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Outline of the presentation

Basics of moduli spaces of curves and its intersection theory,
especially the integrals of ψ classes.

We will present our work (with Prof. Kefeng Liu) on n-point
functions, higher Weil-Petersson volumes, Faber intersection number
conjecture, explicit tautological relations in the moduli spaces of
curves. The starting point of our work is the Witten-Kontsevich
theorem relating intersection theory and integrable systems.
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Riemann surfaces

A Riemann surfaces is a 2-dimensional complex manifolds (or smooth
algebraic curve over C).

Let n ≥ 1. The Fermat curve

{(x , y , z) ∈ P2 | xn + yn = zn}.

is a Riemann surface with genus (n − 1)(n − 2)/2.
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Stable curves

A stable curve with n marked points is a connected and compact curve
with nodes with n smooth points labeled by {1, . . . , n}

{(x , y) ∈ C2 | xy = 0}

and satisfy:

(i) each genus 0 component has at least 3 node-branches or marked
points;

(ii) each genus 1 component has at least one node-branch or marked
point.

a stable curve inM3,2 unstable curve
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Fine moduli spaces of curves does not exist

Consider contravariant functors

Scheme −→ Sets

Hom(•,S) : B −→ Hom(B,S) (S is a scheme)

FV : B −→ (family of k-dim subspaces of V)

FMg : B −→ (family of genus g curves over B)

Fine moduli: A functor F is representable, i.e. there exists a scheme S ,
such that F is isomorphic to Hom(•,S).

The grassmannian Grass(k,n) is the fine moduli space of FV .

Fine moduli space of curves over C fail to exist due to automorphisms.
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Coarse moduli spaces of curves

There exists a scheme Mg called coarse moduli spaces of curves.

Mg is in fact quasi-projective.

1. FMg (SpecC) ∼= Hom(SpecC,Mg )
(isomorphism classes of genus g curves ⇔ points ofMg )
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Compactification of moduli spaces of curves

Constructions ofMg andMg

The quotient of Teichmüller spaces by the action of the mapping
class group.

Geometric invariant theory (Mumford, Gieseker, etc).

The coarse moduli space Mg is a dense open subset of its
compactification Mg , which is projective. It’s more popular to treat Mg

as a Deligne-Mumford stack.

The description of ∂Mg indicates that it is natural to consider curves
with marked points.
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Moduli spaces of curves with marked points

There are two type of boundary morphisms:

Mg1,n1+1 ×Mg2,n2+1 −→Mg1+g2,n1+n2

Mg ,n+2 −→Mg−1,n
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Dual graph of nodal curves

The following is a nodal curve of genus 3 with two components and two
marked points.

a curve in ∂M3,2

Its associated dual graph is:

Dual graph also denotes the class of the corresponding strata in moduli
space.
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Degeneration inM0,4

M0,4 is not complete.
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The strata ofM0,4

stratum of nonsingular curves

boundary strata

In fact, we have M0,4
∼= P1.
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Intersection theory

(Bézout theorem) Let Y ,Z be generic distinct curves in P2, having
degree d and e. Then the number of intersection points of Y ,Z is de.
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Intersection theory on moduli spaces of curves

Mumford defined the Chow ring A∗(Mg ,n) on moduli spaces of curves in
1983. He emphasized the tautological subring:

R∗(Mg ,n) ⊂ A∗(Mg ,n),

which contains all geometrically natural classes.

Looijenga, Boggi-Pikaart proved that Mg ,n is a global quotient of a

smooth projective varieties M̂g ,n with action by a finite group G

p : M̂g ,n →Mg ,n.

For α, β ∈ A∗(Mg ,n)Q, define

α · β =
1

#G
(p∗[p

∗α · p∗β]).
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Tautological classes onMg ,n

ψi = c1(Li ), where Li is the line bundle whose fiber over each
pointed stable curve is the cotangent line at the ith marked point.

Li ⊃ T ∗
i C

←
−

←
−

Mg ,n 3 [C ]

λi = ci (E) the ith Chern class of the Hodge bundle E (with fibre
H0(C , ωC )).

