QUANTIZATION OF SPECTRAL CURVES FOR MEROMORPHIC HIGGS
BUNDLES THROUGH TOPOLOGICAL RECURSION

OLIVIA DUMITRESCU AND MOTOHICO MULASE

ABSTRACT. A geometric quantization using the topological recursion is established for the com-
pactified cotangent bundle of a smooth projective curve of an arbitrary genus. In this quantization,
the Hitchin spectral curve of a rank 2 meromorphic Higgs bundle on the base curve corresponds
to a quantum curve, which is a Rees D-module on the base. The topological recursion then gives
an all-order asymptotic expansion of its solution, thus determining a state vector corresponding to
the spectral curve as a meromorphic Lagrangian. We establish a generalization of the topological
recursion for a singular spectral curve. We show that the partial differential equation version of the
topological recursion automatically selects the normal ordering of the canonical coordinates, and
determines the unique quantization of the spectral curve. The quantum curve thus constructed
has the semi-classical limit that agrees with the original spectral curve. Typical examples of our
construction includes classical differential equations, such as Airy, Hermite, and Gaufl hypergeo-
metric equations. The topological recursion gives an asymptotic expansion of solutions to these
equations at their singular points, relating Higgs bundles and various quantum invariants.
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1.1. Overview. The topological recursion of [24] was originally conceived as a com-
putational mechanism to find the multi-resolvent correlation functions of random matrices
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[11, 21]. It has been proposed that the topological recursion is an effective tool for defin-
ing a genus g B-model topological string theory on a holomorphic curve (known as an
Eynard-Orantin spectral curve), that should be the mirror symmetric dual to the
genus g Gromov-Witten theory on the A-model side [9, 10, 43]. This correspondence
has been rigorously established for several examples, most notably for an arbitrary toric
Calabi-Yau orbifold of 3 dimensions [26], and many other enumerative geometry problems
[8, 16, 19, 23, 25, 47].

Quantum curves are introduced in the physics literature (see for example, [1, 13, 14,
30, 35]) as a device to compactly encode the information of quantum invariants arising in
Gromov-Witten theory, Seiberg-Witten theory, and knot theory. The semi-classical limit
of a quantum curve is a holomorphic curve defining a B-model that is mirror dual to
the A-model for these quantum invariants. Geometrically, a quantum curve also appears
as an h-deformation of a generalized GauB-Manin connection (or Picard-Fuchs differential
equation) on a curve, with regular and irregular singularities.

Since both quantum curves and the topological recursion produce B-models on a holo-
morphic curve, it is natural to ask if they are related. Indeed, it was proposed by physicists
[12, 30] for the context of knot theory that the topological recursion would give a perturba-
tive construction of quantum curves. So far such a relation is not fully understood in the
mathematical examples of quantum curves constructed in [8, 20, 45, 46].

The purpose of this paper is to establish a clear geometric relation between quantum
curves and topological recursion for the Hitchin spectral curves associated with Higgs
bundles on a base curve C', with arbitrary meromorphic Higgs fields. Although the language
of geometric quantization does not work in this algebraic geometry context, let us use
it for a moment as an analogy. Then the main result of this paper could be understood as
follows: the topological recursion is a geometric quantization of T*C. A Hitchin spectral
curve is a (meromorphic) Lagrangian in the holomorphic symplectic manifold 7*C'. Using
the topological recursion, we construct a state vector, which is a solution to the Schrodinger
equation on C' that is uniquely determined by the spectral curve. The state vector is
equivalent to a quantum curve in our setting, as a Rees D-module on C'. More precisely,
we prove the following.

Theorem 1.1 (Main results). Let C' be a smooth projective curve of an arbitrary genus,
and (E, ¢) a Higgs bundle of rank 2 on C with a meromorphic Higgs field ¢. Denote by

(1.1) T*C:=P(Kc ® O¢) - C

the compactified cotangent bundle of C' (see [39]), which is a ruled surface on the base C.
Here, K¢ is the canonical sheaf. The Hitchin spectral curve

(1.2) S T*C

N

C

for a meromorphic Higgs bundle is defined as the divisor of zeros on T*C of the character-
istic polynomial of ¢:

(13) 5 = (det(n — 7°6)),

where n € HO(T*C,n*K¢) is the tautological 1-form on T*C' extended as a meromorphic
1-form on the compactification T*C.




(1.7)

QUANTIZATION OF MEROMORPHIC HIGGS BUNDLES 3

The integral topological recursion of [18, 24] is extended to the curve ¥, as (6.10).
For this purpose, we blow up T*C several times as in (1.6) to construct the normal-
ization . The construction of BI(T*C) is given in Definition 4.7. It is the minimal
resolution of the support ¥ U Cs of the total divisor

5 — 2Cs = (det(n — 7°9)), — (det(n — 7°6))..
of the characteristic polynomial, where
Coo :=P(Kc®{0}) =T*C\T*C

is the divisor at infinity. Therefore, in BI(T*C'), the proper transform ) of ¥ is
smooth and does not intersect with the proper transform of Coo.

)y : BI(T*O)

B
™

T*

Q

C

The genus of the normalization Y s given by
= 1
o(5) = 24(C) 1+ 55,

where § is the sum of the number of cusp singularities of ¥ and the ramification
points of m: 3 — C (Theorem 4.2).
The topological recursion thus gemeralized requires a globally defined meromorphic
1-form Wy.1 on Y and a symmetric meromorphic 2-form Wy o on the product Y x Y
as the initial data. We choose

Wo1 = *vtn

Wo,2 = dids log P,

where E5, is a normalized Riemann prime form on ) (see [18, Section 2]). The form
Wo,2 depends only on the intrinsic geometry of the smooth curve Y. The geometry
of (1.6) is encoded in Wy 1. The integral topological recursion produces a symmetric
meromorphic n-linear differential form Wy ,(z1,...,2,) on 5 for every (g,n) subject
to 2g —2+4n > 0 from the initial data (1.7).

The residue evaluation of the integral topological recursion (6.10) is explicitly per-
formed as in [18, (4.7)], and we obtain a differential recursion (6.11). It deter-
mines the free energy Fgn(z1,...,2n), a symmetric meromorphic function on U™ for
2g—2+n>0, up to a constant. Here, w: U — Y is the universal covering of 3.
The quantum curve associated with the Hitchin spectral curve X is defined as a Rees
D-module (Definition 3.1) on C. On each coordinate neighborhood U C C with
coordinate x, a generator of the quantum curve is given by

P(x,h)=|h d)’ h d d
(i = () = o) () + detoa).

In particular, the semi-classical limit of the quantum curve recovers the singular
spectral curve X, not its normalization X.
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o We construct the all-order WKB expansion

(1.8) U(z,h) = exp (Z hm_lSm(x)>

m=0

of a solution to the Schrédinger equation

(1.9) ((h;if — tr é(a) <h;;> + det qb(x))) U(z, k) = 0,

near each critical value of m: ¥ — C, in terms of the free energies. Indeed, (1.9) is
equivalent to the principal specialization of the differential recusion (6.11). The
equivalence is given by

(1.10) Sm(z)= > %Fg,n (2(2)),

2g—2+n=m—1
where Fy p, (z(:v)) is the principal specialization of Fy (21, ..., 2,) evaluated at a local
section z = z(x) of 7 : ¥ — C.
e The canonical ordering of the quantization of the local functions on T*C' is automat-

ically chosen in the process of the integration from (6.10) to (6.11) and the principal
specialization (1.10). This selects the canonical ordering in (1.9).

Remark 1.2. Although T*C is not a holomorphic symplectic manifold, in the analogy
of geometric quantization mentioned above, our quantization is similar to a holomorphic
quantization of T*C, where the fiber coordinate is quantized to h%. A Hitchin spectral
curve is a meromorphic Lagrangian, and corresponds via the topological recursion to a state
vector W(x, h) of (1.8).

Remark 1.3. The constant ambiguity in the symmetric function Fy,, is reflected in a factor
exp(>° Am~te,,) multiplied to W(x, h) of (1.8), where ¢, is an arbitrary constant. Therefore,
our method does not determine the /& dependence of the solution to (1.9).

Remark 1.4. The current paper is a generalization of [18]. In the process of establishing
a geometric theory of topological recursion and quantum curves, we have discovered in [18]
that the topological recursion of [24] can be naturally generalized to the Hitchin spectral
curves for holomorphic Higgs bundles defined on a smooth projective curve C' of genus
g(C) > 2. We have then showed that the Hitchin spectral curve for an SL(2,C)-Higgs
bundle is quantizable, and that the topological recursion gives an asymptotic expansion of
a holomorphic solution to the quantum curve (1.9) with tr ¢ = 0.

Remark 1.5. The singularities of the quantum curve, which are regular and irregular
singular points of a differential equation (1.9) on the base curve C, are analyzed by the
geometry of the Hitchin spectral curve ¥ (Theorem 6.10). For example, the number of
resolutions required to desingularize ¥ U C at P € ¥ is always [r] if 7(P) is an irregular
singular point of class r — 1.

Remark 1.6. Already several mathematical examples of quantum curves have been rig-
orously constructed for enumerative geometry problems, such as Catalan numbers and
their generalizations, simple and double Hurwitz numbers and their variants, and Gromov-
Witten invariants of a point, the projective line, and a few toric Calabi-Yau threefolds
[8, 16, 20, 45, 46, 53, 54]. In knot theory, a quantum curve is the same as a g-holonomic
operator A that quantizes the A-polynomial of a knot and characterizes the corresponding
colored Jones polynomial [27, 28].
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Remark 1.7. Another aspect of quantum curves lies in its relation to non-Abelian Hodge
correspondence. A quantum curve is an A-connection on the base curve C, and the Higgs
field is recovered as its classical limit h — 0. The non-Abelian Hodge correspondence with
irregular singular points has been studied extensively both in mathematics and physics,
starting from the fundamental papers [4, 5] and to more recent ones, including [6, 50, 51].

Our current paper is motivated by the following simple question: If quantum curves
are truly fundamental objects, then where do we see them most commonly, in particular, in
classical mathematics? The answer we propose in this paper is that the classical differential
equations, such as the Airy, Hermite, and Gaufl hypergeometric differential equations, are
natural examples of our construction of the quantum curves that are associated with stable
meromorphic Higgs bundles defined over the projective line P'. The topological recursion
then gives an all-order asymptotic expansion of their solutions, connecting Higgs bundles
to the world of quantum invariants.

Once we study these concrete classical examples, it becomes plausible that the base curve
C of the Higgs bundle and a spectral curve ¥ C T*C' are moduli spaces of certain geome-
tries. For example, in a particular case of the Gaufl hypergeometric equations considered
in Sections 1.2 and 7.2, the base curve is actually Mo 4 = P!. The spectral curve for this
example is the moduli space of elliptic curves, together with the two eigenvalues of the clas-
sical limit of the Gauf3-Manin connection [42] that characterizes the periods of elliptic
curves.

More precisely, for every x € My 4, we consider the elliptic curve E(x) ramified over P!
at four points {0, 1,z, 00}, and its two periods given by the elliptic integrals [40]

(1.11)

w(x)—/oo ds w(a:)—/l ds
B 1 s(s—1)(s—z) 2 s /s(s—1)(s—z)

The quantum curve in this case is an h -deformed Gauf3-Manin connection

1

1.12 Vi =hd — : d

( ) GM I TSI €L
4(z—1) z(x—1) x

in the trivial bundle Oﬁm & OHM of rank 2 over MOA. Here, d denotes the exterior

differentiation acting on the local sections of this trivial bundle. The restriction VIG u of
the connection at h =1 is equivalent to the Gaufl-Manin connection that characterizes the
two periods of (1.11), and the Higgs field is the classical limit of the connection matrix at
h— 0:

1
T

(1.13) ¢ da.

1 _ 2a—1
4(xz—1) z(zx—1)

The spectral curve ¥ C T* M 4 as a moduli space consists of the data (E(z), a1 (z), az(z)),
where aq(z) and as(x) are the two eigenvalues of the Higgs field ¢. The spectral curve

> C T*MOA = F? as a divisor in the Hirzebruch surface is determined by the characteristic
equation

2z — 1 1
z(x — 1)y * dx(x —1)
of the Higgs field. Geometrically, ¥ is a singular rational curve with one ordinary double
point at x = co. As we see in the later sections, the quantum curve is a quantization

=0

(1.14) y? +
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of the characteristic equation (1.14) for the eigenvalues «;(x) and as(z) of ¢(z). It is an
h-deformed Picard-Fuchs equation

() 555 () + e =

and its semi-classical limit agrees with the singular spectral curve . As a second order
differential equation, the quantum curve has two independent solutions corresponding to the
two eigenvalues. At h = 1, these solutions are exactly the two periods w;(x) and wa(x) of
the Legendre family of elliptic curves E(x). The topological recursion produces asymptotic
expansions of these periods as functions in € Moy, at which the elliptic curve E(x)
degenerates to a nodal rational curve.

