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Abstract. A geometric quantization using the topological recursion is established for the com-

pactified cotangent bundle of a smooth projective curve of an arbitrary genus. In this quantization,

the Hitchin spectral curve of a rank 2 meromorphic Higgs bundle on the base curve corresponds
to a quantum curve, which is a Rees D-module on the base. The topological recursion then gives

an all-order asymptotic expansion of its solution, thus determining a state vector corresponding to

the spectral curve as a meromorphic Lagrangian. We establish a generalization of the topological
recursion for a singular spectral curve. We show that the partial differential equation version of the

topological recursion automatically selects the normal ordering of the canonical coordinates, and
determines the unique quantization of the spectral curve. The quantum curve thus constructed

has the semi-classical limit that agrees with the original spectral curve. Typical examples of our

construction includes classical differential equations, such as Airy, Hermite, and Gauß hypergeo-
metric equations. The topological recursion gives an asymptotic expansion of solutions to these

equations at their singular points, relating Higgs bundles and various quantum invariants.
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1. Introduction

1.1. Overview. The topological recursion of [24] was originally conceived as a com-
putational mechanism to find the multi-resolvent correlation functions of random matrices
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[11, 21]. It has been proposed that the topological recursion is an effective tool for defin-
ing a genus g B-model topological string theory on a holomorphic curve (known as an
Eynard-Orantin spectral curve), that should be the mirror symmetric dual to the
genus g Gromov-Witten theory on the A-model side [9, 10, 43]. This correspondence
has been rigorously established for several examples, most notably for an arbitrary toric
Calabi-Yau orbifold of 3 dimensions [26], and many other enumerative geometry problems
[8, 16, 19, 23, 25, 47].

Quantum curves are introduced in the physics literature (see for example, [1, 13, 14,
30, 35]) as a device to compactly encode the information of quantum invariants arising in
Gromov-Witten theory, Seiberg-Witten theory, and knot theory. The semi-classical limit
of a quantum curve is a holomorphic curve defining a B-model that is mirror dual to
the A-model for these quantum invariants. Geometrically, a quantum curve also appears
as an ~-deformation of a generalized Gauß-Manin connection (or Picard-Fuchs differential
equation) on a curve, with regular and irregular singularities.

Since both quantum curves and the topological recursion produce B-models on a holo-
morphic curve, it is natural to ask if they are related. Indeed, it was proposed by physicists
[12, 30] for the context of knot theory that the topological recursion would give a perturba-
tive construction of quantum curves. So far such a relation is not fully understood in the
mathematical examples of quantum curves constructed in [8, 20, 45, 46].

The purpose of this paper is to establish a clear geometric relation between quantum
curves and topological recursion for the Hitchin spectral curves associated with Higgs
bundles on a base curve C, with arbitrary meromorphic Higgs fields. Although the language
of geometric quantization does not work in this algebraic geometry context, let us use
it for a moment as an analogy. Then the main result of this paper could be understood as
follows: the topological recursion is a geometric quantization of T ∗C. A Hitchin spectral
curve is a (meromorphic) Lagrangian in the holomorphic symplectic manifold T ∗C. Using
the topological recursion, we construct a state vector, which is a solution to the Schrödinger
equation on C that is uniquely determined by the spectral curve. The state vector is
equivalent to a quantum curve in our setting, as a Rees D-module on C. More precisely,
we prove the following.

Theorem 1.1 (Main results). Let C be a smooth projective curve of an arbitrary genus,
and (E, φ) a Higgs bundle of rank 2 on C with a meromorphic Higgs field φ. Denote by

(1.1) T ∗C := P(KC ⊕OC)
π−→ C

the compactified cotangent bundle of C (see [39]), which is a ruled surface on the base C.
Here, KC is the canonical sheaf. The Hitchin spectral curve

(1.2) Σ

π
!!

i // T ∗C

π
��
C

for a meromorphic Higgs bundle is defined as the divisor of zeros on T ∗C of the character-
istic polynomial of φ:

(1.3) Σ = (det(η − π∗φ))0 ,

where η ∈ H0(T ∗C, π∗KC) is the tautological 1-form on T ∗C extended as a meromorphic
1-form on the compactification T ∗C.
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• The integral topological recursion of [18, 24] is extended to the curve Σ, as (6.10).
For this purpose, we blow up T ∗C several times as in (1.6) to construct the normal-

ization Σ̃. The construction of Bl(T ∗C) is given in Definition 4.7. It is the minimal
resolution of the support Σ ∪ C∞ of the total divisor

(1.4) Σ− 2C∞ = (det(η − π∗φ))0 − (det(η − π∗φ))∞

of the characteristic polynomial, where

(1.5) C∞ := P(KC ⊕ {0}) = T ∗C \ T ∗C

is the divisor at infinity. Therefore, in Bl(T ∗C), the proper transform Σ̃ of Σ is
smooth and does not intersect with the proper transform of C∞.

(1.6) Σ̃

π̃

��

ĩ //

ν

��

Bl(T ∗C)

ν

$$
Σ

π

��

i // T ∗C

π

ssC

• The genus of the normalization Σ̃ is given by

g(Σ̃) = 2g(C)− 1 +
1

2
δ,

where δ is the sum of the number of cusp singularities of Σ and the ramification
points of π : Σ −→ C (Theorem 4.2).
• The topological recursion thus generalized requires a globally defined meromorphic

1-form W0,1 on Σ̃ and a symmetric meromorphic 2-form W0,2 on the product Σ̃× Σ̃
as the initial data. We choose

(1.7)

{
W0,1 = ĩ∗ν∗η

W0,2 = d1d2 logE
Σ̃
,

where E
Σ̃

is a normalized Riemann prime form on Σ̃ (see [18, Section 2]). The form

W0,2 depends only on the intrinsic geometry of the smooth curve Σ̃. The geometry
of (1.6) is encoded in W0,1. The integral topological recursion produces a symmetric

meromorphic n-linear differential form Wg,n(z1, . . . , zn) on Σ̃ for every (g, n) subject
to 2g − 2 + n > 0 from the initial data (1.7).
• The residue evaluation of the integral topological recursion (6.10) is explicitly per-

formed as in [18, (4.7)], and we obtain a differential recursion (6.11). It deter-
mines the free energy Fg,n(z1, . . . , zn), a symmetric meromorphic function on Un for

2g − 2 + n > 0, up to a constant. Here, $ : U −→ Σ̃ is the universal covering of Σ̃.
• The quantum curve associated with the Hitchin spectral curve Σ is defined as a Rees
D-module (Definition 3.1) on C. On each coordinate neighborhood U ⊂ C with
coordinate x, a generator of the quantum curve is given by

P (x, ~) =

(
~
d

dx

)2

− trφ(x)

(
~
d

dx

)
+ detφ(x).