E ⊃ H0(C , ωC )

←
−

←
−

Mg ,n 3 [C ]

κi = π∗(ψ
i+1
n+1), (π :Mg ,n+1 −→Mg ,n is the forgetful morphism).
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Hodge integrals

We call the following integrals the Hodge integrals on moduli spaces of
curves

〈τd1 · · · τdnκa1 · · ·κam | λ
k1
1 · · ·λ

kg
g 〉 ,

∫
Mg,n

ψd1
1 · · ·ψ

dn
n κa1 · · ·κamλ

k1
1 · · ·λ

kg
g .

Based on Mumford’s Chern character formula

ch2m−1(E) =
B2m

(2m)!

κ2m−1 −
n∑

i=1

ψ2m−1
i +

1

2

∑
ξ∈∆

lξ∗

(
2m−2∑
i=0

ψi
1(−ψ2)

2m−2−i

) ,
Faber’s algorithm reduces the calculation of general Hodge integrals to
those with pure ψ classes.
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Intersection of pure ψ classes

The following integrals are called descendent integrals:

〈τd1 · · · τdn〉g :=

∫
Mg,n

ψd1
1 · · ·ψ

dn
n ,

where d1 + · · ·+ dn = 3g − 3 + n.

Mathematician: They are inter-
section numbers over varieties!

∣∣∣∣ Physicist: They are correlation
functions of 2-D gravity!
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Numerical properties of intersection numbers

We know from Okounkov’s work that

∞∑
g=0

∑
∑

dj=3g−3+n

〈τd1 · · · τdn〉g
n∏

j=1

x
dj

j

converges for all positive real numbers xj .

For d1 < d2, we have the multinomial value property:

〈τd1τd2 · · · τdn〉g ≤ 〈τd1+1τd2−1 · · · τdn〉g .

We have confirmed its validity for all g ≤ 20.
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Moduli of elliptic curvesM1,1

We may identify M1,1 with the compactification of PSL(2,Z)\H.
The unique singular curve at ∞

The orbifold structure ofM1,1 arises from a finite quotient of the
Riemann sphere CP1.
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Compute
∫
M1,1

ψ1 (Arithmetic)

The sections of Ωn overM1,1 correspondes exactly to entire modular
forms of weight n.

The Ramanujan tau function

∆ = q
∞∏

n=1

(1− qn)24, where q = e2πiτ , τ ∈ H

is a cusp form of weight 12 with a simple zero at q = 0 (τ = i∞).

Since generic elliptic curve has an involution,

degΩ12 = deg([∞]) =
1

2

hence we have ∫
M1,1

ψ1 = degΩ =
1

24
.
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KdV hierarchy

The KdV hierarchy is the following hierarchy of differential equations:

∂U

∂tn
=

∂

∂t0
Rn+1, n ≥ 1

where Rn are differential polynomials in U, U̇, Ü, . . . defined recursively by

R1 = U,
∂Rn+1

∂t0
=

1

2n + 1

(
∂U

∂t0
Rn + 2U

∂Rn

∂t0
+

1

4

∂3

∂t3
0

Rn

)
.

It is easy to compute Rn recursively

R2 =
1

2
U2 +

1

12

∂2U

∂t2
0

,

R3 =
1

6
U3 +

U

12

∂3U

∂t3
0

+
1

24
(
∂U

∂t0
)2 +

1

240

∂4U

∂t4
0

,

...
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1-soliton solution of KdV hierarchy

This is the traveling wave solution

u(x , t) =
1

2
c · sech2(

1

2

√
c(x − ct) + x0)

of the KdV equation
ut + 6uux + uxxx = 0
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Scott Russell Aqueduct

On the Scott Russell Aqueduct, 12 July 1995
at Edinburgh, Scotland
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Witten’s conjecture

The Witten-Kontsevich theorem states that the generating function for ψ
class intersection numbers

F (t0, t1, . . .) =
∑

g

∑
n=(n0,n1,··· )

〈
∞∏
i=0

τni

i 〉g
∞∏
i=0

tni

i

ni !

is a τ -function for the KdV hierarchy, i.e. U , ∂2F/∂t2
0 obeys all

equations in the KdV hierarchy.
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A diagram
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The n-point function

Definition

The following generating function

F (x1, . . . , xn) =
∞∑

g=0

∑
∑

dj=3g−3+n

〈τd1 · · · τdn〉g
n∏

j=1

x
dj

j

is called the n-point function.