Remark 1.8. Although we do not deal with quantum curves associated with knots (cf.
[30]) in our current paper, there a spectral curve is the SL(2, C)-character variety of the
knot complement in the 3-sphere S3. Thus the spectral curve is again a moduli space, this
time the moduli of flat SL(2, C)-connections on the knot complement.

When we deal with a singular spectral curve ¥ C T*C, the key question is how to relate
the singular curve with smooth ones. In terms of the Hitchin fibration, a singular spectral
curve corresponds to a degenerate Abelian variety in the family. There are two different
approaches to this question:

(1) Deform ¥ locally in the base of the Hitchin fibration to a family of non-singular
curves, and study the quantization associated with this deformation family.

(2) Blow up T*C and obtain the resolution of singularities ¥ of the singular spectra
curve . Then construct the quantum curve for 3 using the geometry of 3.

In this paper we will pursue the second path, and give a construction of a quantum curve
using the geometric information of the blow-up (1.6).

In the Higgs bundle context, a quantum curve is a Rees D-module over the Rees ring
D¢ defined by the canonical filtration of D¢ (see for example, [29]), such that its semi-
classical limit coincides with the Hitchin spectral curve of a meromorphic Higgs bundle on
C. Here, D¢ denotes the sheaf of linear ordinary differential operators on C. A ﬁé—module
is a particular A-deformation family of Do-modules. Suppose a Rees Deo-module is written
locally as

M(U) = De(U)/De(U) - P, h)

on an open disc U C C with a local coordinate x, where P(z,h) € Z/)E(U ) is a linear
ordinary differential operator depending on the deformation parameter h. This operator
then characterizes, by an equation

(1.15) P(x,h)¥(x,h) =0,

the partition function W(x,h) of a topological quantum field theory on a ‘space’ that is
considered to be the mirror dual to the spectral curve. The physics theories appearing in
this way are related to quantum topological invariants and geometric enumeration problems.
The variable x of the base curve C' is usually the parameter of generating functions of
the quantum invariants that are considered in the theory, and the generating functions
determine a particular asymptotic expansion of an analytic solution ¥(z, /) of (1.15) around
its singularity.
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1.2. Classical examples. Riemann and Poincaré worked on the interplay between alge-
braic geometry of curves in a ruled surface and the asymptotic expansion of an analytic
solution to a differential equation defined on the base curve of the ruled surface. The theme
of the current paper lies exactly on this link, looking at the classical subject from a new
point of view.

Let us recall the definition of regular and irregular singular points of a second order
differential equation.

Definition 1.9. Let

d? d
(1.16) <d$2 + al(x)% + az(x)> U(z)=0
be a second order differential equation defined around a neighborhood of z = 0 on a small
disc |z| < € with meromorphic coefficients a;(z) and as(x) with poles at 2 = 0. Denote by
k (reps. £) the order of the pole of a;j(x) (resp. az(z)) at z = 0. If £ < 1 and ¢ < 2, then
(1.16) has a regular singular point at x = 0. Otherwise, consider the Newton polygon
of the order of poles of the coefficients of (1.16). It is the upper part of the convex hull
of three points (0,0), (1,k),(2,¢). As a convention, if a;(z) is identically 0, then we assign
—o00 as its pole order. Let (1,7) be the intersection point of the Newton polygon and the
line z = 1. Thus

>
(1.17) A
¢ a<u

The differential equation (1.16) has an irregular singular point of class r — 1 at x =0
if r > 1.

To illustrate the scope of interrelations among the geometry of meromorphic Higgs bun-
dles, their spectral curves, the singularities of quantum curves, h-connections, and the
quantum invariants, let us tabulate five examples here (see Table 1.2). The differential
operators of these equations are listed on the third column. In the first three rows, the
quantum curves are examples of classical differential equations known as Airy, Hermite, the
Gauf hypergeometric equations. The fourth and the fifth rows are added to show that it
is not the singularity of the spectral curve that determines the singularity of the quantum
curve. In each example, the Higgs bundle (E, ¢) we are considering consists of the base
curve C = P! and the trivial vector bundle E = Op1 @ Op:1 of rank 2 on P!

The first column of the table shows the Higgs field ¢ : E — F ® Kp1(2). Here, z is the
affine coordinate of P!\ {oo}. Since our vector bundle is trivial, the non-Abelian Hodge
correspondence is simple in each case. Except for the Gaufl hypergeometric case, it is given
by

(1.18) V" = hd — ¢,

where d is the exterior differentiation operator acting on sections of E. The form of (1.18)
is valid because of our choice, (0,dx), as the first row of the Higgs field.

For the third example of a Gaufl hypergeometric equation, we use a particular choice
of parameters so that the A-connection becomes an A-deformed GauB-Manin connection
of (1.12). This is a singular connection with simple poles at 0, 1,00, and has an explicit
h-dependence in the connection matrix. The Gauf-Manin connection VlGM at h =1 is
equivalent to the Picard-Fuchs equation that characterizes the periods (1.11) of the Legendre
family of elliptic curves F(z) defined by the cubic equation

(1.19) t2 =s(s —1)(s — x), r € Moy =P\ {0,1,00}.
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] Higgs Field \ Spectral Curve \ Quantum Curve
y2 —x=0 AlI'y
2 .5 _ d\2
. w? —u® =0 (RE)" —
x ¥ =2C) +5F Class 3 irregular singularity
Pa = 2,]09 =0 at oo
+ay+1=0 I-QIermite
1 s w? —uw+ut =0 (h%) +xh%—i—1
-1 - ¥ =2C) +4F Class 2 irregular singularity
Pa=1,p3=0 at 0o
LA SOy E— ]
1 xgzzvfl) 4z(z—1) Gaufl Hypergeometric
z w® + 4(u — 2)uw (hi)2+ 21 pd 1
dx —4u2(u _ 1) =0 dx a:(m.fl) dx 4.136(3:71)
4(1£x) xz(:lc:glc) S =20, + AF Regular singular points
. - at t=0,1,0
Pa=1,pg =0
p) T
+y+_7=0 2
" ale ()" + hifs + 54
. 1 da i u+1) =0 Regular singular point at x = —1
—=7 1 ) = 20, + AF and a class 1 irregular singularity
at x = 00
DPa = lapg =0
(@ -1y +22%y—1=0| (A1)’ +2 8 ht - Lo
1 o | de non-singular Regular singular points at = +1
- -2 X =20y +4F and a class 1 irregular singularity
Pa = Pg = 1 at * = oo

TABLE 1. Examples of quantum curves.

The second column gives the spectral curve of the Higgs bundle (E, ¢). Since the Higgs
fields have poles, the spectral curves are no longer contained in the cotangent bundle T*P".
We need the compactified cotangent bundle

T*Pl = ]P)(Kpl &) O]pl) = IFo,

which is a Hirzebruch surface. The parameter y is the fiber coordinate of the cotangent
line T;P!. The first line of the second column is the equation of the spectral curve in the
(z,y) affine coordinate of Fo. All but the last example produce a singular spectral curve.
Let (u,w) be a coordinate system on another affine chart of Fy defined by

(1.20) {m = 1/u

ydxr = vdu, w=1/v.

The singularity of ¥ in the (u,w)-plane is given by the second line of the second column.
The third line of the second column gives ¥ € NS(F3) as an element of the Néron-Severy
group of Fa. Here, Cj is the class of the zero-section of T*P!, and F represents the fiber
class of m : Fy — P!. We also give the arithmetic and geometric genera of the spectral
curve.

A solution W¥(x, h) of (1.15) for the first example is given by the Airy function

, 11 [ ipr  .p?
(1.21) Az(m,h):gh 6/ exp <h2/3+l3> dp,

—00
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which is an entire function in x for i # 0. We will perform the all-order WKB analysis in
this paper, and give a closed formula for each term of the WKB expansion. The topological
recursion produces the asymptotic expansion

1 .
(1.22) Al(ﬁ, h) = exp Z Z Eh29_2+anA,TlLry(x)

g=0n=1

at x = oo, where

n
Air, (_l)n _(6g—6+3n)
(1.23) Fon¥ (@) 1= g 27 2 S (ra e Tandgn [ [(2di - DY,
di+-+dn i=1
=3g—3+n

and the coefficients
d
<Td1 ”'Tdn>gyn = | ¢11
Mg,n
are the cotangent class intersection numbers on the moduli space M, of stable curves of
genus g with n non-singular marked points. The cases for (g,n) = (0,1) and (0, 2) require

a subtle care, which will be explained in Section 2. The expansion coordinate z? of (1.23)
indicates the class of the irregular singularity of the Airy differential equation.
The solutions to the second example are given by confluent hypergeometric functions,

2
such as 1 I} <2h, ;, %) , where

(1.24) 1Fi(a;cz) = Z () 2

|
= (c)n n!

is the Kummer confluent hypergeomtric function, and the Pochhammer symbol
(a) is defined by

(1.25) (@) :=ala+1)(a+2)---(a+n—1).

For A > 0, the topological recursion determines the asymptotic expansion of a particular
entire solution known as a Tricomi confluent hypergeomtric function

\IJCatalan (.CU, h)

1
1\ I'[3] 1 1 22\ T3] [ a2 1 13 22
=) |=721iF — YRy Y P gty I
( 2h> (F[th—i—l]l Han'a'"an) T Vot e T2t e

2h

The expansion is given in the form

1
Catalan _ l e nt (ﬁ)2n i L
g (x,h) = (x) Z (2n)l! r2n

(1.26)
— exp Z Z h29 2+nFCatalan( o ,l‘)

gOnl

Here,

C 1. ..
Fg(?ztalan(xl"”’mn): 2 : gn:u ) nun l—J:a7
M1y in >0 pi-
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is the generating function of the generalized Catalan numbers Cy (1, .. ., pn) of [19, 48],
which count the number of connected cellular graphs (i.e., the 1-skeletons of cell decom-
positions) of a compact surface of genus g with n labeled vertices of degrees (p1, ..., i),
together with an arrow attached to one of the incident half-edges at each vertex. For more
detail of cellular graphs, we refer to [19, 46, 48]. The expansion variable x? in (1.26) indi-
cates the class of irregularity of the Hermite differential equation at x = oo. The cases for
(g,m) = (0,1) and (0, 2) require again a special treatment, as we will see later.

Remark 1.10. The authors are grateful to Peter Zograf for bringing [48] to their atten-
tion. The recursion for Cy,(u1, ..., pn) ([46, Theorem 3.1}, which is also equivalent to [19,
Theorem 1.1]), is exactly the same as [48, Equation 6]. The topological recursion (6.10) for
the generalized Catalan numbers derived in [19, Theorem 1.2] is the Laplace transform of
[48, Equation 6.

Remark 1.11. Leonid Chekhov has shown that the asymptotic expansion (1.26) can also
be derived from the matrix model of [2], by simply setting the matrix size equal to 1. The
principal specialization often takes this effect in 1-Hermitian matrix models.

The Hermite differential equation becomes simple for # = 1, and we have the asymptotic
expansion

LT 140 ) = (2n—1)!
(1.27) i 5¢ ? 1 —erf Z x2"+1
n=0

= exp Z % Z Cg,n(:u?v' .. 7,U'n) ﬁ x_(ﬂl+"'+ﬂn)

H1 Hn

29—24n>—1 " p1,eepun>0 i=1

Here, erf(z) := % Iy e~?"dz is the GauB error function.

FIGURE 1.1. The imaginary part and the real part of W¢atalan (g3 1), For z >> 0,
the imaginary part dies down, and only the real part has a non-trivial asymptotic
expansion. Thus (1.27) is a series with real coefficients.

One of the two independent solutions to the third example, the Gaufl hypergeometric
equation, that is holomorphic around xz = 0 is given by
(1.28)

au _ (h_l)(h_?’)
\IJG ﬁ(.%‘,h) = 2F1 (— oh +

1Vh=D(=3) 1 11
2’ 2h 2Rt

SR
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where

2 (@)n(b)n ™
(1.29) 2Fi(a,bcim) =) (zz)(n)” o

n=0
is the Gaufl hypergeometric function. The topological recursion calculates the B-model
genus expansion of the periods of the Legendre family of elliptic curves (1.19) at the point
where the elliptic curve degenerates to a nodal rational curve. For example, the procedure
applied to the spectral curve

y, 201 1
Y x(m—l)y do(x — 1)

(2 —-1)—- V322 -3z +1
= 2x(x —1) 4,

which is an eigenvalue a1 (z) of the Higgs field ¢, gives a genus expansion at x = 0:

=0

with a choice of

(1.30) wlaub(y h) = exp ZZ L 20~ 2t pCaus (g)
g=0n=1 n!

At i =1, we have a topological recursion expansion of the period w;(x) defined in (1.11):

wl(x) Gauf GauB
(1.31) = gy 1) = exp Zzn'

g=0n=1

A subtle point we notice here is that while the Gaufl hypergeometric equation has regular
singular points at = 0, 1, oo, the Hermite equation has an irregular singular point of class
2 at co. The spectral curve of each case has an ordinary double point at x = co. But the
crucial difference lies in the intersection of the spectral curve ¥ with the divisor Cs,. For
the Hermite case we have Y - Cy = 4 and the intersection occurs all at once at x = oo. For
the Gaufl hypergeometric case, the intersection X - Cs = 4 occurs once each at x = 0,1,
and twice at x = oo. This confluence of regular singular points is the source of the irregular
singularity in the Hermite differential equation.