In particular, the semi-classical limit of the quantum curve recovers the singular

spectral curve Σ, not its normalization Σ̃.
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• We construct the all-order WKB expansion

(1.8) Ψ(x, ~) = exp

( ∞∑
m=0

~m−1Sm(x)

)
of a solution to the Schrödinger equation

(1.9)

((
~
d

dx

)2

− trφ(x)

(
~
d

dx

)
+ detφ(x))

)
Ψ(x, ~) = 0,

near each critical value of π : Σ −→ C, in terms of the free energies. Indeed, (1.9) is
equivalent to the principal specialization of the differential recusion (6.11). The
equivalence is given by

(1.10) Sm(x) =
∑

2g−2+n=m−1

1

n!
Fg,n

(
z(x)

)
,

where Fg,n
(
z(x)

)
is the principal specialization of Fg,n(z1, . . . , zn) evaluated at a local

section z = z(x) of π̃ : Σ̃ −→ C.
• The canonical ordering of the quantization of the local functions on T ∗C is automat-

ically chosen in the process of the integration from (6.10) to (6.11) and the principal
specialization (1.10). This selects the canonical ordering in (1.9).

Remark 1.2. Although T ∗C is not a holomorphic symplectic manifold, in the analogy
of geometric quantization mentioned above, our quantization is similar to a holomorphic
quantization of T ∗C, where the fiber coordinate is quantized to ~ d

dx . A Hitchin spectral
curve is a meromorphic Lagrangian, and corresponds via the topological recursion to a state
vector Ψ(x, ~) of (1.8).

Remark 1.3. The constant ambiguity in the symmetric function Fg,n is reflected in a factor
exp(

∑
~m−1cm) multiplied to Ψ(x, ~) of (1.8), where cm is an arbitrary constant. Therefore,

our method does not determine the ~ dependence of the solution to (1.9).

Remark 1.4. The current paper is a generalization of [18]. In the process of establishing
a geometric theory of topological recursion and quantum curves, we have discovered in [18]
that the topological recursion of [24] can be naturally generalized to the Hitchin spectral
curves for holomorphic Higgs bundles defined on a smooth projective curve C of genus
g(C) ≥ 2. We have then showed that the Hitchin spectral curve for an SL(2,C)-Higgs
bundle is quantizable, and that the topological recursion gives an asymptotic expansion of
a holomorphic solution to the quantum curve (1.9) with trφ = 0.

Remark 1.5. The singularities of the quantum curve, which are regular and irregular
singular points of a differential equation (1.9) on the base curve C, are analyzed by the
geometry of the Hitchin spectral curve Σ (Theorem 6.10). For example, the number of
resolutions required to desingularize Σ ∪ C∞ at P ∈ Σ is always dre if π(P ) is an irregular
singular point of class r − 1.

Remark 1.6. Already several mathematical examples of quantum curves have been rig-
orously constructed for enumerative geometry problems, such as Catalan numbers and
their generalizations, simple and double Hurwitz numbers and their variants, and Gromov-
Witten invariants of a point, the projective line, and a few toric Calabi-Yau threefolds
[8, 16, 20, 45, 46, 53, 54]. In knot theory, a quantum curve is the same as a q-holonomic

operator Â that quantizes the A-polynomial of a knot and characterizes the corresponding
colored Jones polynomial [27, 28].



QUANTIZATION OF MEROMORPHIC HIGGS BUNDLES 5

Remark 1.7. Another aspect of quantum curves lies in its relation to non-Abelian Hodge
correspondence. A quantum curve is an ~-connection on the base curve C, and the Higgs
field is recovered as its classical limit ~→ 0. The non-Abelian Hodge correspondence with
irregular singular points has been studied extensively both in mathematics and physics,
starting from the fundamental papers [4, 5] and to more recent ones, including [6, 50, 51].

Our current paper is motivated by the following simple question: If quantum curves
are truly fundamental objects, then where do we see them most commonly, in particular, in
classical mathematics? The answer we propose in this paper is that the classical differential
equations, such as the Airy, Hermite, and Gauß hypergeometric differential equations, are
natural examples of our construction of the quantum curves that are associated with stable
meromorphic Higgs bundles defined over the projective line P1. The topological recursion
then gives an all-order asymptotic expansion of their solutions, connecting Higgs bundles
to the world of quantum invariants.

Once we study these concrete classical examples, it becomes plausible that the base curve
C of the Higgs bundle and a spectral curve Σ ⊂ T ∗C are moduli spaces of certain geome-
tries. For example, in a particular case of the Gauß hypergeometric equations considered
in Sections 1.2 and 7.2, the base curve is actually M0,4

∼= P1. The spectral curve for this
example is the moduli space of elliptic curves, together with the two eigenvalues of the clas-
sical limit of the Gauß-Manin connection [42] that characterizes the periods of elliptic
curves.

More precisely, for every x ∈ M0,4, we consider the elliptic curve E(x) ramified over P1

at four points {0, 1, x,∞}, and its two periods given by the elliptic integrals [40]

(1.11) ω1(x) =

∫ ∞
1

ds√
s(s− 1)(s− x)

, ω2(x) =

∫ 1

x

ds√
s(s− 1)(s− x)

.

