(τ)E4(τ)

2g2E6(τ)

)
dp1dp2.
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The recursion kernel

Let am ∈ C be the ramification points of x , and parameterize by q
and q̄ the two branches of x near am (that is, x(q) = x(q̄)).

Definition

The recursion kernel Km(p, q) is a meromorphic one-form in p
defined locally near am by

Km(p, q) = −1

2

∫ q
q′=q̄ B(p, q′)

(y(q)− y(q̄))dx(q)
.

Example:

C = C∞ = P1, x(p) = p2, y(p) = p

→ only one ramification point: a1 = 0, and q̄ = −q

→ K1(p, q) = 1
4

dp
q(q2−p2)dq

.
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The recursion

Definition: the recursion [EO]

Given a spectral curve C = (C, x , y), we define the meromorphic
forms:

ω
(0)
1 (p1) = y(p1)dx(p1), ω

(0)
2 (p1, p2) = B(p1, p2),

and using H as a collective notation H = {p1, . . . , ph}, by
recursion on g and h, for 2g − 2 + h ≥ 0,

ω
(g)
h+1(p,H) =

∑
m

Res
q→am

Km(p, q)
[
ω

(g−1)
h+2 (q, q̄,H)

+

g∑
l=0

∑
J⊂H

′
ω

(g−l)
1+|J| (q, J)ω

(l)
1+h−|J|(q̄,H\J)

]
,

where
∑′ means that we exclude the terms (l , J) = (g , ∅), (0,H).
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The recursion (pictorial representation)

ω
(g)
h+1(p,H) =

∑
m

Res
q→am

Km(p, q)
[
ω

(g−1)
h+2 (q, q̄,H)

+

g∑
l=0

∑
J⊂H

′
ω

(g−l)
1+|J| (q, J)ω

(l)
1+h−|J|(q̄,H\J)

]
,
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The invariants

Definition: the invariants [EO]

For g ≥ 2, we define the invariants Fg := ω
(g)
0 by

Fg =
1

2− 2g

∑
m

Res
q→am

ω
(g)
1 (q)Φ(q),

where dΦ(q) = ω
(0)
1 (q) = y(q)dx(q).
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Some nice properties

The ω
(g)
h (p1, . . . , ph) and Fg have many nice properties [EO]. Some

examples:

ω
(g)
h (p1, . . . , ph) is a meromorphic one-form in each of its

variable, with poles only at the ramification points, with order
at most 6g − 6 + 2h + 2, and vanishing residue;

ω
(g)
h (p1, . . . , ph) is symmetric in its h variables;

Any two curves C = (C, x , y) and C̃ = (C̃, x̃ , ỹ) which are
related by a conformal mapping C → C̃ preserving the
symplectic form dx ∧ dy = dx̃ ∧ dỹ have the same invariants
Fg ;

More properties, related to integrable systems, . . . .
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Summary so far

1 Raw material: A spectral curve C = (C, x , y)

2 Manufacturing process: From this raw material we construct

an infinite tower of meromorphic forms ω
(g)
h (p1, . . . , ph) and

invariants Fg

3 Quality control testing: The invariants satisfy many nice
properties.

Are these objects of any use?

What are they computing?
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Random matrix theory in a nutshell (I)

0-dimensional QFT, with basic field a N ×N Hermitian matrix

Free energy:

F = log Z = log

(
1

volU(N)

∫
dMe−

1
gs

V (M)
)
,

with V (M) a polynomial potential

F has a perturbative expansion (large N expansion)

F =
∞∑

g=0

∞∑
h=1

Fg ,hg
2g−2
s th :=

∞∑
g=0

Fgg2g−2
s ,

with t the ’t Hooft parameter t = Ngs (fatgraph expansion)

Goal: solve for F and for the correlation functions

Wn(x1, . . . , xn) = 〈Tr
1

x1 −M
· · ·Tr

1

xn −M
〉

which also have a genus g expansion
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Random matrix theory in a nutshell (II)

The Wn,g satisfy a set of differential equations, called loop
equations. At genus 0, it becomes an algebraic equation:

(W1,0(x))2 = V ′(x)W1,0(x)− P1,0(x),

with P1,0(x) some polynomial

In terms of y(x) = V ′(x)− 2W1,0(x), it defines a spectral
curve

y(x)2 = (V ′(x))2 − 4P1,0(x).

Theorem [Eynard-Orantin]

The ω
(g)
h (p1, . . . , ph) and Fg computed by the recursion applied to

this spectral curve correspond respectively to the correlation
functions and free energies of the matrix integral in the large N
expansion.
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Different perspective

“Forget” about matrix integrals and spectral curves, and consider
the recursion per se.