The fourth row indicates an example of a quantum curve that has one regular singular
point at £ = —1 and one irregular singular point of class 1 at x = co. The spectral curve
has an ordinary double point at z = oo, the same as the Hermite case. As Figure 1.2 shows,
the class of the irregular singularity at * = oo is determined by how the spectral curve
intersects with Cs

The existence of the irregular singularity in the quantum curve associated with a spectral
curve has nothing to do with the singularity of the spectral curve. The fifth example shows
a non-singular spectral curve of genus 1 (Figure 1.3), for which the quantum curve has a
class 1 irregular singularity at z = oo.

The paper is organized as follows. The general structure of the theory is explained using
the Airy function as an example in Section 2. The notion of quantum curves as Rees D-
modules quantizing Hitchin spectral curves is presented in Section 3. Since our topological
recursion depends solely on the geometry of (1.6), the information of ¥ and X, such as their
arithmetic genera, becomes important. We will give the genus formulas in Sections 4 and
5. In Section 4 we study the geometry of the Hitchin spectral curves associated with rank
2 meromorphic Higgs bundles. We give the genus formula for the normalization ¥ in terms
of the characteristic polynomial of the Higgs field ¢. A more systematic treatment of the
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FIGURE 1.2. The spectral curves of the second and the fourth examples. The
horizontal line is the divisor Cw,, and the vertical line is the fiber class F' at x = oco.
The spectral curve intersects with C, a total of four times. The curve on the right
has a triple intersection at x = oo, while the one on the left intersects all at once.

F1GURE 1.3. The spectral curve of the fifth example, which is non-singular. The
corresponding quantum curve has two regular singular points at x = +1, and a class
1 irregular singular point at x = oc.

spectral curve and its desingularization is given in Section 5. In Section 6, which is the
heart of our paper, we prove the main theorem. Two more examples, Hermite differential
equations and Gaufl hypergeometric differential equations, are studied in Section 7.

2. A WALK-THROUGH OF THE SIMPLEST EXAMPLE

Before going into the full generality, let us present the simplest example of our con-
struction. With this example we can illustrate the relation between a Higgs bundle, the
compactified cotangent bundle of a curve, a quantum curve, a classical differential equation,
non-Abelian Hodge correspondence, and the quantum invariants that the quantum curve
captures.

As a spectral curve, we take the algebraic curve ¥ C Fy = P(Kp & Op) = T*P!
embedded in the Hirzebruch surface with the defining equation

(2.1) y? —x=0.

Here, z is the coordinate of the affine line A = P!\ {c0}, and y is the fiber coordinate of the
cotangent bundle T*P! C F? over A'. The Hirzebruch surface is the natural compactification
of the cotangent bundle T*P', which is the total space of the canonical bundle Kpi. We
denote by n € HO(T*P!, m*Kp1) the tautological 1-form associated with the projection
7 T*P' — P'. It is expressed as n = ydx in terms of the affine coordinates. The
holomorphic symplectic form on T*P! is given by —dn = dx A dy. The 1-form n extends to
Fy as a meromorphic differential form and defines a divisor

(2.2) (n) = Co — C,
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where Cj is the zero-section of T*P!, and Cy the section at infinity of T*P!. The Picard
group Pic(Fy) of the Hirzebruch surface is generated by the class Cy and a fiber class F of
.

Although (2.1) is a perfect parabola in the affine plane, it has a quintic cusp singularity
at * = 0o. Let (u,w) be a coordinate on another affine piece of Fy defined by (1.20). Then
¥ in the (u,w)-plane is given by

(2.3) w? = ud.

The expression of ¥ as an element of Pic(F2) is thus given by ¥ = 2Cy + 5F. Define a stable
Higgs pair (F, ¢) with E = Op1 @ Op1 and

(2.4) ¢_[x 1] d:E — E® Kpi (2) = E.

Here, we choose a meromorphic 1-form zdz € H(P', Kp1(2)) that has a simple zero at
0 € P! and a pole of order 3 at oo € P!. Up to a constant factor, there is only one such
differential zdx = —du/u®. The spectral curve ¥ of (E,¢) is given by the characteristic
equation

(2.5) det(n — 7*¢) = n? — *tr(¢) + 7* det(¢) =0

in Fs. The non-Abelian Hodge correspondence applied to ¢ determines a singular h-
connection [3, 41]

(2.6) V" = hd - [m 1} da

on the trivial bundle F = (9?12 over PL.
The quantization procedure that we will explain in this paper associates the following
differential equation to the spectral curve 3:

(2.7) <<h$>2 - g;) U(z, ) = 0.

The solution ¥ gives rise to a flat section [\%},] of (2.6), where " denotes the x differentiation.

The differential operator

(2.8) P(z, 1) = (h;‘;)Q —z

quantizing (2.1) is an example of what we call a quantum curve. Reflecting the fact (2.3)
that ¥ has a quintic cusp singularity at x = oo, (2.7) has an irregular singular point of class
% at x = oo. This number % indicates how the asymptotic expansion of the solution looks
like. Indeed, any non-trivial solution has an essential singularity at co. We note that every
solution of (2.7) is an entire function for any value of i # 0. Define

[1-1 (35 —2) 1135 1)

2.9 =agp - =a -
( ) a3n aO (377,)' b a3n+1 a‘l (3n + 1)‘ 9

a3n+2 = 07

for n > 0. Then

(2.10) U(z,h) = i an (%)n

n=0
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gives an arbitrary solution to (2.7), which is entire. The coefficients (2.9) are of no particular
interest.

What our quantization procedure tells us is a different, and more interesting, story.
Applying our main result of this paper, we construct a particular all-order asymptotic

expansion of this entire solution
(2.11) U(z,h) =exp F(x,h),  F(z,h):= Y W™ 'Sy (x)

valid for |Arg(z)| < m, and h > 0. Here, the first two terms of the asymptotic expansion
are given by

3

(2.12) So(x) = :lzgam,

1
(2.13) Si(z) = —Zlogac.

Although the classical limit h — 0 of (2.7) does not make sense under the expansion (2.11),
the semi-classical limit through the WKB analysis

2 o
(2.14) [e_sl(x)e_flis‘)(z) (ﬁQdcicQ :v) e;zso(x)esl(x)] exp (Z hm_lSm(x)> =0
m=2

has a well-defined limit 4 — 0. The result is Sj(z)? = x, which gives (2.12), and also (2.1)
by defining dSy = n. This process is called the semi-classical limit. The vanishing of the

h-linear terms of (2.14) is 25 (x)S](z) + S (z) = 0, which gives (2.13) above.

AN
| w/‘\ [ o7\
MH/ \\\ | \
A \
A“H‘LM‘W;\ ey =
\\‘/;HJ\C‘

NIRRT
UV

FI1GURE 2.1. The Airy function

The solution we are talking about is the Airy function (1.21) for the choice of Sp(z) =
—%:r% This solution corresponds to (2.10) with the initial condition

1 1
apg = —5 - ap = it
35T(3) 35T(3)
The surprising discovery of Kontsevich [38] is that Sy, (z) for m > 2 has the following closed
formula:
1 Air
(2.15) Smlz) = Y —Fyn (@),
2g—2+n=m—1
Alry (_1)71 _ (69—6+43n) - n
(2.16) Fon¥ (@) 1= g -2 2 > (g Tay)gn | [(2di — DM
di+-dn i=1

=39—3+n
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Although (2.15) is not a generating function of all intersection numbers, as we will show in
the subsequent sections, the quantum curve (2.1) alone actually determines every intersec-
tion number (74, - 74,),,- This mechanism is the differential recursion equation of [18],
based on the theory of integral topological recursion of [24], which computes free energies

, (=1)" ©o(2d; — 1)
(2.17) E (21, ay) 1= 529 27n Z (Td, - 7a >gnH T 2d;+1
, ) ’ _ n/g, i+1
2% ! di+-+dn i=1 \/17
=39—3+n

as a function in n variables from ¥ through the process of blow-ups of Fs.

Let us now give a detailed procedure for this example. We start with the spectral curve X
of (2.1). Our goal is to come up with (2.7). The first step is to blow up Fa and to construct
(1.6). The discriminant of the defining equation (2.5) of the spectral curve is

~ det(¢) = z(da)? = %(du)?

It has a simple zero at © = 0 and a pole of order 5 at x = oco. The Geometric Genus
Formula (4.12) tells us that Y is a non-singular curve of genus 0, i.e., a P!, after blowing
up |5 = 2 times. The center of blow-up is (u,w) = (0,0) for the first time. Put w = wyu,
and denote by F; the exceptional divisor of the first blow-up. The proper transform of X
for this blow-up, w? = u3, has a cubic cusp singularity, so we blow up again at the singular
point. Let w; = wsu, and denote by FEs the exceptional divisor created by the second
blow-up. The self-intersection of the proper transform of E; is —2. We then obtain the
desingularized curve Yyin, locally given by w3 = u. The proof of Theorem 4.2 also tells us
that Yin — P! is ramified at two points. Choose the affine coordinate t = 2w, of the
exceptional divisor added at the second blow-up. Our choice of the constant factor is to
make the formula the same as in [19]. We have

1 1 4

x:7:—2:—2

u w3 t
(2.18) { R
Y="w T T T Tt

In the (u,w)-coordinate, we see that the parameter t is a normalization parameter of the
quintic cusp singularity:

Note that ¥, intersects transversally With~the proper transform of Cy,. We blow up once
again at this intersection, and denote by ¥ the proper transform of ¥,,;,. The blow-up
space BI(F?) is the result of 3 = [2] times blow-ups of the Hirzebruch surface.

Now we apply the differential recursion (6.11) to the geometric data (1.6) and (1.7). We
claim that the integral topological recursion of [24] for the geometric data we are considering
now is exactly the same as the integral topological recursion of [19, (6.12)] applied to the
curve (2.18) realized as a plane parabola in C?. This is because our integral topological
recursion (6.10) has two residue contributions, one each from ¢t = 0 and ¢ = co. As proved
in [19, Section 6], the integrand on the right-hand side of the integral recursion formula
[19, (6.12)] does not have any pole at ¢ = 0. Therefore, the residue contribution from this
point is 0. The differential recursion is obtained by deforming the contour of integration
to enclose only poles of the differential forms W, ,. Since ¢ = 0 is a regular point, the two
methods have no difference.
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The Wy of (1.7) is simply
coordinate, we have

(ffifSQ because & = PL. Since ¢ of (2.18) is a normalization

. 16

Wou =i'v(n) = y(t)dz(t) = -7,

in agreement of [19, (6.8)]. Noting that the solution to the integral topological recursion is
unique from the initial data, we conclude that

dy - dn PR (2(t), .., 2(ty)) = Wy,

By setting the constants of integration by integrating from ¢ = 0 for the differential recursion
equation, we obtain the expression (2.17). Then its principal specialization gives (2.16). The
equivalence of the differential recursion and the quantum curve equation Theorem 6.1 then
proves (2.7) with the expression of (2.11) and (2.15).

In this process, what is truly amazing is that the single differential equation (2.7), which
is our quantum curve in this case, knows everything about the free energies (2.17). This
is because we can recover the spectral curve ¥ from the quantum curve. Then the proce-
dures we need to apply, the blow-ups and the differential recursion equation, are canonical.
Therefore, we do recover (2.17) as explained above.

It is surprising to see that a simple entire function (2.10) contains so much geometric
information. Our expansion (2.11) is an expression of an entire function viewed from its
essential singularity. We can extract rich information of the solution by restricting the
region where the asymptotic expansion is valid. If we consider (2.11) only as a formal
expression in z and A, then we cannot see how the coefficients are related to quantum
invariants. The topological recursion [24] is a key to connect the two worlds: the world of
quantum invariants, and the world of holomorphic functions and differentials. This relation
is also knows as a mirror symmetry, or in analysis, simply as the Laplace transform. The
intersection numbers (74, - - 74, ) gn Delong to the A-model, while the spectral curve X of
(2.1) and free energies belong to the B-model. We consider (2.17) as an example of the
Laplace transform, playing the role of mirror symmetry [19].

3. QUANTUM CURVES FOR HIGGS BUNDLES

In this section, we give the definition of quantum curves. Let C be a non-singular
projective algebraic curve defined over C. The sheaf D¢ of differential operators on C'is the
subalgebra generated by the anti-canonical sheaf K51 and the structure sheaf O¢ in the
C-linear endomorphism algebra Endc(O¢). Here, Kal acts on O¢ as holomorphic vector
fields, and O¢ acts on itself by multiplication. Locally every element of D¢ is written as

r r—¢
Dc > P(x) = Za(g(:z:) (di:) , ag(z) € O¢
=0

for some r > 0. For a fixed r, we introduce the filtration by order of differential operators
into D¢ as follows:

FDe = {P(az) - Z;am) (;‘;)e

The Rees ring 5@ is defined by

ag(l’) S Oc} .