The quantum curve in this case is an ~ -deformed Gauß-Manin connection

(1.12) ∇~
GM = ~d−

 1
x

− 1
4(x−1) − 2x−1

x(x−1) + ~
x

 dx
in the trivial bundle OM0,4

⊕ OM0,4
of rank 2 over M0,4. Here, d denotes the exterior

differentiation acting on the local sections of this trivial bundle. The restriction ∇1
GM of

the connection at ~ = 1 is equivalent to the Gauß-Manin connection that characterizes the
two periods of (1.11), and the Higgs field is the classical limit of the connection matrix at
~→ 0:

(1.13) φ =

 1
x

− 1
4(x−1) − 2x−1

x(x−1)

 dx.
The spectral curve Σ ⊂ T ∗M0,4 as a moduli space consists of the data

(
E(x), α1(x), α2(x)

)
,

where α1(x) and α2(x) are the two eigenvalues of the Higgs field φ. The spectral curve

Σ ⊂ T ∗M0,4 = F2 as a divisor in the Hirzebruch surface is determined by the characteristic
equation

(1.14) y2 +
2x− 1

x(x− 1)
y +

1

4x(x− 1)
= 0

of the Higgs field. Geometrically, Σ is a singular rational curve with one ordinary double
point at x = ∞. As we see in the later sections, the quantum curve is a quantization
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of the characteristic equation (1.14) for the eigenvalues α1(x) and α2(x) of φ(x). It is an
~-deformed Picard-Fuchs equation((

~
d

dx

)2

+
2x− 1

x(x− 1)

(
~
d

dx

)
+

1

4x(x− 1)

)
ωi(x, ~) = 0,

and its semi-classical limit agrees with the singular spectral curve Σ. As a second order
differential equation, the quantum curve has two independent solutions corresponding to the
two eigenvalues. At ~ = 1, these solutions are exactly the two periods ω1(x) and ω2(x) of
the Legendre family of elliptic curves E(x). The topological recursion produces asymptotic
expansions of these periods as functions in x ∈ M0,4, at which the elliptic curve E(x)
degenerates to a nodal rational curve.

Remark 1.8. Although we do not deal with quantum curves associated with knots (cf.
[30]) in our current paper, there a spectral curve is the SL(2,C)-character variety of the
knot complement in the 3-sphere S3. Thus the spectral curve is again a moduli space, this
time the moduli of flat SL(2,C)-connections on the knot complement.

When we deal with a singular spectral curve Σ ⊂ T ∗C, the key question is how to relate
the singular curve with smooth ones. In terms of the Hitchin fibration, a singular spectral
curve corresponds to a degenerate Abelian variety in the family. There are two different
approaches to this question:

(1) Deform Σ locally in the base of the Hitchin fibration to a family of non-singular
curves, and study the quantization associated with this deformation family.

(2) Blow up T ∗C and obtain the resolution of singularities Σ̃ of the singular spectra

curve Σ. Then construct the quantum curve for Σ using the geometry of Σ̃.

In this paper we will pursue the second path, and give a construction of a quantum curve
using the geometric information of the blow-up (1.6).

In the Higgs bundle context, a quantum curve is a Rees D-module over the Rees ring

D̃C defined by the canonical filtration of DC (see for example, [29]), such that its semi-
classical limit coincides with the Hitchin spectral curve of a meromorphic Higgs bundle on

C. Here, DC denotes the sheaf of linear ordinary differential operators on C. A D̃C-module

is a particular ~-deformation family of DC-modules. Suppose a Rees D̃C-module is written
locally as

M(U) = D̃C(U)
/
D̃C(U) · P (x, ~)

on an open disc U ⊂ C with a local coordinate x, where P (x, ~) ∈ D̃C(U) is a linear
ordinary differential operator depending on the deformation parameter ~. This operator
then characterizes, by an equation

(1.15) P (x, ~)Ψ(x, ~) = 0,

the partition function Ψ(x, ~) of a topological quantum field theory on a ‘space’ that is
considered to be the mirror dual to the spectral curve. The physics theories appearing in
this way are related to quantum topological invariants and geometric enumeration problems.
The variable x of the base curve C is usually the parameter of generating functions of
the quantum invariants that are considered in the theory, and the generating functions
determine a particular asymptotic expansion of an analytic solution Ψ(x, ~) of (1.15) around
its singularity.
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1.2. Classical examples. Riemann and Poincaré worked on the interplay between alge-
braic geometry of curves in a ruled surface and the asymptotic expansion of an analytic
solution to a differential equation defined on the base curve of the ruled surface. The theme
of the current paper lies exactly on this link, looking at the classical subject from a new
point of view.

Let us recall the definition of regular and irregular singular points of a second order
differential equation.

Definition 1.9. Let

(1.16)

(
d2

dx2
+ a1(x)

d

dx
+ a2(x)

)
Ψ(x) = 0

be a second order differential equation defined around a neighborhood of x = 0 on a small
disc |x| < ε with meromorphic coefficients a1(x) and a2(x) with poles at x = 0. Denote by
k (reps. `) the order of the pole of a1(x) (resp. a2(x)) at x = 0. If k ≤ 1 and ` ≤ 2, then
(1.16) has a regular singular point at x = 0. Otherwise, consider the Newton polygon
of the order of poles of the coefficients of (1.16). It is the upper part of the convex hull
of three points (0, 0), (1, k), (2, `). As a convention, if aj(x) is identically 0, then we assign
−∞ as its pole order. Let (1, r) be the intersection point of the Newton polygon and the
line x = 1. Thus

(1.17) r =

{
k 2k ≥ `,
`
2 2k ≤ `.

The differential equation (1.16) has an irregular singular point of class r − 1 at x = 0
if r > 1.

To illustrate the scope of interrelations among the geometry of meromorphic Higgs bun-
dles, their spectral curves, the singularities of quantum curves, ~-connections, and the
quantum invariants, let us tabulate five examples here (see Table 1.2). The differential
operators of these equations are listed on the third column. In the first three rows, the
quantum curves are examples of classical differential equations known as Airy, Hermite, the
Gauß hypergeometric equations. The fourth and the fifth rows are added to show that it
is not the singularity of the spectral curve that determines the singularity of the quantum
curve. In each example, the Higgs bundle (E, φ) we are considering consists of the base
curve C = P1 and the trivial vector bundle E = OP1 ⊕OP1 of rank 2 on P1.

The first column of the table shows the Higgs field φ : E −→ E ⊗KP1(2). Here, x is the
affine coordinate of P1 \ {∞}. Since our vector bundle is trivial, the non-Abelian Hodge
correspondence is simple in each case. Except for the Gauß hypergeometric case, it is given
by

(1.18) ∇~ = ~d− φ,
where d is the exterior differentiation operator acting on sections of E. The form of (1.18)
is valid because of our choice, (0, dx), as the first row of the Higgs field.