My goal:

Convince you that for some choices of spectral curves, the

ω
(g)
h (p1, . . . , ph) and Fg have a completely different

interpretation as generating functions of Gromov-Witten
invariants and Hurwitz numbers.

1 Describe the enumerative invariants
2 Sketch the string theory framework underpinning the

invariants, and how dualities may be used to compute
generating functions

3 State our main conjecture relating enumerative geometry and
the recursion
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Enumerative geometry

What is enumerative geometry?

The art of counting geometric structures satisfying a certain set of
geometric conditions.

Examples:

What is the number of intersection points of two lines in P2?

Let X be a general quintic threefold (hypersurface of degree 5
in P4). How many lines are contained in X?
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Gromov-Witten invariants in one slide

Gromov-Witten invariants are concerned with the problem of
counting the number of curves of a certain genus g and a given
homology class β ∈ H2(X ,Z) in a projective algebraic variety X .

More precisely (but still roughly):

Generically, the moduli space of curves in X is not well
behaved (not compact, . . . )
There exists a nice compactification, due to Kontsevich, which
consists in considering the moduli space of (0-pointed) stable
maps f : Σg → X , where Σg is a genus g curve with
f∗(Σg ) = β. We denote this moduli space by Mg (X , β).
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(Well I need a second one :-)

Gromov-Witten invariants are defined as integrals

Ng ,β =

∫
[Mg (X ,β)]virt

1.

We can form the generating functions

Fg =
∑

β∈H2(X ,Z)

qβNg ,β,

with q a formal variable.

You have now discovered A-model topological string theory!
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The A-model topological string theory

Roughly, topological string theory is a theory of maps from
Riemann surfaces (string worldsheets) to a target space X , which
must be a Calabi-Yau threefold.

Two types of topological string theory: A-model and B-model:

The path integral of the A-model localizes on stable maps

Its free energy has the form

F =
∞∑

g=0

λ2g−2Fg ,

where λ is the string coupling constant, and the Fg are the
Gromov-Witten generating functions of X !

Vincent Bouchard (Harvard) New formulae for GW invariants and Hurwitz numbers



The A-model topological string theory

Roughly, topological string theory is a theory of maps from
Riemann surfaces (string worldsheets) to a target space X , which
must be a Calabi-Yau threefold.

Two types of topological string theory: A-model and B-model:

The path integral of the A-model localizes on stable maps

Its free energy has the form

F =
∞∑

g=0

λ2g−2Fg ,

where λ is the string coupling constant, and the Fg are the
Gromov-Witten generating functions of X !

Vincent Bouchard (Harvard) New formulae for GW invariants and Hurwitz numbers



The A-model topological string theory

Roughly, topological string theory is a theory of maps from
Riemann surfaces (string worldsheets) to a target space X , which
must be a Calabi-Yau threefold.

Two types of topological string theory: A-model and B-model:

The path integral of the A-model localizes on stable maps

Its free energy has the form

F =
∞∑

g=0

λ2g−2Fg ,

where λ is the string coupling constant, and the Fg are the
Gromov-Witten generating functions of X !

Vincent Bouchard (Harvard) New formulae for GW invariants and Hurwitz numbers



The A-model topological string theory

Roughly, topological string theory is a theory of maps from
Riemann surfaces (string worldsheets) to a target space X , which
must be a Calabi-Yau threefold.

Two types of topological string theory: A-model and B-model:

The path integral of the A-model localizes on stable maps

Its free energy has the form

F =
∞∑

g=0

λ2g−2Fg ,

where λ is the string coupling constant, and the Fg are the
Gromov-Witten generating functions of X !

Vincent Bouchard (Harvard) New formulae for GW invariants and Hurwitz numbers



Dualities and mirror symmetry

Mirror symmetry is an example of a duality, whereby two
different theories produce the same physical observables.
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Mirror symmetry and the B-model

In our context, mirror symmetry can be understood as the
statement that there exists another topological string theory,
the B-model topological string theory on Y , which is mirror
dual to the A-model on X , where Y is a different Calabi-Yau
threefold (the mirror of X ).

By duality, the two theories have the same free energy F

Strategy [dates back to CdOGP]

The Fg ’s are difficult to calculate in the A-model
→ use the mirror B-model, where the calculation is much easier!
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Strategy in picture
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Toric Calabi-Yau threefolds

Consider the A-model on a (noncompact) toric Calabi-Yau
threefold X (example: X = KP2).