(3.1) Dc = P F,Dc ¢ C[h] &c De.
r=0
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An element of 138 on a coordinate neighborhood U C C' can be written uniquely as

s r—~0
(3.2) P(z,h) = Zag(x) <hCZE>
=0

(see [41, Section 1.5]).

Definition 3.1 (Quantum curve). A quantum curve is the Rees De-module
(3.3) M=PnrMm
r=0

associated with a filtered De-module (M, F).) defined on C, with the compatibility
F,D¢c - F; M C Fa+bM.
Let

n
D = ijpj, m; > 0
j=1

be an effective divisor on C. The point set {p1,...,p,} C C is the support of D. A
meromorphic Higgs bundle with poles at D is a pair (E, ¢) consisting of an algebraic vector
bundle F on C' and a Higgs field

(3.4) ¢: E— Kc(D) ®o, E.
Since the cotangent bundle
T*C = Spec (Sym (Kal))
is the total space of K¢, we have the tautological 1-form n € H°(T*C,7*K¢) on T*C

coming from the projection
T°C +—— K¢

gl
C +— K¢

The natural holomorphic symplectic form of T*C is given by —dn. The compactified
cotangent bundle of C is a ruled surface defined by

oo

(3.5) T*C :=P (K¢ ® O¢) = Proj (@ (K" I"o K" T@- o K- I”)) ,
n=0

where I represents 1 € O¢ being considered as a degree 1 element. The divisor at infinity

Coo of (1.5) is reduced in the ruled surface and supported on the subset P (K¢ & O¢)\T*C.

The tautological form n extends on T*C' as a meromorphic 1-form with simple poles along

Coo. Thus the divisor of i in T*C is given by

(3.6) (n) = Co — O,

where (Y is the zero section of T#C.
The relation between the sheaf D¢ and the geometry of the compactified cotangent bundle
T*C is the following. First we have

(3.7) Spec (@ Fch/Fm1DC> = Spec (@ Kcm> = T*C.

Let us denote by gr,,Dc = FmDC/Fm,lDC. By writing I = 1 € H°(C,D¢), we then have
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00
(38) Proj (@ (gT‘mDC e ® grm—1Dc - I & grim—oDc - 7®2 @B groDo - I@m))

m=0

=T*C.

Definition 3.2 (Spectral curve). A spectral curve of degree r is a divisor ¥ in T*C' such
that the projection 7 : ¥ — C defined by the restriction

YT

N

C

is a finite morphism of degree r. The spectral curve of a Higgs bundle (F, ¢) is the
divisor of zeros

(3.9) £ = (det(n — 76))g
on T*C of the characteristic polynomial det(n — 7*¢). Here,

¢ " E — 7" (Ko(D)) ®o 7 E.

P(Kce0c)

Remark 3.3. The Higgs field ¢ is holomorphic on C' \ supp(D). Thus we can define the
divisor of zeros

¥° = (det (77 — " (¢|C\supp(D))))o

of the characteristic polynomial on 77 (C \ supp(D)). The spectral curve X is the complex
topology closure of 3»° with respect to the compactification

(3.10) T*(C \ supp(D)) C T*C.

A left De-module £ on C'is naturally an Oc-module with a C-linear integrable connection
V:€&— Ko ®o, €. The construction goes as follows:

where

e « is the natural inclusion £ 3 v — 1® v € Do ®o,, &;
o Vp : Do — Kc®p,Dc is the connection defined by the C-linear left-multiplication
operation of K 51 on D¢, which satisfies the derivation property

(3.12) Vp(f'P):f-VD(P)+df~PEKc®OC De
for f € Oc and P € D¢; and
e (3 is the canonical right Do-module structure in K¢.

If we choose a local coordinate neighborhood U C C with a coordinate x, then (3.12) takes
the following form. Let us denote by P’ = [d/dx, P] — P - d/dx, and define

d o

Then we have of
V%(f-P):f-V%(P)—i-%-P.

The connection V of (3.11) is integrable because d*> = 1. Actually, the statement is true for
any dimensions. We note that there is no reason for £ to be coherent as an O¢-module.
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Conversely, if an algebraic vector bundle E on C' of rank r admits a holomorphic connec-
tion V: EF — K¢ ® E, then E acquires the structure of a Do-module. This is because V
is automatically flat, and the covariant derivative Vx for X € K 51 satisfies
(3.13) Vx (fv) = fVx(v) + X(f)v

for f € Oc and v € E. A repeated application of (3.13) makes E a Do-module. The fact
that every Do-module on a curve is principal implies that for every point p € C, there is an
open neighborhood p € U C C and a linear differential operator P of oder r on U, called a
generator, such that E|y = Dy /Dy P. Thus on an open curve U, a holomorphic connection
in a vector bundle of rank r gives rise to a differential operator of order r. The converse is
true if Dy /Dy P is Oy-coherent.

Definition 3.4 (A-connection). A holomorphic A-connection on a vector bundle E — C'
is a C[A]-linear homomorphism

Vh.Ch®FE — Chh Yo Ke®o, E
subject to the derivation condition
(3.14) Vi(f-v) = fV"(v) + hdf @ v,
where f € Oc ® Clh] and v € C[h] ® E.

Remark 3.5. The classical limit of a holomorphic A-connection is the evaluation A = 0
of V", which is simply an Oc-module homomorphism

VY. F — K¢ ®o, F,
i.e., a holomorphic Higgs field in the vector bundle F.

Remark 3.6. An O¢ ® C[h]-coherent Do-module is equivalent to a vector bundle on C
equipped with an A-connection.

In analysis, the semi-classical limit of a differential operator P(x, ) of (3.2) is defined
by

(3.15) lim (=450 P(a, et ) = 3 ay(@) (Sh(@)" "
=0
where Sp(z) € Oc(U). The equation
: —185(x) LSo(x)) _
(3.16) %1_1}16 <e WO Pz, h)en”° >—O

then determines the first term of the singular perturbation expansion

(3.17) U(z,h) = exp (Z hm_lSm(x)>

m=0
of the solution ¥(z, h) of the differential equation
P(z,h)¥(x,h) =0
on U. Since dSy(x) is a local section of T*C'on U C C, y = S| (x) gives the local trivialization

of T*Cly, with y € T}C a fiber coordinate. Equations (3.15) and (3.16) then give an
equation

(3.18) > ag(z)y =0
£=0
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of a curve in T*C|y. This motivates us to give the following definition:

Definition 3.7 (Semi-classical limit of a Rees differential operator). Let U C C be an open
subset of C with a local coordinate x such that T*C' is trivial over U with a fiber coordinate
y. The semi-classical limit of a local section

P, h) = Z%ag(x) <h;;>r_£

of the Rees ring ZSE; of the sheaf of differential operators Dc on U is the holomorphic

function .
> ag(x)y
/=0

defined on T*C|y.

Definition 3.8 (Semi-classical limit). Suppose a Rees Do-module M is written as
(3.19) M(U) = Dc(U) /De(U) Py

on every coordinate neighborhood U C C with a differential operator P of the form (3.2).
Using this expression (3.2) for Py, we construct a meromorphic function

(3.20) pule,y) =Y al@)y
=0

on T*C|y, where y is the fiber coordinate of T*C', which is trivialized on U. Define

(3.21) Yu = (pu(z,9))o
as the divisor of zero of the function py(x,y). If Xy’s glue together to a spectral curve

> C T*C, then we call ¥ the semi-classlical limit of the Rees ngv—module M.

Remark 3.9. For the local equation (3.20) to be consistent globally on C, the coefficients
of (3.2) have to satisfy

(3.22) ar(z) € F(U, Kg") .

Definition 3.10 (Quantum curve for holomorphic Higgs bundle). A quantum curve
associated with the spectral curve 3 C T*C of a holomorphic Higgs bundle on a projective
algebraic curve C' is a Rees Do-module £ whose semi-classical limit is 3.

The main reason we need to extend our framework to meromorphic connections is that
there are no non-trivial holomorphic connections on P!, whereas many important classical
examples of differential equations are naturally defined over P! with regular and irregular
singularities. A C-linear homomorphism

V:E — Kc¢(D)®eo, E
is said to be a meromorphic connection with poles along an effective divisor D if
V(f-v)=fV(v)+df ®v
for every f € O¢c and v € E. Let us denote by
Oc(xD) := li_n}(’)c(mD), E(xD) := E ®o, Oc(xD).

Then V extends to
V: E(*D) — Ko (D) @0 («p) E(xD).
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Since V is holomorphic on C' \ supp(D), it induces a Dey\gupp(p)-module structure in
E|c\supp(p)- The De-module direct image E =j, (E\C\Supp( D)) associated with the open
inclusion map j : C'\ supp(D) — C is then naturally isomorphic to

(323) E = .7* (E|C\supp(D)) = E(*D)
as a Do-module. (3.23) is called the meromorphic extension of the Dy gypp(p)-module

E‘C\Supp(D)'
Let us take a local coordinate x of C, this time around a pole p; € supp(D). If a generator

P of E near z = 0 has a local expression
- % r d r—~¢
.24 P(z,d/dx) = b —
(3.24) () =2+ 3o ()

around p; with locally defined holomorphic functions b(z), bo(0) # 0, and an integer k € Z,
then P has a regular singular point at p;. Otherwise, p; is an irregular singular point of P.

Definition 3.11 (Quantum curve for a meromorphic Higgs bundle). Let (E, ¢) be a mero-
morphic Higgs bundle defined over a projective algebraic curve C' of any genus with poles
along an effective divisor D, and X C T*C its spectral curve. A quantum curve associated
with ¥ is the meromorphic extension of a Rees Do-module £ on C'\ supp(D) such that the
closure of its semi-classical limit 3° C T*C|c\qupp(p) in the compactified cotangent bundle

T*C agrees with 3.

4. GEOMETRY OF SPECTRAL CURVES IN THE COMPACTIFIED COTANGENT BUNDLE

To construct quantum curves using the topological recursion, we need a smooth Eynard-
Orantin spectral curve [24] for which we can apply the recursion mechanism. When the
given Hitchin spectral curve ¥ is singular, we have to find a non-singular model. In this
paper we use the normalization 3 of the singular spectral curve. Since the quantum curve
reflects the geometry of CNW, it is important to identify the choice of the blow-up space
BI(T*C) of (1.6) in which ¥ is realized as a smooth divisor. We then determine the initial
value Wy 1 for the topological recursion.

The geometry of a spectral curve also gives us the information of the singularity of the
quantum curve. For example, when we have a component of a spectral curve tangent
to the divisor Cy, the quantum curve has an irregular singular point, and the class of
the irregularity is determined by the degree of tangency. We will give a classification of the
singularity of the quantum curves in terms of the geometry of spectral curves in Section 6.3.

In this section, we give the construction of the canonical blow-up space BI(T*C), and
determine the genus of the normalization 5. This genus is necessary to identify the Riemann
prime form on it, which determines another input datum W » for the topological recursion.

There are two different ways of defining the spectral curve for Higgs bundles with mero-
morphic Higgs field. Our definition of the previous section uses the compactified cotangent
bundle. This idea also appears in [39]. The traditional definition, which assumes the pole
divisor D of the Higgs field to be reduced, is suitable for the study of moduli spaces of para-
bolic Higgs bundles. When we deal with non-reduced effective divisors, parabolic structures
do not play any role. Non-reduced divisors appear naturally when we deal with classical
equations such as the Airy differential equation, which has an irregular singular point of
class % at oo € P!,
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Our point of view of spectral curves is also closely related to considering the stable pairs
of pure dimension 1 on T*C. Through Hitchin’s abelianization idea, the moduli space of
stable pairs and the moduli space of Higgs bundles are identified [36].

Let E be an algebraic vector bundle of rank 2 on a non-singular projective algebraic curve
C of genus g, and

¢: E— Kc(D) ®o. B
a meromorphic Higgs field with poles along an effective divisor D. The trace and the
determinant of ¢,

(4.1) ay == —tr(¢) € H* (C, Ko (D)),
(4.2) as == det(¢) € H° (C, KE*(2D)) ,

are well defined and determine the spectral curve ¥ of (3.9). For the purpose of investigating
the geometry of ¥, we do not need the information of the Higgs bundle (E, ¢), or even the
pole divisor D. Thus in what follows, we only assume that a; is a meromorphic section of
K¢, and that ao a meromorphic section of K§2. Then the spectral curve is re-defined as
the zero-locus in T*C of a quadratic equation with a; and as its coefficients:

(4.3) Si= (n* + 7 (a)n + m*(az)), -

The only condition we impose here is that the spectral curve is irreducible. In the language
of Higgs bundles, this condition corresponds to the stability of (E, ¢).