Note that n-point functions encoded all information of intersection
numbers on moduli spaces of curves. Note its difference with Witten’s
”free energy”

F (t0, t1, . . . ) =
∞∑

g=0

∑
∑

dj=3g−3+n

〈τd1 · · · τdn〉g
td1 · · · tdn

n!
.
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Recursive formula of n-point functions

Let n ≥ 2.

G (x1, . . . , xn) =
∑
r ,s≥0

(2r + n − 3)!!Pr (x1, . . . , xn)∆(x1, . . . , xn)
s

4s(2r + 2s + n − 1)!!

where Pr and ∆ are homogeneous symmetric polynomials

∆ =
(
∑n

j=1 xj)
3 −

∑n
j=1 x3

j

3
,

Pr =

 1

2
∑n

j=1 xj

∑
n=I

∐
J

(
∑
i∈I

xi )
2(
∑
i∈J

xi )
2G (xI )G (xJ)


3r+n−3

=
1

2
∑n

j=1 xj

∑
n=I

∐
J

(
∑
i∈I

xi )
2(
∑
i∈J

xi )
2

r∑
r ′=0

Gr ′(xI )Gr−r ′(xJ).
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New effective recursion formula

(2g + n − 1)(2g + n − 2)〈
n∏

j=1

τdj 〉g

=
2d1 + 3

12
〈τ 4

0 τd1+1

n∏
j=2

τdj 〉g−1 −
2g + n − 1

6
〈τ 3

0

n∏
j=1

τdj 〉g−1

+
∑

{2,...,n}=I
∐

J

(2d1 + 3)〈τd1+1τ
2
0

∏
i∈I

τdi 〉g ′〈τ 2
0

∏
i∈J

τdi 〉g−g ′

−
∑

{2,...,n}=I
∐

J

(2g + n − 1)〈τd1τ0
∏
i∈I

τdi 〉g ′〈τ 2
0

∏
i∈J

τdi 〉g−g ′ .

When dj ≥ 1, all non-zero intesection numbers on RHS have genera
strictly less than g .

This formula of us is used in Stephani Yang’s Macaulay2 package
“KaLaPs”.
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Why integrals of ψ classes

Intersection theory on moduli spaces of curves has several applications
and connections:

Tautological ring of moduli spaces of curves (Faber’s conjecture)

Gromov-Witten theory

Landau-Ginzburg theory (FJRW invariants)

Hurwitz numbers
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Weil-Petersson volumes

Vg ,n =

∫
Mg,n

κ3g−3+n
1 .

Mathematician: They are inte-
grals of Weil-Petersson metric!

∣∣∣∣ Physicist: They are multiloop
amplitudes of Polyakov string!
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Mirzakhani’s recursion formula of Weil-Petersson volumes

Mirzakhani proved a beautiful recursion formula for the Weil-Petersson
volume of the moduli space Mg ,n(L) of genus g hyperbolic surfaces with
n geodesic boundary components of specified length L = (L1, . . . , Ln).

Volg ,n(L) =
1

2L1

∑
g1+g2=g
n=I

∐
J

∫ L1

0

∫ ∞

0

∫ ∞

0

xyH(t, x + y)

×Volg1,n1(x ,LI )Volg2,n2(y ,LJ)dxdydt

+
1

2L1

∫ L1

0

∫ ∞

0

∫ ∞

0

xyH(t, x + y)Volg−1,n+1(x , y , L2, . . . , Ln)dxdydt

+
1

2L1

n∑
j=2

∫ L1

0

∫ ∞

0

x
(
H(x , L1 + Lj) + H(x , L1 − Lj)

)
×Volg ,n−1(x , L2, . . . , L̂j , . . . , Ln)dxdt,

where the kernel function

H(x , y) =
1

1 + e(x+y)/2
+

1

1 + e(x−y)/2
.
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Mulase-Safnuk differential form of Mirzakhani’s recursion

(2d1 + 1)!!〈
n∏

j=1

τdjκ
a
1〉g

=
n∑

j=2

a∑
b=0

a!