For the third example of a Gauß hypergeometric equation, we use a particular choice
of parameters so that the ~-connection becomes an ~-deformed Gauß-Manin connection
of (1.12). This is a singular connection with simple poles at 0, 1,∞, and has an explicit
~-dependence in the connection matrix. The Gauß-Manin connection ∇1

GM at ~ = 1 is
equivalent to the Picard-Fuchs equation that characterizes the periods (1.11) of the Legendre
family of elliptic curves E(x) defined by the cubic equation

(1.19) t2 = s(s− 1)(s− x), x ∈M0,4 = P1 \ {0, 1,∞}.
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Higgs Field Spectral Curve Quantum Curve

[
1

x

]
dx

y2 − x = 0
w2 − u5 = 0

Σ = 2C0 + 5F
pa = 2, pg = 0

Airy(
~ d
dx

)2 − x
Class 3

2 irregular singularity
at ∞[

1
−1 −x

]
dx

y2 + xy + 1 = 0
w2 − uw + u4 = 0

Σ = 2C0 + 4F
pa = 1, pg = 0

Hermite(
~ d
dx

)2
+ x~ d

dx + 1
Class 2 irregular singularity

at ∞ 1
x

1
4(1−x)

2x−1
x(1−x)

 dx
y2 + 2x−1

x(x−1)y + 1
4x(x−1) = 0

w2 + 4(u− 2)uw
−4u2(u− 1) = 0
Σ = 2C0 + 4F
pa = 1, pg = 0

Gauß Hypergeometric(
~ d
dx

)2
+ 2x−1

x(x−1)~
d
dx + 1

4x(x−1)

Regular singular points
at x = 0, 1,∞

[
1

− 1
x+1 −1

]
dx

y2 + y + 1
x+1 = 0

w2 − u(u+ 1)w
+u3(u+ 1) = 0
Σ = 2C0 + 4F
pa = 1, pg = 0

(
~ d
dx

)2
+ ~ d

dx + 1
x+1

Regular singular point at x = −1
and a class 1 irregular singularity

at x =∞

[
1

1
x2−1

− 2x2

x2−1

]
dx

(x2 − 1)y2 + 2x2y − 1 = 0
non-singular

Σ = 2C0 + 4F
pa = pg = 1

(
~ d
dx

)2
+ 2 x2

x2−1
~ d
dx −

1
x2−1

Regular singular points at x = ±1
and a class 1 irregular singularity

at x =∞

Table 1. Examples of quantum curves.

The second column gives the spectral curve of the Higgs bundle (E, φ). Since the Higgs
fields have poles, the spectral curves are no longer contained in the cotangent bundle T ∗P1.
We need the compactified cotangent bundle

T ∗P1 = P(KP1 ⊕OP1) = F2,

which is a Hirzebruch surface. The parameter y is the fiber coordinate of the cotangent
line T ∗xP1. The first line of the second column is the equation of the spectral curve in the
(x, y) affine coordinate of F2. All but the last example produce a singular spectral curve.
Let (u,w) be a coordinate system on another affine chart of F2 defined by

(1.20)

{
x = 1/u

ydx = vdu, w = 1/v.

The singularity of Σ in the (u,w)-plane is given by the second line of the second column.
The third line of the second column gives Σ ∈ NS(F2) as an element of the Néron-Severy
group of F2. Here, C0 is the class of the zero-section of T ∗P1, and F represents the fiber
class of π : F2 −→ P1. We also give the arithmetic and geometric genera of the spectral
curve.

A solution Ψ(x, ~) of (1.15) for the first example is given by the Airy function

(1.21) Ai(x, ~) =
1

2π
~−

1
6

∫ ∞
−∞

exp

(
ipx

~2/3
+ i

p3

3

)
dp,
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which is an entire function in x for ~ 6= 0. We will perform the all-order WKB analysis in
this paper, and give a closed formula for each term of the WKB expansion. The topological
recursion produces the asymptotic expansion

(1.22) Ai(x, ~) = exp

 ∞∑
g=0

∞∑
n=1

1

n!
~2g−2+nFAiry

g,n (x)


at x =∞, where

(1.23) FAiry
g,n (x) :=

(−1)n

22g−2+n
· x−

(6g−6+3n)
2

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏
i=1

(2di − 1)!!,

and the coefficients

〈τd1 · · · τdn〉g,n =

∫
Mg,n

ψd11 · · ·ψ
dn
n

are the cotangent class intersection numbers on the moduli space Mg,n of stable curves of
genus g with n non-singular marked points. The cases for (g, n) = (0, 1) and (0, 2) require

a subtle care, which will be explained in Section 2. The expansion coordinate x
3
2 of (1.23)

indicates the class of the irregular singularity of the Airy differential equation.
The solutions to the second example are given by confluent hypergeometric functions,

such as 1F1

(
1
2~ ; 1

2 ;−x2

2~

)
, where

(1.24) 1F1(a; c; z) :=
∞∑
n=0

(a)n
(c)n

zn

n!

is the Kummer confluent hypergeomtric function, and the Pochhammer symbol
(a)n is defined by

(1.25) (a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1).

For ~ > 0, the topological recursion determines the asymptotic expansion of a particular
entire solution known as a Tricomi confluent hypergeomtric function

ΨCatalan(x, ~)

=

(
− 1

2~

) 1
2~
(

Γ[1
2 ]

Γ[ 1
2~ + 1

2 ]
1F1

(
1

2~
;
1

2
;−x

2

2~

)
+

Γ[−1
2 ]

Γ[ 1
2~ ]

√
−x

2

2~1F1

(
1

2~
+

1

2
;
3

2
;−x

2

2~

))
.

The expansion is given in the form

(1.26)

ΨCatalan(x, ~) =

(
1

x

) 1
~ ∞∑
n=0

~n
(

1
~
)

2n

(2n)!!
· 1

x2n

= exp

 ∞∑
g=0

∞∑
n=1

1

n!
~2g−2+nFCatalan

g,n (x, . . . , x)

 .