Recall that Pic(T*C) is generated by the zero section Cy of T*C' and fibers of the projec-
tion map 7 : T*C — C. Since the spectral curve X is a double covering of C, as a divisor

it is expressed as

a
(4.4) S =2Cy+ » 7 (p;) € Pic(T*C),
j=1
where o = Z?:l p; € Pic?(C) is a divisor on C of degree a. As an element of the Néron-
Severi group

NS(T*C) = Pic(T*C)/Pic’(T*C),
it is simply
Y. =2Cy+ aF € NS(T*C)
for a typical fiber class F. Since the intersection FCy = 1, we have a = XCy in NS(T*C).
From the genus formula
pa(D) = 55+ (8 + Keg) +1

and

we find that the arithmetic genus of the spectral curve ¥ is

(4.5) Pa(X) =49 — 3 +a,
where a is the number of intersections of ¥ and Cy. Now we wish to find the geometric
genus of 3.

Motivated by the completion of square expression of the defining equation (4.3),

(4.6) n? + 7 (a1)n + 7 (az) = (n - ;w*(a1)>2 - (iﬂ*(am - W*(az)>

as a meromorphic section of 7" K ?2, we give the following definition.
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Definition 4.1 (Discriminant divisor). The discriminant divisor of the spectral curve
(4.3) is a divisor on C' defined by

1
(4.7) A= <4a% - a2> = Ay — As,
where
(4.8) Ag = Zmiqz‘, m; >0, ¢ €C,
i=1
(4.9) Ay = anpj, ng > 0, pj € C.
j=1

Since ia% — ag is a meromorphic section of K, gzj we have

(4.10) deg A= "m;— Y nj=4g—4.
i=1 j=1

Theorem 4.2 (Geometric genus formula). Let us define an invariant of the discriminant
divisor by

(4.11) d=Hi|m;=1 mod2}|+|{j|n; =1 mod 2}|.

Then the geometric genus of the spectral curve ¥ of (4.3) is given by

(4.12) Gi=py(X) =29 — 1+ %5.

We note that (4.10) implies § =0 mod 2.

Remark 4.3. If ¢ is a holomorphic Higgs field, then a; = —tr(¢), aa = det(¢), and
m=90=49—4, n=0.

Therefore we have § = 4g — 3, which agrees with the genus formula of [18, Eq.(2.5)].

Before giving the proof of the formula, first we wish to identify the geometric meaning of
the invariant §. Since X C T*C is a double covering of C' in a ruled surface, locally at every
singular point p, 3 is either irreducible, or reducible and consisting of two components.
When irreducible, it is locally isomorphic to

(4.13) 2Pt =0, m>1.

If it has two components, then it is locally isomorphic to
(4.14) t2 — %M = (t — s™)(t 4 s™) = 0.

Since the local form of ¥ at a ramification point of 7 : ¥ — C' is written as (4.13) with
m = 0, by extending the terminology “singularity” to “critical points” of the morphism 7,
we include a ramification point as a cusp with m = 0.

Proposition 4.4. The invariant § of (4.11) counts the number of cusps of the spectral
curve 3.

Thus we have

1
(4.15) pg(X) =29(C) -1+ 5 (the number of cusps).
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Proof of (4.15), assuming Proposition 4.4. Let vyin : L min — % be the minimal resolution
of singularities of ¥. Then myin = T © Vmin : Xmin — C is a double sheeted covering of
C by a smooth curve ¥i,. If ¥ has two components at a singularity P as in (4.14), then
7+ (P) consists of two points and 7, is not ramified there. If P is a cusp (4.13), then
w;liln(P) is a ramification point of the covering mmi,. If § counts the total number of cusp
singularities and the ramification points of 7 : ¥ — C, then the Riemann-Hurwitz formula
gives us
2 — 29 (Zmin) —0 =2(2—29(C) —6),

which yields the genus formula (4.15). O

Since we wish to give all information of (1.6) from the defining equation (4.3), we proceed
to derive a local structure of ¥ at each singularity from the global equation in what follows.

Proof of Theorem 4.2 and Proposition 4.4. The proof is broken into four cases. Cases 3 and
4 are related to the Newton Polygon we mentioned in Introduction, (1.17).

Case 1. First we consider the case with a holomorphic a1 € H°(C, K¢), and both A and
A are reduced. As we see below, in this case ¥ is non-singular, and the two genera (4.5)
and (4.12) agree.

Let us consider the graph I' 1, of the holomorphic 1-form —%al in T*C'. Since T*C is
2

the total space of the canonical bundle K¢, the graph is a cross-section of T*C. We define
an involution o : T*C — T*C as a reflection about I' 1 @ along each fiber of 7. In terms
2

of the fiber coordinate y € T;C, it is written as

(4.16) ydr — —ydx — aq, yde € T*C.

The spectral curve is invariant under the involution, o : ¥ — X, because of (4.6). By
definition, I' 1 a C T*C is a fixed-point set of the involution o. The divisor C is also

fixed by o. Note that we have in this case
(4.17) Gal(X/C) = (o).

Thus for a holomorphic a;, the Galois action of w : ¥ — C' extends to the whole ruled
surface T*C. This does not hold for a meromorphic a.

As remarked above, if as € HY(C, Kg2) is also holomorphic, then 7 : ¥ — C' is simply
branched over A = Ag, and X is a smooth curve of genus 4g — 3. This is in agreement of
(4.5) because n = 0 in this case.

If ay is meromorphic, then the pole divisor of ay is given by (a2)so = A of degree n.
Since A is reduced, from (4.6) we see that 7 : ¥ — C' is ramified at the intersection of
Coo and 7~ 1(A). The spectral curve is also ramified at its intersection with T'_ Loy which

occurs along the fibers 771(Ag). Note that deg Ag = 4g — 4 + n because of (4.10). Thus
m: % — (' is simply ramified at a total of 4g — 4 + 2n points. Therefore, 3 is non-singular,
and we deduce that its genus is given by

Pg(¥) = pa(¥) =49 =3 +n

from the Riemann-Hurwitz formula. As a divisor class, we have

Y =20y + 1" (Ax) € Pic(T*C),
in agreement of (4.4).

Case 2. Still a1 € H°(C, K¢) is holomorphic, but A is non-reduced. The first example of
Table 1.2, the Airy differential equation, at © = oo falls into this category.
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The involution (4.16) is well defined. Let ¢; € supp(Ap) be a point at which m; > 1.
From the global equation (4.6), we see that the curve germ of ¥ at its intersection @ with
the fiber 771(¢;) is given by a formula

y* =™,
where z is the pull-back of the base coordinate on C' and y a fiber coordinate, possibly tilted
by a holomorphic function in x. We blow up once at (z,y) = (0,0), using a local parameter
y1 = y/x on the exceptional divisor. The proper transform of the curve germ becomes

yi=am

Repeat this process at (z,y1) = (0,0), until we reach the equation

y; = at,
where € = 0 or 1. The proper transform of the curve germ is now non-singular. We see
that after a sequence of [ %] blow-ups starting at the point @ € ¥ N 7~ 1(g;), the proper
transform of ¥ is simply ramified over ¢; € C if m; is odd, and unramified if m; is even. We
apply the same sequence of blow-ups at each ¢; with higher multiplicity.

Now let p; € supp(As) with n; > 1. The intersection P = X N7 !(p;) lies on Cx, and
¥ has a singularity at P. Let 2 = 1/y be a fiber coordinate of 7~!(p;) at the infinity. Then
the curve germ of ¥ at the point P is given by

22 = g™,

The involution ¢ in this coordinate is z —— —z. The blow-up process we apply at P is
the same as before. After L%]j blow-ups starting at the point P € £ N7~ !(p;), the proper
transform of ¥ is simply ramified over p; € C if n; is odd, and unramified if n; is even.
Again we do this process for all p; with a higher multiplicity.

Let us define Bl (T*C') as the application of a total of
11 RO
(4.18) ; 5|+ ; 5

times blow-ups on T*C' as described above.

(4.19) Y min ’ Bluin(T*O)

C

The proper transform ¥,,;, is the minimal desingularization of . Note that the morphism
(4.20) T=7oV:Ymin — C
is a double covering, ramified exactly at ¢ points. Since pq(Xmin) = pg(X), (4.12) follows

from the Riemann-Hurwitz formula applied to 7 : ¥, — C. It is also obvious that
counts the number of cusp points of ¥, including smooth ramification points of .

Case 3. We are now led to considering a meromorphic a;. Let p € C be a pole of ay of
order k > 1. Assume that ao also has a pole of oder ¢ at p, and that £ > k. The second,
the third, and the fourth examples of Table 1.2, all at x = oo, fall into this category.
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Choose a local coordinate z of C' around p, and express
C1 C2
a; = oy az = 20
where ¢; and ¢z € O¢y are unit elements. Since both of a; and az have poles at p, the
spectral curve intersects with C, along the fiber 7~!(p). The curve germ at this intersection
point is given by the equation

C1 Co
(4.21) y? + Syt =0,
or equivalently,
2 2
2, € o1 4 len o™ 1l g 1,
(4.22) 224 = —a" = 2+ x x +—z" =0,
c2 co 2co 4 \ co Co

where z = 1/y is a fiber coordinate of 7~!(p) at infinity. Note that the coefficients of (4.22)
are all in O¢ . The discriminants of (4.21) and (4.22) are given by

1 62 Co 1 C1 2 1
423 Aota e Lla )T 1,
(4.23) Y g g2k g0 Ty (@x czx

If 2k > £, then the contribution from p in A, is —2kp, which does not count in §. Since
this inequality is equivalent to 2(¢ — k) < ¢, the contribution from p in the discriminant A,
is 2(¢ — k)p. Locally around the singularity, the spectral curve is thus reducible with two
components. We can apply the blow-up process of Case 2 to (4.22) and obtain a resolved
curve germ unramified over p € C. For the case of the Hermite differential equation given
as the second example of Table 1.2, we have £k = 3 and ¢ = 4.

If 2k </, then the contribution from p in A, is —¢p. Therefore, depending on the parity
of ¢, it has a contribution to §. The infinity point £ = oo of the Gaufl hypergeometric
equation, the third example of Table 1.2, falls into this case, where we have £ = 1 and
¢ = 2. The inequality 2k < ¢ is the same as 2(¢ — k) > ¢, hence the contribution of p in
A, is fp. Therefore, whether the resolved curve germ is ramified or unramified depends on
the parity of ¢, which is exactly recorded in §. If it is odd, then the singularity is a cusp,
contributing 1 to §.

The above consideration shows that we need to perform ¢ — k times blow-ups if 2k > /£,
and ng times blow-ups if 2k < ¢, to construct Bl (T*C) and Xpip.

Case 4. Finally, we assume that a; has a pole of oder £ > 1 at p € C, and a2 has a pole of
order ¢ at p, with £ > ¢. We allow a2 to be holomorphic at p. The third example of Table 1.2,
the GauBl hypergeomtric equation at x = 0,1, and the final example, at x = £1, co, fall into
this case.

The equation of the spectral curve is the same as (4.21), and its discriminant is given by
Ay of (4.23). Since k > £, the contribution of p in A is —2kp, which is not counted in 4.
Let us re-write (4.22) as
(4.24) A2 Ly

C2 C2
Since c1/ca € Ocy is a unit, we can see from this equation that the curve germ passes
through (z, z) = (0,0) only once as a regular point. Indeed the discriminant of (4.24) does
not vanish at = 0. In particular, ¥ is non-singular at its intersection of 7~!(p). Therefore,
p € C does not contribute into the Rimann-Hurwitz formula, which agrees with the fact
that d does not record p.



QUANTIZATION OF MEROMORPHIC HIGGS BUNDLES 27

This completes the proof of Theorem 4.2, and the fact that § counts the total number of
odd cusps on X. O

The proof of the above theorem give us the way to construct the blow-up space BI(T*C)
of (1.6). The data we need is not only the discriminant divisor (4.7), but also the pole
divisors of the coefficients of the defining equation (4.3) of the spectral curve. Let us write

(4.25) (@)oo = Y kjpjs  (a2)os = Y ipj,
j—1 Jj—1

where {p1,...,pj} = supp(A). At each p;, a Newton polygon is defined as the upper part
of the convex hull of three points (0,0), (1,k;), (2,4;) € R?, as in Definition 1.9. We also
define the invariant

k‘j 2/€j > Ej,

4.26 =
(4.26) " {2 o%h; < 0.

If our mission is only to resolve the singularities of X, then we can use the following
blow-up method.

Definition 4.5 (Construction of the minimal blow-up space). The minimal blow-up space
Blnin(T*C) of (4.19) is defined by blowing up T*C' in the following way, as analyzed in the
proof of Theorem 4.2.

e At each ¢; of (4.8), blow up at the intersection ¥ N7 (g;) a total of || times.
e At each p; of (4.9), blow up at the intersection ¥ N7~ 1(p;) a total of

(1) %] times, if k; =0, or k; > 0 and ¢; > 2k;, and

(2) €j — k; times, if k; >0 and 2€j > 2k; > ﬁj.

Here, k; (¢}, resp.) is the order of pole of a; (a2, resp.) at p;.