(a− b)!

(2(b + d1 + dj)− 1)!!

(2dj − 1)!!
βb〈κa−b

1 τb+d1+dj−1

∏
i 6=1,j

τdi 〉g

+
1

2

a∑
b=0

∑
r+s=b+d1−2

a!

(a− b)!
(2r + 1)!!(2s + 1)!!βb〈κa−b

1 τrτs
∏
i 6=1

τdi 〉g−1

+
1

2

a∑
b=0

∑
c+c′=a−b

I
∐

J={2,...,n}

∑
r+s=b+d1−2

a!

c!c ′!
(2r + 1)!!(2s + 1)!!βb

× 〈κc
1τr
∏
i∈I

τdi 〉g ′〈κc′

1 τs
∏
i∈J

τdi 〉g−g ′ ,

βb = (22b+1 − 4)
ζ(2b)

(2π2)b
= (−1)b−12b(22b − 2)

B2b

(2b)!
.
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Recursion formula of Higher Weil-Petersson Volumes

m = (m1,m2, . . . ) ∈ N∞, define

|m| :=
∑
i≥1

i ·mi , ||m|| :=
∑
i≥1

mi

We proved the following recursion formula of Higher WP Volumes.

(2d1 + 1)!!〈κ(b)τd1 · · · τdn〉g

=
n∑

j=2

∑
L+L′=b

αL

(
b

L

)
(2(|L|+ d1 + dj)− 1)!!

(2dj − 1)!!
〈κ(L′)τ|L|+d1+dj−1

∏
i 6=1,j

τdi 〉g

+
1

2

∑
L+L′=b

∑
r+s=|L|+d1−2

αL

(
b

L

)
(2r + 1)!!(2s + 1)!!〈κ(L′)τrτs

n∏
i=2

τdi 〉g−1

+
1

2

∑
L+e+f=b

I
∐

J={2,...,n}

∑
r+s=|L|+d1−2

αL

(
b

L, e, f

)
(2r + 1)!!(2s + 1)!!

× 〈κ(e)τr
∏
i∈I

τdi 〉g ′〈κ(f)τs
∏
i∈J

τdi 〉g−g ′ .
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Tautological rings

Denote by Mg the moduli space of Riemann surfaces of genus g ≥ 2.
The tautological ring R∗(Mg ) is defined to be the Q-subalgebra of the
Chow ring A∗(Mg ) generated by the tautological classes κi and λi .

R∗(Mg ) has the following properties:

i) (Mumford) R∗(Mg ) is in fact generated by the g − 2 classes
κ1, . . . , κg−2;

ii) (Looijenga) R j(Mg ) = 0 for j > g − 2 and dim Rg−2(Mg ) ≤ 1
(Faber showed that actually dim Rg−2(Mg ) = 1).

R∗(Mg ) =
C[κ1, . . . , κg−2]

I
,

where I is the ideal of tautological relations.
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Faber’s conjecture

Around 1993, Faber proposed a series of remarkable conjectures about
the structure of the tautological ring R∗(Mg ). It is a major conjecture in
the subject of moduli spaces of curves.

Roughly speaking, Faber’s conjecture asserts that R∗(Mg ) behaves like
the cohomology ring of a (g − 2)-dimensional complex projective
manifold.

i) (Perfect pairing conjecture) When an isomorphism Rg−2(Mg ) ∼= Q
is fixed, the following natural pairing is perfect

Rk(Mg )× Rg−2−k(Mg ) −→ Rg−2(Mg ) = Q;

Faber’s perfect paring conjecture is still open to this day.

ii) The [g/3] classes κ1, . . . , κ[g/3] generate the ring, with no relations
in degrees ≤ [g/3]; (proved by Morita and Ionel)
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Faber intersection number conjecture

An important part (the only quantitative part) of Faber’s conjecture is
the famous Faber intersection number conjecture.

(2g − 3 + n)!