Here,

FCatalan
g,n (x1, . . . , xn) =

∑
µ1,...,µn>0

Cg,n(µ1, . . . , µn)

µ1 · · ·µn

n∏
i=1

x−µii
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is the generating function of the generalized Catalan numbers Cg,n(µ1, . . . , µn) of [19, 48],
which count the number of connected cellular graphs (i.e., the 1-skeletons of cell decom-
positions) of a compact surface of genus g with n labeled vertices of degrees (µ1, . . . , µn),
together with an arrow attached to one of the incident half-edges at each vertex. For more
detail of cellular graphs, we refer to [19, 46, 48]. The expansion variable x2 in (1.26) indi-
cates the class of irregularity of the Hermite differential equation at x =∞. The cases for
(g, n) = (0, 1) and (0, 2) require again a special treatment, as we will see later.

Remark 1.10. The authors are grateful to Peter Zograf for bringing [48] to their atten-
tion. The recursion for Cg,n(µ1, . . . , µn) ([46, Theorem 3.1], which is also equivalent to [19,
Theorem 1.1]), is exactly the same as [48, Equation 6]. The topological recursion (6.10) for
the generalized Catalan numbers derived in [19, Theorem 1.2] is the Laplace transform of
[48, Equation 6].

Remark 1.11. Leonid Chekhov has shown that the asymptotic expansion (1.26) can also
be derived from the matrix model of [2], by simply setting the matrix size equal to 1. The
principal specialization often takes this effect in 1-Hermitian matrix models.

The Hermite differential equation becomes simple for ~ = 1, and we have the asymptotic
expansion

(1.27) i

√
π

2
e−

1
2
x2
[
1− erf

(
ix√

2

)]
=

∞∑
n=0

(2n− 1)!!

x2n+1

= exp

 ∑
2g−2+n≥−1

1

n!

∑
µ1,...,µn>0

Cg,n(µ1, . . . , µn)

µ1 · · ·µn

n∏
i=1

x−(µ1+···+µn)

 .

Here, erf(x) := 2√
π

∫ x
0 e
−z2dz is the Gauß error function.

-4 -2 2 4 6 8 10

-0.5

0.5

1.0

Figure 1.1. The imaginary part and the real part of ΨCatalan(x, 1). For x >> 0,
the imaginary part dies down, and only the real part has a non-trivial asymptotic
expansion. Thus (1.27) is a series with real coefficients.

One of the two independent solutions to the third example, the Gauß hypergeometric
equation, that is holomorphic around x = 0 is given by
(1.28)

ΨGauß(x, ~) = 2F1

(
−
√

(h− 1)(h− 3)

2h
+

1

h
− 1

2
,

√
(h− 1)(h− 3)

2h
+

1

h
− 1

2
;

1

h
;x

)
,
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where

(1.29) 2F1(a, b; c;x) :=
∞∑
n=0

(a)n(b)n
(c)n

xn

n!

is the Gauß hypergeometric function. The topological recursion calculates the B-model
genus expansion of the periods of the Legendre family of elliptic curves (1.19) at the point
where the elliptic curve degenerates to a nodal rational curve. For example, the procedure
applied to the spectral curve

y2 +
2x− 1

x(x− 1)
y +

1

4x(x− 1)
= 0

with a choice of

η =
−(2x− 1)−

√
3x2 − 3x+ 1

2x(x− 1)
dx,

which is an eigenvalue α1(x) of the Higgs field φ, gives a genus expansion at x = 0:

(1.30) ΨGauß(x, ~) = exp

 ∞∑
g=0

∞∑
n=1

1

n!
~2g−2+nFGauß

g,n (x)

 .

At ~ = 1, we have a topological recursion expansion of the period ω1(x) defined in (1.11):

(1.31)
ω1(x)

π
= ΨGauß(x, 1) = exp

 ∞∑
g=0

∞∑
n=1

1

n!
FGauß
g,n (x)

 .

A subtle point we notice here is that while the Gauß hypergeometric equation has regular
singular points at x = 0, 1,∞, the Hermite equation has an irregular singular point of class
2 at ∞. The spectral curve of each case has an ordinary double point at x = ∞. But the
crucial difference lies in the intersection of the spectral curve Σ with the divisor C∞. For
the Hermite case we have Σ ·C∞ = 4 and the intersection occurs all at once at x =∞. For
the Gauß hypergeometric case, the intersection Σ · C∞ = 4 occurs once each at x = 0, 1,
and twice at x =∞. This confluence of regular singular points is the source of the irregular
singularity in the Hermite differential equation.

The fourth row indicates an example of a quantum curve that has one regular singular
point at x = −1 and one irregular singular point of class 1 at x = ∞. The spectral curve
has an ordinary double point at x =∞, the same as the Hermite case. As Figure 1.2 shows,
the class of the irregular singularity at x = ∞ is determined by how the spectral curve
intersects with C∞.

The existence of the irregular singularity in the quantum curve associated with a spectral
curve has nothing to do with the singularity of the spectral curve. The fifth example shows
a non-singular spectral curve of genus 1 (Figure 1.3), for which the quantum curve has a
class 1 irregular singularity at x =∞.

The paper is organized as follows. The general structure of the theory is explained using
the Airy function as an example in Section 2. The notion of quantum curves as Rees D-
modules quantizing Hitchin spectral curves is presented in Section 3. Since our topological

recursion depends solely on the geometry of (1.6), the information of Σ and Σ̃, such as their
arithmetic genera, becomes important. We will give the genus formulas in Sections 4 and
5. In Section 4 we study the geometry of the Hitchin spectral curves associated with rank

2 meromorphic Higgs bundles. We give the genus formula for the normalization Σ̃ in terms
of the characteristic polynomial of the Higgs field φ. A more systematic treatment of the
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Figure 1.2. The spectral curves of the second and the fourth examples. The
horizontal line is the divisor C∞, and the vertical line is the fiber class F at x =∞.
The spectral curve intersects with C∞ a total of four times. The curve on the right
has a triple intersection at x =∞, while the one on the left intersects all at once.

Figure 1.3. The spectral curve of the fifth example, which is non-singular. The
corresponding quantum curve has two regular singular points at x = ±1, and a class
1 irregular singular point at x =∞.

spectral curve and its desingularization is given in Section 5. In Section 6, which is the
heart of our paper, we prove the main theorem. Two more examples, Hermite differential
equations and Gauß hypergeometric differential equations, are studied in Section 7.