Remark 4.6. The last case, k; > 0 and 2¢; > 2k; > {;, is counter intuitive and does
not follow the rest of the pattern. The singularity of the spectral curve of the Hermite
differential equation at 2 = oo (the second row of Table 1.2) gives a good example. While
the pole divisor of the discriminant has order 6, and the intersection of the spectral curve
> and C'» has degree 4, we only need one time blow-up.

The cumbersome definition of Blyi,(T*C) becomes simple if we appeal to the Newton
polygon.

Definition 4.7 (Construction of the blow-up space). The blow-up space BI(T*C') of (1.6)
is defined by blowing up 7*C' in the following way.

e At each ¢; of (4.8), blow up at the intersection ¥ N7 !(g;) a total of || times.

e At each p; of (4.9), blow up at the intersection ¥ N7~ 1(p;) a total of [r;] times.

Theorem 4.8. In the blow-up space BI(T*C'), we have the following.
e The proper transform ¥ of the spectral curve ¥ C T*C by the birational morphism

v: BI(T*C) — T*C is a smooth curve with a holomorphic map © = wov : ¥ — C.
e The proper transform of Cs and ¥ do not intersect in Bl(T*C).

e The Galois action o : X — X lifts to an involution of X, and the morphism

(4.27) F:Y—C
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is a Galois covering with the Galois group Gal(%/C) = (5) = Z/2Z.
— X —— C

5
(1:29) SO
5 ) C

v s

Proof. The curve we are trying to desingularize is the support X U C of the total divisor
(1.4) of the characteristic polynomial. Even ¥ is smooth at its intersection with C, the
support ¥ U C is always singular. The key point is that the [r;] times blow-up at the
intersection is exactly what we need to desingularize 3 U Cw..

Let P € ¥ N Cy so that 7(P) = p;. We drop the index j in the rest of this proof.

The only case P is a smooth point of 3 is Case 4. From (4.24), we see that the spectral
curve near P is given by z = z*. Thus it is tangent to Csy with the multiplicity k. Therefore,
we need k times blow-ups to separate the proper transforms of ¥ and C,. By (4.26), we
have r = k.

The point P is a cusp singularity only when 0 < 2k < ¢ and ¢ is odd. We have r = ¢/2, and
we need |£/2]-times blow-ups to desingularize ¥ at P. To separate the proper transforms
of ¥ and Cy in the end, we need one more blow-up. Therefore, we need a total of [r]
blow-ups.

If 0 < 2k < ¢ and 7 is even, then still we have r = ¢/2. In this case the spectral curve
is locally reducible at P, and requires r-times blow-ups for desingularization. Since the
proper transform of P consists of two distinct points, the proper transforms of ¥ and C
are separated after r-th blow-up.

The remaining case is 0 < k < ¢ < 2k. We have r = k. We need only (¢ — k) times
blow-ups to desingularize the spectral curve at P. Let us take a close look at (4.22). We
take 22 = 0 to see the infinitesimal relation between ¥ and Cs. Then the equation becomes

(4.29) ez +af =0,

which represents an irreducible component of the spectral curve near P that is tangent to
Cs. The degree of tangency is k, hence it requires k-times blowing up to separate the
proper transforms of ¥ and C.

Since the spectral curve ¥ is a double covering of C, Gal(X/C) = Z/2Z. The involution
o is its generator, which may or may not extend to the whole T*C. Since we construct
Ymin C BU(T*C) as a simply ramified double covering over C' in Theorem 4.2, it is non-
singular and there is a natural involution on it. The additional blow-ups

v : B(T*C) — Bluin(T*C)

does not affect the proper transform Y of Ymin, Which also has an involution 6. The
involution & agrees with o on the complement of the singular locus of ¥, thus satisfying
Voo =a0ov.

This completes the proof. ]

5. THE SPECTRAL CURVE AS A DIVISOR AND ITS MINIMAL RESOLUTION

In this section we give a formula for the minimal resolution Y, of the spectral curve X
as an element of the Picard group Pic (Blmin(W)). We also give a genus formula for ¥,y
in terms of its geometry in Blmin(m). This gives another interpretation of the invariant
J of the genus formula (4.12).
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The Picard group of T*C' is generated by the pull-back of Pic(C') and the zero-section
Cy of the cotangent bundle T*C. Denote by F' the fiber over a point of the morphism
w: T*C — C. We have the following intersection table:

F?2=0
(5.1) C2 =2¢(C) -2
FCy=1.

For the sake of simplicity, in what follows we denote simply
(5.2) aF = 1%(a)

for any divisor a € Pic(C) (see [31, Chapter V.2]). In this notation, the canonical divisor
of T*C' is given by

with a divisor # € Pic*™4(C) of degree 4g — 4.
In Section 4 we identified a spectral curve ¥ as a divisor in the ruled surface T*C. With
the convention of (5.2), (4.4) reads

(5.4) Y = oF + 2C,,

where
a = YCy € Pic(Cx) = Pic(C)

is a divisor of degree a on C.

Since we deal only with the spectral curve of a rank 2 Higgs bundle, its singularities are
mild, and we can describe their resolution in detail. A singular spectral curve has infinitely
near singularities, which require iterative sequence of blow-ups on the ruled surface to be
resolved. For every singular point, say P € X, we introduce a sequence of blow-ups

- y.P yP - ]/P - R
(5.5) BIP(T*C) - --- = BIY(T*C) - BIf'(T*C) =T*C.
Here, Z/JPJrl : Blﬁrl(T*C’) — BZJP(T*C’), j=1,---,i—1, is a blow-up at the singular

point of 3; C Blf(T*C’), and X; is the proper transform of 3;_; C Blf_l(T*C) under the

blow-up VJP . Each VJP introduces an exceptional divisor EJP with self-intersection —1 on

Bl;D (T*C'). By abuse of notation, we also write

(5.6) EF = (vF) (BF) - BL,

which is the proper transform of the divisor EJI-D on Bl;D (T*C) by Vﬁrl. On BIZ(T*C), we
have a chain of self-intersection —2 curves with the following intersections properties:
(B)) =...= (BN =2

(EEL) =1

Ef \Ef =1, forall2<j<i+1

EFEf =0, forall 1 < j,k <i+1with |j — k| > 1.

(5.7)

From (5.4), we see that ¥ has only infinitely near double singularities. We denote by

vP

: l/P l/P
(5.8) pICERE IR YN D
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the sequence of proper transforms of ¥ under (5.5). The multiplicity of the singularity
P € ¥ is defined to be the least i of (5.8) such that ¥; is non-singular.

Theorem 5.1. Let Q1,Qo, ..., Q. be the singularities of 3 not on the zero section Cy or on
the divisor Coo, and Qcy1, - .., Qs the singularities on Coo. We denote by ny the multiplicity
of Qr, k=1,2,...,s. Let

(5.9) Smin C Bluin(T*C) -2y T+C

be the minimal resolution of ¥ after performing the blow-ups at each singularity exactly as
required, which includes blow-ups on the singularities on Cy. Then the genus of the smooth
curve Xpmin S given by

[

Ng+ N,
(5.10) 9(Zmin) =29 — 1 + % = g,
k=1
where Ny (resp. Noo ) is the number of intersection points of Xmin with the proper transform
of Co (resp. Coo) in Blmin(T*C).
Denote by Ef the exceptional divisor of (5.6) for P = Qy, k =1,2,...,s. Then as an
element of the Picard group, we have
s ng
(5.11) Smin = 2C0 + aF =2 " jEF € Pic (Blyin(T*C)) ,
k=1 j=1

where a € Pic(C) is a divisor on C of degree

S
(5.12) a= No + 2 Z ng.
k=c+1

Remark 5.2. If ¥ is smooth, then Ny — Ny, = 49 — 4 and a = N. Therefore, (5.10)
agrees with (4.5).

Proof. Let us denote by P, ..., P; the singular points of ¥ on the zero section Cy with
multiplicities mq,...,m;. To avoid confusion, we denote by G? = EJI-D"' the exceptional
divisor of (5.6) at P = P. The construction of X, and Bl (T*C) requires also sequences
of blow-ups at these points. We use the same notation Cy for the proper transform of the
zero section via any of the blow-up appearing in this construction of the minimal resolution.

The Picard group Pic (Blin(T*C)) is generated by Pic(C), the divisors E;“’s and G;‘-“s,
and Cp. These generators satisfy, in addition to (5.7), the following:

t
Cg:2g—2—2mk
k=1

CoGm,, =1, for every 1 <k <t.

(5.13)

Since the singular points of the spectral curve are not in general position, to give an explicit
expression for ¥,,;, as a divisor, we consider two separate cases.

(1) Resolving singularities of ¥ on the zero section Cjp.

For a singular point Py, the resolution X,,, is of the form

(514) Emk = apF + 20,
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where aj, € Pic(C'). At each step of the blow-ups, the canonical divisor of Blf’“ (T+C), for
Jj <my,is K; = (vj)*(Kj_1) + G;. Therefore,

Kj = (v;)"(Kj-1) + Gy

j—1
= —2(00 + GJ) — (I/j)* <Z ng) + BF + Gj
/=1
j—2
=—2C0 — Y Gy~ (j —1)(Gj—1 + G;) — G + BF
/=1

J
= —2Co + BF — ) (G,
/=1

where f is the divisor of (5.3).
(2) Resolving singularities of ¥ not on the zero section.

We now consider the singular point Q). The proper transform of 3 under ny iterated
blow-ups is

ng 7 Nk
(5.15) S =2 =23 D Enjin | =22 iE;
i=1 \j=1 i=1
The canonical divisor on the blown up ruled surface at the point Blf2 F(T*C) is

K; = (vi)"(Ki-1) + E;

1—1
=—2Co+ BF + ()" | Y _jE; | + Ei
j=1

i—2
=—2C0+ BF+ Y jE;j+(i—1)(Ei1 + E) + E;
j=1

%
=—-2Cy+ BF + Z]E]
j=1

Alter all these blowups, we obtain the expression of the canonical divisor on Bly, (T*C):

s ng t my
(5.16) Kpy ooy = —2C0+BF+) Y GEF = iGF.
k=1 1i=1 k=1 1=1

From (5.14) and (5.15) we obtain
s ng
(5.17) Smin = (2C0 + aF) —2) Y iEF,
k=1 i=1
where « is the sum of all oy, of (5.14).
Let us now turn our attention to determining the degree of a. We recall the genus formula

2I‘IliIl <Em1n + KBlmm(W)>
pa(zmin) = 5 + 1.
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Equations (5.16) and (5.17) yield

Zmin + Ky, 70) = (@ + H)F ZZZEk ZZZGk'

k=1 i=1 k=1 i=1
Denoting deg o = a, the above gnus formula yields

2pa(zmin)_2
t myg s Nk 2
=2(a+4g —4)CoF —2) Y iCoGf +2 (ZZiEf)
k=1 1i=1 k=1 1=1
t s ngE—1 nE—1
=2(a+4g—4)—2> mpCoGh, +22(Z 2)i® —nj+2 > i 2—1—1))
k=1 = =1 i=1

ni—1
=2(a+4g —4) —Qka—FQZ(—nk—FQiz)
:2(a+4g—4)—22mk—22nk.
k=1 k=1

We therefore conclude that
(5.18) 9(Xmin) =a+4g—3— Z mi — Z Nk

Since the proper transform of Cy on Bl (T*C) does not intersect with the exceptional
divisors EJ]?’S, from (5.17) we have

Ymin - Co = (OéF + 200) Co = Np.
This yields
t

(5.19) 4g—4+a:22mk+N0.
i=k

The proper transform of Co, on Bl (T*C) is given by
t myg
(5.20) Coo = > JE}
k=1 j=1
which we also denote simply by Cy if there is no confusion. We recall that on Bly, (T*C)
we have
COOF = 1, C’00610 - 07
COOE]]-C:{nk j=ng,k=c+1,...,s

0 otherwise.
Thus from the intersection of (5.17) and C, we obtain

S
(5.21) a=Noo+2 Y ng
k=c+1

This proves (5.12).
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Substituting (5.21) in (5.19), we obtain

t S
49-4=2) mp—2 Y mp+ No— Nu,
k=1 k=c+1

which shows that Ny + N is even. From (5.18) we have

9(Emin) = (a +4g - 3) ka—znk— Z ng

k=c+1
—l—l—No—l—ka—an— an
k=c+1

From the above two equations, we obtain

C
49 — 4 =29(Smin) —2+2) _np — No — Neo
k=1

which yields
N + Noo
g(zmin)zzg—l"i‘ 0 an
This completes the proof of Theorem 5.1. O

6. CONSTRUCTION OF THE QUANTUM CURVE

When we say that the quantization of a characteristic equation

(6.1) n* — m*tr(¢)n + 7 det(¢) = 0
of a Higgs field ¢ is a differential quation

(6.2) ((h;if — tr(¢(z)) <h£ﬂ> + det(¢(m))> U(z, k) = 0,

it may sound obvious. The point is that since z and the differential operator d/dz do not
commute, there are many different differential equations other than (6.2) that correspond to
the starting algebraic equation (6.1). The mechanism we use to identify the correct formula
for the quantization is the topological recursion. In this section, first we formulate our main
theorem of quantization. Then we give the definition of the topological recursion, using the
desingularization of the spectral curve (1.6), constructed in Theorem 4.8 and Definition 4.7.
The rest of the section is devoted to proving the main theorem.