22g−1(2g − 1)!
∏n

j=1(2dj − 1)!!
= 〈τ2g

n∏
j=1

τdj 〉g

−
n∑

j=1

〈τdj+2g−1

∏
i 6=j

τdi 〉g +
1

2

2g−2∑
j=0

(−1)j〈τ2g−2−jτj

n∏
i=1

τdi 〉g−1

+
1

2

∑
n=I

∐
J

2g−2∑
j=0

(−1)j〈τj
∏
i∈I

τdi 〉g ′〈τ2g−2−j

∏
i∈J

τdi 〉g−g ′ ,
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λgλg−1 theorem

Faber intersection number conjecture is equivalent to∫
Mg,n

ψd1
1 . . . ψdn

n λgλg−1 =
(2g − 3 + n)!|B2g |

22g−1(2g)!
∏n

j=1(2dj − 1)!!
,

This was proved by Getzler and Pandharipande (1998) conditional to
Givental’s work on Virasoro conjecture for Pn. Recently Teleman
announced a proof of the Virasoro conjecture for all manifolds with
semi-simple quantum cohomology using the Mumford conjecture.
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Tautological relations in R∗(Mg)

Faber intersection number conjecture is equivalent to the following
tautological relation in R∗(Mg )

π∗(ψ
d1+1
1 . . . ψdn+1

n ) =
∑
σ∈Sn

κσ =
(2g − 3 + n)!(2g − 1)!!

(2g − 1)!
∏n

j=1(2dj + 1)!!
κg−2,

where π :Mg ,n →Mg is the forgetful morphism.

In 2006, Goulden, Jackson and Vakil give an enlightening proof of this
relation for up to three points. Their remarkable proof relied on relative
virtual localization in Gromov-Witten theory and some tour de force
combinatorial computations.
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Importance

The Faber intersection number determines the ring structure of R∗(Mg )
if Faber’s perfect pairing conjecture is true

Rk(Mg )× Rg−2−k(Mg )→ Rg−2(Mg ) ∼= Q

is a perfect pairing.

Counterexamples of analogues of Faber’s perfect pairing conjecture on
partially compactified moduli spaces of curves have recently been found
by R. Cavalieri and S. Yang.
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Proof of Faber intersection number conjecture

Now we describe our proof.

Since one and two-point functions in genus 0 are

F0(x) =
1

x2
, F0(x , y) =

1

x + y
=

∞∑
k=0

(−1)k
xk

yk+1
,

it is consistent to define the virtual intersection numbers

〈τ−2〉0 = 1, 〈τkτ−1−k〉0 = (−1)k , k ≥ 0.
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Relations with n-point functions

i)
1

2

2g−2∑
j=0

(−1)j〈τ2g−2−jτj

n∏
i=1

τdi 〉g−1 = [Fg−1(y ,−y , x1, . . . , xn)]y2g−2

ii)
1

2

∑
n=I

∐
J

2g−2∑
j=0

(−1)j〈τj
∏
i∈I

τdi 〉g ′〈τ2g−2−j

∏
i∈J

τdi 〉g−g ′ + 〈
n∏

j=1

τdj τ2g 〉g

−
n∑

j=1

〈τdj+2g−1

∏
i 6=j

τdi 〉g

=
1

2

∑
n=I

∐
J

∑
j∈Z

(−1)j〈τj
∏
i∈I

τdi 〉g ′〈τ2g−2−j

∏
i∈J

τdi 〉g−g ′

=

 g∑
g ′=0

∑
n=I

∐
J

Fg ′(y , xI )Fg−g ′(−y , xJ)


y2g−2

∏n
i=1 x

di
i
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Explicit tautological relation in Rg−2(Mg)

Let g ≥ 3 and |m| = g − 2. Then the following relation

κ(m) =
1

(||m|| − 1)

∑
L+L′=m
||L||≥2

Ag ,L

(
m

L

)
κ(L′ + δ|L|), (1)

where Ag ,L are some explicitly known constants.

Note that in the right-hand side, ||L′ + δ|L||| < ||m||, so it is indeed an
effective recursion relation.
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Another tautological relation in R∗(Mg)

Let |m| ≤ g − 2. Then

|m|Fg (m) = (g − 1)
∑

L+L′=m
L6=0

CLFg (L′),

where Fg (0) = 1 and CL are some explicitly known constants.