2. A walk-through of the simplest example

Before going into the full generality, let us present the simplest example of our con-
struction. With this example we can illustrate the relation between a Higgs bundle, the
compactified cotangent bundle of a curve, a quantum curve, a classical differential equation,
non-Abelian Hodge correspondence, and the quantum invariants that the quantum curve
captures.

As a spectral curve, we take the algebraic curve Σ ⊂ F2 = P (KP1 ⊕OP1) = T ∗P1

embedded in the Hirzebruch surface with the defining equation

(2.1) y2 − x = 0.

Here, x is the coordinate of the affine line A1 = P1\{∞}, and y is the fiber coordinate of the
cotangent bundle T ∗P1 ⊂ F2 over A1. The Hirzebruch surface is the natural compactification
of the cotangent bundle T ∗P1, which is the total space of the canonical bundle KP1 . We
denote by η ∈ H0(T ∗P1, π∗KP1) the tautological 1-form associated with the projection
π : T ∗P1 −→ P1. It is expressed as η = ydx in terms of the affine coordinates. The
holomorphic symplectic form on T ∗P1 is given by −dη = dx ∧ dy. The 1-form η extends to
F2 as a meromorphic differential form and defines a divisor

(2.2) (η) = C0 − C∞,
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where C0 is the zero-section of T ∗P1, and C∞ the section at infinity of T ∗P1. The Picard
group Pic(F2) of the Hirzebruch surface is generated by the class C0 and a fiber class F of
π.

Although (2.1) is a perfect parabola in the affine plane, it has a quintic cusp singularity
at x =∞. Let (u,w) be a coordinate on another affine piece of F2 defined by (1.20). Then
Σ in the (u,w)-plane is given by

(2.3) w2 = u5.

The expression of Σ as an element of Pic(F2) is thus given by Σ = 2C0 +5F. Define a stable
Higgs pair (E, φ) with E = OP1 ⊕OP1 and

(2.4) φ =

[
1

x

]
dx : E −→ E ⊗KP1(2) = E.

Here, we choose a meromorphic 1-form xdx ∈ H0
(
P1,KP1(2)

)
that has a simple zero at

0 ∈ P1 and a pole of order 3 at ∞ ∈ P1. Up to a constant factor, there is only one such
differential xdx = −du/u3. The spectral curve Σ of (E, φ) is given by the characteristic
equation

(2.5) det(η − π∗φ) = η2 − π∗tr(φ) + π∗ det(φ) = 0

in F2. The non-Abelian Hodge correspondence applied to φ determines a singular ~-
connection [3, 41]

(2.6) ∇~ = ~d−
[

1
x

]
dx

on the trivial bundle E = O⊕2
P1 over P1.

The quantization procedure that we will explain in this paper associates the following
differential equation to the spectral curve Σ:

(2.7)

((
~
d

dx

)2

− x

)
Ψ(x, ~) = 0.

The solution Ψ gives rise to a flat section

[
Ψ
Ψ′

]
of (2.6), where ′ denotes the x differentiation.

The differential operator

(2.8) P (x, ~) :=

(
~
d

dx

)2

− x

quantizing (2.1) is an example of what we call a quantum curve. Reflecting the fact (2.3)
that Σ has a quintic cusp singularity at x =∞, (2.7) has an irregular singular point of class
3
2 at x = ∞. This number 3

2 indicates how the asymptotic expansion of the solution looks
like. Indeed, any non-trivial solution has an essential singularity at ∞. We note that every
solution of (2.7) is an entire function for any value of ~ 6= 0. Define

(2.9) a3n = a0 ·
∏n
j=1(3j − 2)

(3n)!
, a3n+1 = a1 ·

∏n
j=1(3j − 1)

(3n+ 1)!
, a3n+2 = 0,

for n ≥ 0. Then

(2.10) Ψ(x, ~) :=
∞∑
n=0

an

( x

~2/3

)n
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gives an arbitrary solution to (2.7), which is entire. The coefficients (2.9) are of no particular
interest.

What our quantization procedure tells us is a different, and more interesting, story.
Applying our main result of this paper, we construct a particular all-order asymptotic
expansion of this entire solution

(2.11) Ψ(x, ~) = expF (x, ~), F (x, ~) :=

∞∑
m=0

~m−1Sm(x),

valid for |Arg(x)| < π, and ~ > 0. Here, the first two terms of the asymptotic expansion
are given by

S0(x) = ±2

3
x

3
2 ,(2.12)

S1(x) = −1

4
log x.(2.13)

Although the classical limit ~→ 0 of (2.7) does not make sense under the expansion (2.11),
the semi-classical limit through the WKB analysis

(2.14)

[
e−S1(x)e−

1
~S0(x)

(
~2 d

2

dx2
− x
)
e

1
~S0(x)eS1(x)

]
exp

( ∞∑
m=2

~m−1Sm(x)

)
= 0

has a well-defined limit ~→ 0. The result is S′0(x)2 = x, which gives (2.12), and also (2.1)
by defining dS0 = η. This process is called the semi-classical limit. The vanishing of the
~-linear terms of (2.14) is 2S′0(x)S′1(x) + S′′0 (x) = 0, which gives (2.13) above.

-15 -10 -5 5 10

-0.4

-0.2

0.2

0.4

Figure 2.1. The Airy function

The solution we are talking about is the Airy function (1.21) for the choice of S0(x) =

−2
3x

3
2 . This solution corresponds to (2.10) with the initial condition

a0 =
1

3
2
3 Γ(2

3)
, a1 = − 1

3
1
3 Γ(1

3)
.