6.1. The main theorem. The main theorem of this paper is the construction of the
quantum curve guided by the asymptotic expansion of its solutions, which is obtained by
the topological recursion.

Theorem 6.1 (Main Theorem). Let C' be a smooth projective curve of an arbitrary genus,
and (E,¢) a rank 2 Higgs bundle consisting of a topologically trivial vector bundle E and
an arbitrary meromorphic Higgs field ¢. We denote by X C T*C' the spectral curve defined
by (3.9). Then there exists a Rees D-module M on C whose semi-classical limit agrees
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with the spectral curve 3. On every coordinate chart U of C' with a local coordinate x, a
generator of M is given by a differential operator

2
(6.3) P(z,h) = (h;lx) — tro(x) (h;;) +det ¢(z) € Da(U),
so that we have
(6.4) M =D¢(U)/De(U) - P(x, h).

Let q € C be one of the critical values of the projection ™ : ¥ — C' that corresponds to
a branch point of the desingularized covering © : X — C. Then there exists a coordinate
neighborhood U, C C' of q with a coordinate x centered at q such that the following holds.
(1) For an arbitrary point p € Uy, there is a contractible open neighborhood V,, C U, of
p that does not contain q.
(2) Choose an eigenvalue o of ¢ on Vy,. Then there is an all-order asymptotic solution
to the differential equation

(6.5) Pz, BT (2, ) = 0

that is defined on V.
(3) The asymptotic expansion is given by

o
(6.6) U (x, h) = exp <Z hm_lSﬁ‘l(:E)) .
m=0
Here,
e the 0-th term S§(z) is determined by solving (6.14);
the first term S§(z) is determined by solving (6.15);
o S%(x) for m > 2 is given by

(67) saw = Y R

29g—2+n=m—1

e the free energies Fyp(z1, -+ ,2n) for 29 —2 +n > 1 are determined by the
differential recursion (6.11);
e and each Fg, (x) is the principal specialization of the restriction of the free

energy to the open subset V,, C 3 of X that corresponds to the eigenvalue o on
Vp, which we identify with Vy, by 7 : Vo — V.

Remark 6.2. Since tr¢ and det ¢ are globally defined meromorphic sections of K¢ and
K 32, respectively, the existence of the Rees D-module M is obvious. We can simply define
it by (6.3) and (6.4). Therefore, the point here is that the differential operator P(x, i) has
a particular solution that is prescribed in the main theorem.

6.2. The topological recursion and the WKB method. Let us start with defining
each terminology in the main theorem.

Although the topological recursion can be formulated for an arbitrary ramified covering
of a base curve C of any degree, for the purpose of quantization in this paper, we need a
Galois covering, and we also need to calculate the residues in the formula. Therefore, we
deal with the topological recursion only for a covering of degree 2 in this paper.

Definition 6.3 (Integral topological recursion for a degree 2 covering). Let C' be a non-
singular projective algebraic curve, and 7 : 3 — (' a degree 2 covering by another non-
singular curve ¥. We denote by R the ramification divisor of 7. In this case the covering
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7 is a Galois covering with the Galois group Z/2Z = (&), and R is the fixed-point divisor
of the involution . The integral topological recursion is an inductive mechanism of
constructing meromorphic differential forms Wy ,, on the Hilbert scheme sl of n-points on
3 for all g > 0 and n > 1 in the stable range 2g — 2 +n > 0, from given initial data Wy 1
and W()Q.

e Wp,1 is a meromorphic 1-form on 5.
e Wy is defined to be

(68) W()72(21722) = d1d2 log Ei(zl,zg),

where Eg (21, 22) is the normalized Riemann prime form on %% 3 (see [18, Section 2]).
Let w®°(2) be a normalized Cauchy kernel on 53, which has simple poles at z = a of residue
1 and at z = b of residue —1. Then (see [18, Section 2])

dlwzl_b(Zz) = W()’Q(Zl, 2’2).

Define
(69) Q.= 5*W071 - W(]’l.

Then 6*Q = —Q, hence supp(R) C supp(f2), where supp(2) denotes the support of both
zero and pole divisors of 2. The inductive formula of the topological recursion is then given
by the following;:

) = 55T Q(2)

pESUPpP

(6.10) Wyn(z1,... L jq{w_(zl)
Q) Tp

No (0,1)
X Wg,17n+1(z,2, ZQ,...,Zn) + Z Wg1,|I|+1(zvZI)WQQ,\J\+1(2’ ZJ)

g1+g2=9g
IuJ={2,....,n}

Here,

vp is a positively oriented small loop around a point p € supp(€2);

the integration is taken with respect to z € , for each p € supp(9);

7 = G(2) is the Galois conjugate of z € 3;

the operation 1/ denotes the contraction of the meromorphic vector field dual to

the 1-form €2, considered as a meromorphic section of Kgl;

e “No (0,1)” means that gy =0 and I =), or go = 0 and J = (), are excluded in the
summation;

e the sum runs over all partitions of g and set partitions of {2,...,n}, other than
those containing the (0, 1) geometry;

e |I] is the cardinality of the subset I C {2,...,n}; and

o z1 = (%i)ier-

The passage from the topological recursion (6.10) to the quantum curve (1.9) is the
evaluation of the residues in the formula.

Definition 6.4 (Free energies). The free energy of type (g, n) is a function Fy,, (21, ..., 2p)
defined on the universal covering U™ of ™ such that

dl T ang,n = g,n-
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Remark 6.5. The free energies may contain logarithmic singularities, since it is an integral
of a meromorphic function. For example, Fp 2 is the Riemann prime form itself considered
as a function on U2, which has logarithmic singularities along the diagonal [18, Section 2].

Definition 6.6 (Differential recursion for a degree 2 covering). The differential recursion
is the following partial differential equation for all (g,n) subject to 29 —2 4+ n > 2:

(611) leg,n(Zlu . ,Zn)

n zj—0o(z;) zj—0o(z;)
_ Z w7 (1) <Ay Fyn1(2) — ws 7 (1) djFyn1(7))

= Q(21) Q(z5)
1 stable
+ mdulduz Fy1n41 (u1, u2, 2p5)) + > Fyy (s 21) Fyy g5 (ug, 27)
! g1+g92=9
TuJ=[i] u1=21

u2==z21

Here, 1/92 is again the contraction operation, and the index subset [j] denotes the exclusion
of j€{1,2,...,n}.

Remark 6.7. As pointed out in [18, Remark 4.8], (6.11) is a coordinate-free equation,
written in terms of exterior differentiations and the contraction operation on the universal
covering of X.

Theorem 6.8. Let @ : U — 3 be the universal covering of 3. Suppose that Fy, for
29 —2+n > 0 are globally meromorphic on U™ with poles located only along the divisor
of UM when one of the factors lies in the pull-back divisor w*(N)o of zeros of Q. Define
Wom :=d1--dpnFgn. If Fyy’s satisfy the differential recursion (6.11), then Wy, s satisfy
the integral topological recursion (6.10).

Although the context of the statement is slightly different, the proof is essentially the
same as that of [18, Theorem 4.7].

Now let us consider a spectral curve ¥ C T*C of (3.9) defined by a pair of meromorphic
sections a1 = —tr¢ of K¢ and as = det ¢ of K§2. Let ¥ be the desingularization of ¥ in

(1.6). We apply the topological recursion (6.10) to the covering 7 : & —» C' of (4.27). The
geometry of the spectral curve 3 provides us with a canonical choice of the initial differential
forms (1.7). At this point we pay a special attention that the topological recursions (6.10)
and (6.11) are both defined on the spectral curve 3, while we wish to construct a Rees
D-module on C. Since the free energies are defined on the universal covering of f], we need
to have a mechanism to relate a coordinate on the desingularized spectral curve and that
of the base curve C.

Take an arbitrary point p € C'\ supp(A), and a local coordinate = around p. Here, A
is the discriminant divisor (4.7). By choosing a small disc V' around p, we can make the
inverse image of 7 : Y —C consisting of two isomorphic discs. Since V' is away from the
critical values of 7, the inverse image consists of two discs in the original spectral curve X.
Note that we choose an eigenvalue « of ¢ on V' in Theorem 6.1. We are thus specifying one
of the inverse image discs here. Let us name the disc V,, that corresponds to «.
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At this point apply the WKB analysis to the differential equation (6.5) with the WKB
expansion of the solution

o0

(6.12) U (x, h) = exp (Z LS, (ac(z))) = exp F*(z, h),

m=0

where we choose a coordinate z of V, so that the function x = x(z) represents the projection
7 : V, — V. The equation P¥® = Pel™ = 0 reads

(6.13) EZ%FQ h2d£: dg + alhda% +as = 0.

The fi-expansion of (6.13) gives

(6.14) RO-terms :  (S§(z))? + a1S)(x) + a2 = 0,

(6.15) hl-terms @ 284(x)S] () + S§ () + alsl( ) =0,

(6.16) At oterms . S (x) + Z Sl (z )+a1S,, 1(x) =0, m>1,
at+b=m+1

where ’ denotes the z-derivative. The WKB method is to solve these equations iteratively
and find S, (x) for all m > 0. Here, (6.14) is the semi-classical limit of (6.5), and (6.15)
is the consistency condition we need to solve the WKB expansion. Since the 1-form dSp(x)
is a local section of T*C, we identify y = S{(x). Then (6.14) is the local expression of the
spectral curve equation (4.3). This expression is the same everywhere for p € C'\ supp(A).
We note a1 and ag are globally defined. Therefore, we recover the spectral curve ¥ from
the differential operator (6.3).
The topological recursion provides a closed formula for each S, (x).

Theorem 6.9 (Topological recursion and WKB). Let us determine So(z) and Si(x) from
the semi-classical limit and the consistency condition. Then the principal specialization
of (6.11) is equivalent to (6.16).

Proof. First let us take ¢ € C one of the ¢;’s of (4.8), above which 7 : & —» C' is simply
ramified at @ := ﬁfl(q) € ¥. We choose a local coordinate z on C' centered at g. The
Galois action of & on ¥ fixes Q. Let UcC?Ybea neighborhood of ) such that p € 7T(U)
and a1 € HO( (U), KC), i.e., holomorphic on 7r(U). The defining equation of the spectral

curve ¥ on 7(U) is
1 \* [1,
ydx + Ja) —|qa—az )= 0.

Since a; is holomorphic at x = ¢, the Galois action of o on the spectral curve ¥ extends
to T*C|. () by the formula given in (4.16). As we have shown in Case 1 of the proof of

Theorem 4.2, the degree m; of zero of the discriminant a% —ag at ¢ = ¢; is odd, say

m; = 2u+ 1, and the construction of Bl (T*C) contains blow-ups of L2“2+1J = p times at
the singular point above ¢. In terms of the coordinate x, we can write

1
ay = ay(x)dz, ag = as(x)(dx)?, Zal(x)Q — ag(z) = cx?#
with a unit ¢ € O¢ 4. Define yg := y + %al(a:). Then the first blow-up at the singular point
above ¢ is done by replacing yg = y1 so that the proper transform is locally defined by

y? = a1,
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The coordinate y; is the affine coordinate of the exceptional divisor. Repeating this process
p-times, we end up with a coordinate y,_1 = y,x and an equation

yi = cx.
Here again, y,, is the affine coordinate of the last exceptional divisor resulted from the u-th
blow-up. We now write z = y, so that the proper transform of the p-times blow-ups is
given by
(6.17) 22 = cax.
Note that the Galois action of & at @ is simply z — —z. Solving (6.17) as a functional
equation, we obtain a Galois invariant local expression
(6.18) r = 2(2) = cg(2?)2%
where cq € Ox, 0 is a unit element. This formula (6.18) is precisely the local expression of
the morphism 7 : ¥ — C at Q € ¥. On the other hand, from the construction we also
have

1
yo = za¥ =y + §a1($),

or equivalently,
1 1
(6.19) n=vy(z)dx = zatdx — 501 y(z) = zat — §a1($).

We have thus obtained the normalization coordinate z on the desingularized curve ¥ near

Q:

2),2
r=ux(z) =cg(z9)z
y = y(z) = 22t — Lau ().
Notice that we now have a parametric equation for the singular spectral curve X:

1

2
(1) 4 gnaeD)) = a0 = (@1 = Jan () - an(a()

The differential form 7 of (6.19) is the local expression of the form  in the differential
topological recursion (6.11).

We have now established the local expression of all functions and forms involved in the
topological recursion. From here the rest of the proof is parallel to [18].

As we have shown in the process of the proof of Theorem 4.2, the situation is the same
if ¢ € C corresponds to a branch point of 7 : ¥ — C that comes from an odd cusp of X
on the divisor Cs,. A similar argument of the above proof works for this case.

This completes the proof. ]

We have thus completed the proof of Theorem 6.1.