So these virtual numbers Fg (m) when |m| < g − 2 are useful.
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Gromov-Witten invariants

If γa1 , . . . , γan ∈ H∗(X ,Q), the Gromov-Witten invariants are defined by

〈τd1(γa1) . . . τdn(γan)〉Xg ,β =

∫
[Mg,n(X ,β)]virt

Ψd1
1 · · ·Ψ

dn
n ∪ev∗(γa1 �· · ·�γan).

Mathematician: They are vir-
tual enumerative numbers of
curves!

∣∣∣∣ Physicist: They are path inte-
grals of the topological field the-
ory!
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Universal relations of Gromov-Witten invariants

String equation

〈τ0,0τk1,a1 . . . τkn,an〉Xg ,β =
n∑

i=1

〈τk1,a1 . . . τki−1,ai . . . τkn,an〉Xg ,β .

Dilaton equation

〈τ1,0τk1,a1 . . . τkn,an〉Xg ,β = (2g − 2 + n)〈τk1,α1 . . . τkn,αn〉Xg ,β .

Divisor equation

〈τ0(ω)τk1,a1 . . . τkn,an〉Xg ,β =
(
ω ∩ β

)
〈τk1,a1 . . . τkn,an〉Xg ,β

+
n∑

i=1

〈τk1,a1 . . . τki−1(ω ∪ γa) . . . τkn,an〉Xg ,β ,

where ω ∈ H2(X ,Q).
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Topological recursion relations

We may pull back tautological relations onMg ,n via the forgetful map

π :Mg ,n+1(X , β)→Mg ,n

to get universal equations for Gromov-Witten invariants by the splitting
axiom and cotangent line comparison equations.

OnM1,1, the relation

implies the genus 1 TRR

〈〈τk(x)〉〉1 = 〈〈τk−1(x)γα〉〉0〈〈γα〉〉1 +
1

24
〈〈τk−1(x)γαγ

α〉〉0.
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WDVV equation

From the simple fact that the three boundary divisors ofM0,4
∼= P1 are

equal, there is the well-known

WDVV equation

〈〈τk1,a1τk2,a2γα〉〉0〈〈γατk3,a3τk4,a4〉〉0 = 〈〈τk1,a1τk3,a3γα〉〉0〈〈γατk2,a2τk4,a4〉〉0

which is the associativity condition of the quantum cohomology ring.
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Vanishing Identities of Gromov-Witten Invariants

Our proof of Faber intersection number conjecture (X = pt) motivates
us to formulate the following conjecture

Conjecture

Let xi , yi ∈ H∗(X ) and k ≥ 2g − 3 + r + s. Then

g∑
g ′=0

∑
j∈Z

(−1)j〈〈τj(γa)
r∏

i=1

τpi (xi )〉〉g ′〈〈τk−j(γ
a)

s∏
i=1

τqi (yi )〉〉g−g ′ = 0.

Note that j runs over all integers.

where we adopt Gathmann’s convention 〈τ−2(pt)〉X0,0 = 1 and

〈τm(γ1)τ−1−m(γ2)〉X0,0 = (−1)max(m,−1−m)

∫
X

γ1 · γ2, m ∈ Z.

The conjecture has recently been proved recently by Xiaobo Liu and R.
Pandharipande.
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Virasoro conjecture

Let r = dim X and {γa} a basis in H∗(X ).

i) Rb
a γb = c1(X ) ∪ γa, t̃a

k = ta
k − δa0δk1

ii) [x ]ki = ek+1−i (x , x + 1, . . . , x + k)

iii) If γa ∈ Hpa,qa(X ), ba = pa + (1− r)/2.

Lk =
∞∑

m=0

k+1∑
i=0

(
[ba+m]ki (R

i )ba t̃
a
m∂b,m+k−i

+
~
2
(−1)m+1[ba−m−1]ki (R

i )ab∂a,m∂b,k−m−i−1

)
+

1

2~
(Rk+1)abt

a
0 tb

0 +
δk0

48

∫
X

(
(3− r)cr (X )− 2c1(X )cr−1(X )

)
.