The mirror is the B-model on a family of noncompact
Calabi-Yau threefolds Y given by a hypersurface

{ww ′ = H(x , y ; t)} ⊂ (C)2 × (C∗)2,

where H(x , y ; t) is a Laurent polynomial in x , y ∈ C∗ [Hori-Vafa,

Givental].

The singular locus of the fibration over (C∗)2 is a family of
curves Σ (mirror curve) given by

{H(x , y ; t) = 0} ⊂ (C∗)2.
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Mirror B-model geometry

The threefold Y : {ww ′ = H(x , y ; t)} ⊂ (C)2 × (C∗)2

The singular locus Σ: {H(x , y ; t) = 0} ⊂ (C∗)2
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Let me recapitulate

1 Generating functions Fg of GW invariants of X ↔ genus g
free energies of A-model on X

2 Mirror symmetry says that A-model on X and B-model on Y
have same Fg ’s

3 If X is a toric CY threefold, Y is a fibration over (C∗)2, with
singular locus given by a curve in (C∗)2
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Our main conjectures

Conjecture I [BKMP]

Let C be the spectral curve defined by the singular locus of the
noncompact Calabi-Yau threefold Y mirror to a toric Calabi-Yau
threefold X . The Fg ’s computed by the recursion are the B-model
genus g amplitudes, which are mapped by the mirror map to the
generating functions of genus g Gromov-Witten invariants of X .

Conjecture II [BKMP]

The ω
(g)
n (p1, . . . , pn) computed by the recursion are the open

B-model genus g , h hole amplitudes, which are mapped by the
mirror map to the generating functions of genus g , h hole open
Gromov-Witten invariants of X .
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Evidence

Computational evidence: in [BKMP], we computed the Fg and

ω
(g)
n (p1, . . . , pn) for many X and found perfect agreement

with GW invariants obtained through other mathematical
means (when possible)

Theoretical evidence: the B-model can be understood as a
quantum Kodaira-Spencer theory [BCOV], which, for Y ,
reduces to the quantum theory of a chiral boson living on the
spectral curve. The amplitudes of this theory satisfy the
recursion [Mariño, Dijkgraaf-Vafa]

More dualities: for some toric threefolds X , there is a large N
duality where the A-model is dual to a Chern-Simons theory.
Then, in some cases the Chern-Simons theory has a matrix
model representation, and it can be shown that the spectral
curve of the matrix model is the mirror curve of X

The conjecture has been proved for a simple toric X [Eynard]
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A tragedy of mathematics is a beautiful conjecture
ruined by an ugly fact.
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Some consequences

The conjecture provides a new and unexpected recursion structure
in GW theory, with many ramifications. Some examples:

solves GW theory on toric CY threefolds

GW theory of X (including higher genus) is fully encoded in a
spectral curve (the mirror curve)
→ integrable systems? [Dubrovin, Givental]

solves open GW theory, which is not well understood
mathematically yet (but may be soon [Walcher, Morrison, Cavalieri,

Tseng, . . . ])

is valid all over the moduli space
→ solves orbifold (open) GW theory for some orbifolds
[BKMP], in the spirit of the Crepant Resolution Conjecture
[Ruan, Bryan, Coates, . . . ]

solves Seiberg-Witten theory with gravitational corrections,
through its relation with topological string theory [HK]
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A corollary of the conjecture: Hurwitz theory

Simple Hurwitz numbers:

count number of covers of P1 by genus g Riemann surfaces
with arbitrary ramification at one point

generating functions of simple Hurwitz numbers can be
obtained as a particular limit of open A-model topological
string theory on C3 (topological vertex) [Mariño-Vafa, Liu-Liu-Zhou]

Corollary of our conjecture [VB-Mariño]

Generating functions of simple Hurwitz numbers should be
computed by the recursion, for a particular choice of spectral
curve! The spectral curve turns out to be

x = ye−y ,

which defines the Lambert W -function y(x) = −W (−x).
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Summary

A recursion was proposed which produces invariants and forms
on spectral curves with nice properties [EO]

Comes from Random Matrix Theory, where it computes
correlation functions and free energies of matrix integrals in
the large N limit

Using the relation between GW theory and topological string
theory and mirror symmetry, we conjectured (and checked in
many cases) new applications of the recursion in GW theory

A consequence is that the recursion should also govern
generating functions of simple Hurwitz numbers
Many ramifications remain to be explored
The conjecture remains to be proved! (or disproved . . . )

The recursion has many more applications in other areas, such
as more complicated matrix models, 2D topological gravity
and Mirzakhani’s recursion, Seiberg-Witten theory, . . . [Eynard,

Orantin, Huang-Klemm, Mulase-Safnuk, . . . ]
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Thank you!
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