6.3. Singularity of quantum curves. Let p be a pole of the discriminant divisor A of
(4.9). The local equation for the spectral curve around p is

y? + a1 (z)y + az(z) = 0.

As we have shown above, the local generator of the quantum curve as a Rees D-module is
given by a differential operator

<h§i>2 + ay(z) <h§i> + as(x).
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Therefore, the type of the singularity of the quantum curve is determined by the local
geometry of the spectral curve. We have the following.

Theorem 6.10 (Regular and irregular singular points of the quantum curve). Let P €
3N Cyx be a point at the intersection of the spectral curve % and the divisor Coy at infinity
of the ruled surface T*C. Suppose it requires p times blow up at P to construct BI(T*C).
Then the quantum curve of Theorem 6.1 has
e a regular singular point at p = 7(P) if p = 1.
e If p > 1, then the quantum curve has an irreqular singular point at p = 7(P) of class
either p—1 or p — %, the latter occurring only when P is a cusp singularity of 3.

Proof. As in the proof of Theorem 4.2, we denote by k (reps. £) the pole order of a;(x)
(reps. az(x)) at = p. Let r be the invariant defined in (4.26). Then by Definition 1.9, p is
a regular singular point of the quantum curve if 0 < r < 1. In this case we need to blow-up
once at P for construction of BI(T*C), because [r] = 1. If r > 1, then the singularity is
irregular with class » — 1, and we need [r] times blow-ups. As we see from the proof of

Theorem 4.8, a non-integer r occurs only when P is a cusp. This completes the proof. [J

7. THE CLASSICAL DIFFERENTIAL EQUATIONS AS QUANTUM CURVES

The key examples of the theory of quantum curves as presented in this paper are the
classical differential equations. In this section, we present the Hermite and Gauss hyperge-
ometric differential equations.

7.1. Hermite differential equation. The base curve is C' = P!, as in the Airy case. The
stable Higgs bundle (F, ¢) consists of the trivial vector bundle E = Op1 @ Op1 and a Higgs
field

(7.1) 6= {_1 —195] dr: E — E® Kp(2) = E.

In the affine coordinate (z,y) of the Hirzebruch surface F2, the spectral curve ¥ is given by
(7:2) det (1 —7(¢)) = (y* + zy + 1)(dz)* = 0,

where 7 : Fy — P! is the projection. In the other affine coordinate (u,w) of (1.20), the
spectral curve is singular at (u,w) = (0,0):

(7.3) ut —uw +w? = 0.
These equations tell us that > - Cyp = 0 and % - Co = 4. Therefore,
¥ =2C) + 4F € NS(Fy).

The discriminant of the defining equation (7.2) is
2

W21
<—ix2 + 1> (dz)? = —i(m ~2)(r + 2)(dr)* = " ()

It has two simple zeros at © = 2 and a pole of order 6 at x = co. We note that

du
tr(¢) = —xdr = B
has a cubic pole at u = 0. As explained in Case 3 of the proof of Theorem 4.2, we need to
compare the poles of tr(¢) and

(du)”

ul

det(9) = (dz)? =
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FIGURE 7.1. The spectral curve ¥ of (7.2). The horizontal line is the divisor C
at infinity, and the vertical line is the fiber class F. The spectral curve intersects
with C four times. One of the two curve germ components is given by w = wu, and

the other by w = u3.

FIGURE 7.2. The desingularization 3 of the spectral curve (7.2).

Since 4 — 3 = 1, we blow up ¥ once at its nodal singularity (u,w) = (0,0). We introduce
w = wyu. Then (7.3) becomes

1\? 1
7.4 2 Syt
(7.4) u* + <w1 2) 1
The geometric genus formula (4.12) tells us that ¥.;, has genus 0, and ¥;, — C is

ramified at two points, corresponding to the original ramification points (z,y) = (£2,F1)
of ¥. The rational parametrization of (7.4) is given by

— 1. -1
U=735" @
wy = L t

27 241

where ¢ is an affine coordinate of ¥ such that ¢ = +1 gives (u,w) = (0,0). The parameter
t is a normalization coordinate of the spectral curve X:

_ 1 t?—1
75 $:2+t2i1 u_i.t2+1
( 5) 4l _ 1. (@=1)3@+1)
¥="=1 W=7 "@r2

We notice that the expression of (7.5) is exactly the same as [19, (3.13), (3.14)]. The integral
topological recursion applied to ¥ again agrees with that of [19].
The quantum curve construction of [46] is thus consistent with our new definition. The

result is

(7.6) ((h;;)Q +ao (h%) + 1) W(z, h) = 0.

Since x and d/dx do not commute, the passage from (7.2) to (7.6) is non-trivial, in the
sense that the constant term could have contained a term ¢ - hA. On the affine open subset
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Uy = P\ {0}, the operator of (7.6) has an expression
d\’ d —
u (hdu> + (2u*h — u) (hdu) +1€Dy,.

Thus the point co € P! is an irregular singular point of class 2 of (7.6) for h # 0.
The semi-classical limit (6.14) of (7.6) using the WKB formula (1.8) is

(7.7) So(x)® + 2Sp(x) + 1 = 0.
Following [19], define
t+1 =~ Cn
(7.8) P= 1= 2
m=0
where C,, = ﬁ@g) is the m-th Catalan number. The inverse function of (7.8) for

z =00 =2z =0is given by = 2(2) = z + 1. In terms of z, the two solutions of (7.7) are
given by

—%zQ + log z 4 const

(7.9) So(ac(z)) = {_11

5.2 — log z + const.

Corresponding to these choices, the solutions to the consistency condition (6.15) are given
by

—2log(1 — 22) + const

—3log(1 — 2?) 4 log z + const.

710 sieto) - {

Every solution of (7.6) is a linear combination of two solutions, with coefficients given
by arbitrary functions in A. One is given by the Kummer confluent hypergeomtric
function of (1.24):

1 1 22
v hy=1F|—=;=;—— .
1(z, h) =11 <2h’ 9’ 2h>
The other is a bit more complicated function known as the Tricomi confluent hyperge-
omtric function

T'[1] 1 1 22\ T3] [ a2 1 13 22
A1) Uy(z,h) = =2 1B (=30 — == ELDY I AN N
(711) Fale,h) NEE 1(2h’2’ 2h>+ eSS 1<2h+2’2’ 2h>

For a positive real A > 0, let us consider a special solution

1
1\ 2a
(7.12) gCatalan (g p) = <—2h> Uy (z, h).

This solution corresponds to the WKB solution (1.8) for the first choices of (7.9) and
(7.10), with both constants of integration to be set 0. Then we have a closed formula for
the all-order asymptotics of this particular confluent hypergeometric function:

1
1\ " A" (l) 1
\IjCatalan I hon -
(ZL‘, h) <x> nzzo (2n)!! xr2n
(7.13)

1
2g—2+n pCatalan
= exp g —h Fop (@, .. 2) |,
2g—2+n>—1
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where (1/h)2y, is the Pochhammer symbol (1.25). The free energies are defined by

C Yoo L
(714) ngtalan(xh o 7«7371) _ Z g,n(:ull Nn) sz i
(41 e i >0 K1 Hn i=1
for 2g—2+n > 0, and F§2*0 (z) = So(x) and 5 F§ 5% (z) = Sy (z). Here, Cypn(p, ..., pin)
is the generalized Catalan number of genus g and n labeled vertices of degrees (u1, ..., tn)

that counts the number of cellular graphs [19, 48]. In [19, Theorem 4.3, Proposition
A.1], we show that FC satisfies the differential recursion equation (6.11). (We note that
the differential recursion of [19] is derived by taking the Laplace transform of [48, Equation
6]). The initial geometric data (1.7) are also the same as [19, (3.12), (4.3)]. Therefore, the
application of the topological recursion to the desingularized spectral curve ¥, produces
(7.14), and the quantum curve (7.6).

At the special value i = 1, the expansion (7.13) has the following simple form

- n
Z % = exp Z = Z g,n(:ulv 7/1/71) Hx,(ulJr__Jrun)
x n

n=0 29—24n>—1 """ Uiy fin>0 L i—1

Note that the sum of the degrees of the vertices pu1 + -+ + un is always even. Therefore,
except for the unstable geometries (g,n) = (0,1) and (0, 2), the above expansion is in z~2.
This indicates that the Hermite equation has an irregular singular point of class 2 at x = co.

7.2. GauBB hypergeometric differential equation. The Higgs bundle (E,¢) on P! is
again given by the trivial bundle £ = Op1 & Op1, and a Higgs field

1
7.15 - dz,
( ) ¢ _ab_ (atbtl)z—c o
z—1 z(z—1)

where a, b, ¢ are constant parameters. The spectral curve 3 € Fo is defined by

(7.16) z(z—Dy* + ((a+b+ 1)z —c)y +ab=0.
In terms of the (u,w) coordinate of (1.20), the spectral curve is given by
(7.17) abw? + (cu — a — b)uw — u*(u — 1) = 0.

It has an ordinary double point at (u,w) = (0,0). The discriminant divisor of (4.7) is

G _ ((1(@ +b+ 1)z — 1) — aba(z — 1)) (dx)2>

(7.18) 1)

which consists of two simple zeros and 3 double poles at x = 0,1,00. Following Defini-
tion 4.7, we blow up Fs once at the point at infinity of ¥ to construct the normalization
Ymin. The invariant 3 of (4.11) is equal to 2, and hence Y, is isomorphic to P!.

The quantum curve we obtain is a Gaufl hypergeometric differential equation

2
(7.19) <x(x -1) <thI:> +((a+b+1)x—rc) h% + ab) PO (g 1) = 0.

One of the two independent solutions that is holomorphic at x = 0 is given in terms of a
Gaufl hypergeometric function
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2
ot o _\/(a+b+1—h) —dab a4bi1 1
(7.20) W (x,h)—2F1< .y 2

\/(a+b+1—h)2—4ab+a+b+1 _l.f.x
2h 2h 2'n )

If we choose \/(a+b+1—h)2—4ab:b—awhenh:1, then

(7.21) WOy 1) = 3By (a,bye,2) = 3 (azz)(b)n %T
n=0 n ’

solves the standard form of the Gaufl hypergeometric equation
(7.22) (x—1) 4 2+(( +b+1) —)i+ b | vz 1) =0
. x(z o a T—c) o +a z,1)=0.

Now let us specialize a = b = %, c = 1. We have the relation between the hypergeometric
function and the period function of (1.11):

wi(z) 11
(723) T —QFl (2,2,1713 .
The spectral curve (7.16) becomes
1
(7.24) z(z— Dy* + (22 — )y + 1=0

On the normalization 3, we have Wo.1(x) = ydz, which actually depends of the sheet of
the covering 7 : ¥ — P'. For our purpose, we choose

(7.25) O e € 12)33(;/?12)%‘

Then

(7.26) So(z) = Fpi(x) = /y(x)dx

Cx 21(4VB-7) 5, 23(26v3-45) 5 2547 (56v/3 —97)
"1 s(avEo38)] B (2v3-3)° 1024(2/3-3)"
7281 (3623 — 627) . 38115 (780v3 —1351) , 265869 (5042v/3 — 8733) .
2560 (2v3—3)°  4006(2v3-3)° T sem (2v3-3) !
solves the semi-classical limit equation (6.14). The solution of the consistency condition
(6.15) is given by

(7.27) Si(x) = — / Zy(xi/;(%d:c

7 5, 53 5 1075 , 4319 . 28319 o 72109 -
—— X = = - ——T — — I — T — T
32 96 1024 2560 12288 28672
The solution of (6.16) for m =1 is
7e2 11323 1821z* 12695 5615125 48732327
7.28 S =
(7.28) 2(2) 32 + 96 + 512 + 160 + 4096 + 28672
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From (7.26), (7.27) and (7.28), we have an expression

(7.20)  exp <71150(x) b Si(x)+ nsg@))

z 1+ Th—"Th*+7h3 2, 1+21h+71h2—191h3+---x3

=14+ =
Tt 3212 B 38473
L1 + 42h + 473h? + 598h3 e ] + 70h + 1585h% + 1141 — A3 + - - g
6144h1 122880h5 '

This is in good agreement of the hypergeometric function of (7.20), which can be expanded
as

- B =1 IIney (T+8(m—1)h+4(m —1)(m —2)h?) sz\n
wE e h) = 1+;4nn! I on = DR ()

x 1+8h 5 (1+8h)(1+16h+8h%) 4
=14+ —+ =
4h  32h(1 + h) 384R3(1 + h)(1 + 2h)
2 2
(14 8h)(1 + 16h + 8h )(1+24h+24h)$4+m
6144h4(1 + ) (1 + 2R)(1 + 3h) ’

up to order of i3 of the numerator of every coefficient of 2™, n > 0. The topological recursion
applied to the spectral curve (7.16) with Fy; = Sp(x) and the standard Riemann prime

form on ¥ = P! for Fy.2 then gives a genus expansion of WGauB(g 1), constructing a genus
g B-model on the curve (7.16).
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