The surprising discovery of Kontsevich [38] is that Sm(x) for m ≥ 2 has the following closed
formula:

(2.15) Sm(x) :=
∑

2g−2+n=m−1

1

n!
FAiry
g,n (x),

(2.16) FAiry
g,n (x) :=

(−1)n

22g−2+n
· x−

(6g−6+3n)
2

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏
i=1

(2di − 1)!!.
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Although (2.15) is not a generating function of all intersection numbers, as we will show in
the subsequent sections, the quantum curve (2.1) alone actually determines every intersec-
tion number 〈τd1 · · · τdn〉g,n. This mechanism is the differential recursion equation of [18],

based on the theory of integral topological recursion of [24], which computes free energies

(2.17) FAiry
g,n (x1, · · · , xn) :=

(−1)n

22g−2+n

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏
i=1

(2di − 1)!!
√
xi

2di+1

as a function in n variables from Σ through the process of blow-ups of F2.
Let us now give a detailed procedure for this example. We start with the spectral curve Σ

of (2.1). Our goal is to come up with (2.7). The first step is to blow up F2 and to construct
(1.6). The discriminant of the defining equation (2.5) of the spectral curve is

−det(φ) = x(dx)2 =
1

u5
(du)2.

It has a simple zero at x = 0 and a pole of order 5 at x = ∞. The Geometric Genus

Formula (4.12) tells us that Σ̃ is a non-singular curve of genus 0, i.e., a P1, after blowing
up b5

2c = 2 times. The center of blow-up is (u,w) = (0, 0) for the first time. Put w = w1u,
and denote by E1 the exceptional divisor of the first blow-up. The proper transform of Σ
for this blow-up, w2

1 = u3, has a cubic cusp singularity, so we blow up again at the singular
point. Let w1 = w2u, and denote by E2 the exceptional divisor created by the second
blow-up. The self-intersection of the proper transform of E1 is −2. We then obtain the
desingularized curve Σmin, locally given by w2

2 = u. The proof of Theorem 4.2 also tells us
that Σmin −→ P1 is ramified at two points. Choose the affine coordinate t = 2w2 of the
exceptional divisor added at the second blow-up. Our choice of the constant factor is to
make the formula the same as in [19]. We have

(2.18)

{
x = 1

u = 1
w2

2
= 4

t2

y = −u2

w = − u2

w2u2
= −2

t .

In the (u,w)-coordinate, we see that the parameter t is a normalization parameter of the
quintic cusp singularity: {

u = t2

4

w = t5

32 .

Note that Σmin intersects transversally with the proper transform of C∞. We blow up once

again at this intersection, and denote by Σ̃ the proper transform of Σmin. The blow-up
space Bl(F2) is the result of 3 = d5

2e times blow-ups of the Hirzebruch surface.
Now we apply the differential recursion (6.11) to the geometric data (1.6) and (1.7). We

claim that the integral topological recursion of [24] for the geometric data we are considering
now is exactly the same as the integral topological recursion of [19, (6.12)] applied to the
curve (2.18) realized as a plane parabola in C2. This is because our integral topological
recursion (6.10) has two residue contributions, one each from t = 0 and t =∞. As proved
in [19, Section 6], the integrand on the right-hand side of the integral recursion formula
[19, (6.12)] does not have any pole at t = 0. Therefore, the residue contribution from this
point is 0. The differential recursion is obtained by deforming the contour of integration
to enclose only poles of the differential forms Wg,n. Since t = 0 is a regular point, the two
methods have no difference.
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The W0,2 of (1.7) is simply dt1·dt2
(t1−t2)2

because Σ̃ ∼= P1. Since t of (2.18) is a normalization

coordinate, we have

W0,1 = ĩ∗ν∗(η) = y(t)dx(t) =
16

t4
,

in agreement of [19, (6.8)]. Noting that the solution to the integral topological recursion is
unique from the initial data, we conclude that

d1 · · · dnFAiry
g,n

(
x(t1), . . . , x(tn)

)
= Wg,n.

By setting the constants of integration by integrating from t = 0 for the differential recursion
equation, we obtain the expression (2.17). Then its principal specialization gives (2.16). The
equivalence of the differential recursion and the quantum curve equation Theorem 6.1 then
proves (2.7) with the expression of (2.11) and (2.15).

In this process, what is truly amazing is that the single differential equation (2.7), which
is our quantum curve in this case, knows everything about the free energies (2.17). This
is because we can recover the spectral curve Σ from the quantum curve. Then the proce-
dures we need to apply, the blow-ups and the differential recursion equation, are canonical.
Therefore, we do recover (2.17) as explained above.

It is surprising to see that a simple entire function (2.10) contains so much geometric
information. Our expansion (2.11) is an expression of an entire function viewed from its
essential singularity. We can extract rich information of the solution by restricting the
region where the asymptotic expansion is valid. If we consider (2.11) only as a formal
expression in x and ~, then we cannot see how the coefficients are related to quantum
invariants. The topological recursion [24] is a key to connect the two worlds: the world of
quantum invariants, and the world of holomorphic functions and differentials. This relation
is also knows as a mirror symmetry, or in analysis, simply as the Laplace transform. The
intersection numbers 〈τd1 · · · τdn〉g,n belong to the A-model, while the spectral curve Σ of

(2.1) and free energies belong to the B-model. We consider (2.17) as an example of the
Laplace transform, playing the role of mirror symmetry [19].

3. Quantum curves for Higgs bundles

In this section, we give the definition of quantum curves. Let C be a non-singular
projective algebraic curve defined over C. The sheaf DC of differential operators on C is the
subalgebra generated by the anti-canonical sheaf K−1

C and the structure sheaf OC in the

C-linear endomorphism algebra EndC(OC). Here, K−1
C acts on OC as holomorphic vector

fields, and OC acts on itself by multiplication. Locally every element of DC is written as

DC 3 P (x) =
r∑
`=0

a`(x)

(
d

dx

)r−`
, a`(x) ∈ OC

for some r ≥ 0. For a fixed r, we introduce the filtration by order of differential operators
into DC as follows:

FrDC =

{
P (x) =

r∑
`=0

a`(x)

(
d

dx

)r−`∣∣∣∣∣ a`(x) ∈ OC

}
.

The Rees ring D̃C is defined by

(3.1) D̃C =

∞⊕
r=0

~rFrDC ⊂ C[~]⊗C DC .
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An element of D̃C on a coordinate neighborhood U ⊂ C can be written uniquely as

(3.2) P (x, ~) =
r∑
`=0

a`(x)

(
~
d

dx

)r−`
(see [41, Section 1.5]).