Virasoro conjecture (Eguchi, Hori and Xiong and also by Katz)

Lk(exp F ) = 0, k ≥ −1.
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Eynard-Orantin’s recursion

Originated from random matrix theory, Eynard and Orantin
developed a theory of symplectic invariants of curves.

Bouchard-Klemm-Mariño-Pasquetti (BKMP) further conjectures
that Eynard-Orantin’s recursion can be used to compute the
Gromov-Witten invariants of toric Calabi-Yau 3-folds through mirror
symmetry.

Bouchard-Mariño conjectured a recursive formula for simple Hurwitz
numbers based on BKMP.

Bouchard-Mariño conjecture has been proved recently by Borot,
Eynard, Mulase and Safnuk.

Hao Xu Tautological Ring of Moduli Spaces of Curves



ADE singularities

An : W = xn+1, n ≥ 1

Dn+2 : W = xn+1 + xy2, n ≥ 2

E6 : W = x3 + y4

E7 : W = x3 + xy3

E8 : W = x3 + y5

Mathematician: They are ADE
singularities!

∣∣∣∣ Physicist: They are poten-
tial functions of Landau-Ginzburg
theory!
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Landau-Ginzburg model

In particle physics, any quantum field theory with a unique classical
vacuum state and a potential energy with a degenerate critical point is
called a Landau-Ginzburg theory.

(Greene-Vafa-Warner) Landau-Ginzburg theory is related by a
renormalization group flow to sigma models on Calabi-Yau
manifolds.

(Witten) Landau-Ginzburg theory and sigma model on Calabi-Yau
manifolds are different phases of the same theory, similar to the
relation between the gas and the liquid phases of a fluid.

Examples include:

The quintic Calabi-Yau 3-fold W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5

Orbifold Calabi-Yau in weighted projective spaces.

Simple, unimodal and bimodal singularities.
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Landau-Ginzburg model

The Landau-Ginzburg potential is a quasi-homogeneous polynomial

W : CN → C

with unique weights and an isolated singularity at the origin.

There are weights (or charges) q1, . . . , qN such that

W (λq1x1, . . . , λ
qN xN) = λW (x1, . . . , xN)

for all λ ∈ C with central charge ĉW =
∑

(1− 2qi ).

Hao Xu Tautological Ring of Moduli Spaces of Curves



Landau-Ginzburg model

The Landau-Ginzburg potential is a quasi-homogeneous polynomial

W : CN → C

with unique weights and an isolated singularity at the origin.

There are weights (or charges) q1, . . . , qN such that

W (λq1x1, . . . , λ
qN xN) = λW (x1, . . . , xN)

for all λ ∈ C with central charge ĉW =
∑

(1− 2qi ).

Hao Xu Tautological Ring of Moduli Spaces of Curves



Landau-Ginzburg B-model

The Landau-Ginzburg B-model is the Milnor ring (or Chiral ring):

DW :=
C[x1, . . . , xN ](
∂W
∂x1

, . . . , ∂W
∂xN

)
A local Artin ring.

The unique highest degree element is

det(
∂2W

∂xi∂xj
)
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Landau-Ginzburg A-model

For any quasi-homogeneous, non-degenerate singularity W and an
admissible group G of diagonal symmetry of W . Following a suggestion
of Witten, Fan, Jarvis and Ruan constructed

i) FJRW state space (a Frobenius algebra)

HW ,G = ⊕g∈GHg , where Hg = Hmid(Fixg ,W∞
g ,C)G

ii) Moduli of stable W -orbicurves and its virual cycles.

The associated cohomological field theory defines Gromov-Witten type
invariants for W .
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Intersection theory and singularities

Table: Simple and elliptic singularities

W ĉW moduli of W curves integrable hierarchy

A1 0 Mg ,n KdV

Ar−1, r ≥ 2 r−2
r M1/r

g ,n Gelfand-Dickey

Dn, n ≥ 4 n−2
n−1

Drinfeld-Sokolov
Kac-Wakimoto

E6
5
6

E7
8
9

E8
14
15

P8 = x3 + y3 + z3 1

Don’t know yetX9 = x4 + y4 1

J10 = x3 + y6 1
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Thank you!
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