Definition 3.1 (Quantum curve). A quantum curve is the Rees D̃C-module

(3.3) M̃ =
∞⊕
r=0

~rFrM

associated with a filtered DC-module (M, Fr) defined on C, with the compatibility

FaDC · FbM⊂ Fa+bM.

Let

D =

n∑
j=1

mjpj , mj > 0

be an effective divisor on C. The point set {p1, . . . , pn} ⊂ C is the support of D. A
meromorphic Higgs bundle with poles at D is a pair (E, φ) consisting of an algebraic vector
bundle E on C and a Higgs field

(3.4) φ : E −→ KC(D)⊗OC E.
Since the cotangent bundle

T ∗C = Spec
(
Sym

(
K−1
C

))
is the total space of KC , we have the tautological 1-form η ∈ H0(T ∗C, π∗KC) on T ∗C
coming from the projection

T ∗C ←−−−− π∗KC

π

y
C ←−−−− KC .

The natural holomorphic symplectic form of T ∗C is given by −dη. The compactified
cotangent bundle of C is a ruled surface defined by

(3.5) T ∗C := P (KC ⊕OC) = Proj

( ∞⊕
n=0

(
K−nC · I0 ⊕K−n+1

C · I ⊕ · · · ⊕K0
C · In

))
,

where I represents 1 ∈ OC being considered as a degree 1 element. The divisor at infinity
C∞ of (1.5) is reduced in the ruled surface and supported on the subset P (KC ⊕OC)\T ∗C.
The tautological form η extends on T ∗C as a meromorphic 1-form with simple poles along
C∞. Thus the divisor of η in T ∗C is given by

(3.6) (η) = C0 − C∞,
where C0 is the zero section of T ∗C.

The relation between the sheafDC and the geometry of the compactified cotangent bundle
T ∗C is the following. First we have

(3.7) Spec

( ∞⊕
m=0

FmDC
/
Fm−1DC

)
= Spec

( ∞⊕
m=0

K−mC

)
= T ∗C.

Let us denote by grmDC = FmDC
/
Fm−1DC . By writing I = 1 ∈ H0(C,DC), we then have
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(3.8) Proj

( ∞⊕
m=0

(
grmDC · I0 ⊕ grm−1DC · I ⊕ grm−2DC · I⊗2 ⊕ · · · ⊕ gr0DC · I⊗m

))
= T ∗C.

Definition 3.2 (Spectral curve). A spectral curve of degree r is a divisor Σ in T ∗C such
that the projection π : Σ −→ C defined by the restriction

Σ

π
!!

i // T ∗C

π
��
C

is a finite morphism of degree r. The spectral curve of a Higgs bundle (E, φ) is the
divisor of zeros

(3.9) Σ = (det(η − π∗φ))0

on T ∗C of the characteristic polynomial det(η − π∗φ). Here,

π∗φ : π∗E −→ π∗ (KC(D))⊗OP(KC⊕OC)
π∗E.

Remark 3.3. The Higgs field φ is holomorphic on C \ supp(D). Thus we can define the
divisor of zeros

Σ◦ =
(
det
(
η − π∗

(
φ|C\supp(D)

)))
0

of the characteristic polynomial on T ∗(C \ supp(D)). The spectral curve Σ is the complex
topology closure of Σ◦ with respect to the compactification

(3.10) T ∗(C \ supp(D)) ⊂ T ∗C.

A left DC-module E on C is naturally anOC-module with a C-linear integrable connection
∇ : E −→ KC ⊗OC E . The construction goes as follows:

(3.11) ∇ : E α−−−−→ DC ⊗OC E
∇D⊗id−−−−→ (KC ⊗OC DC)⊗OC E

β⊗id−−−−→ KC ⊗OC E ,
where

• α is the natural inclusion E 3 v 7−→ 1⊗ v ∈ DC ⊗OC E ;
• ∇D : DC −→ KC⊗OCDC is the connection defined by the C-linear left-multiplication

operation of K−1
C on DC , which satisfies the derivation property

(3.12) ∇D(f · P ) = f · ∇D(P ) + df · P ∈ KC ⊗OC DC
for f ∈ OC and P ∈ DC ; and
• β is the canonical right DC-module structure in KC .

If we choose a local coordinate neighborhood U ⊂ C with a coordinate x, then (3.12) takes
the following form. Let us denote by P ′ = [d/dx, P ]− P · d/dx, and define

∇d
dx

(P ) := P · d
dx

+ P ′.

Then we have

∇d
dx

(f · P ) = f · ∇d
dx

(P ) +
df

dx
· P.

The connection ∇ of (3.11) is integrable because d2 = 1. Actually, the statement is true for
any dimensions. We note that there is no reason for E to be coherent as an OC-module.



QUANTIZATION OF MEROMORPHIC HIGGS BUNDLES 19

Conversely, if an algebraic vector bundle E on C of rank r admits a holomorphic connec-
tion ∇ : E −→ KC ⊗ E, then E acquires the structure of a DC-module. This is because ∇
is automatically flat, and the covariant derivative ∇X for X ∈ K−1

C satisfies

(3.13) ∇X(fv) = f∇X(v) +X(f)v

for f ∈ OC and v ∈ E. A repeated application of (3.13) makes E a DC-module. The fact
that every DC-module on a curve is principal implies that for every point p ∈ C, there is an
open neighborhood p ∈ U ⊂ C and a linear differential operator P of oder r on U , called a
generator, such that E|U ∼= DU/DUP. Thus on an open curve U , a holomorphic connection
in a vector bundle of rank r gives rise to a differential operator of order r. The converse is
true if DU/DUP is OU -coherent.

Definition 3.4 (~-connection). A holomorphic ~-connection on a vector bundle E −→ C
is a C[~]-linear homomorphism

∇~ : C[~]⊗ E −→ C[~, ~−1]⊗KC ⊗OC E
subject to the derivation condition

(3.14) ∇~(f · v) = f∇~(v) + ~df ⊗ v,
where f ∈ OC ⊗ C[~] and v ∈ C[~]⊗ E.

Remark 3.5. The classical limit of a holomorphic ~-connection is the evaluation ~ = 0
of ∇~, which is simply an OC-module homomorphism

∇0 : E −→ KC ⊗OC E,
i.e., a holomorphic Higgs field in the vector bundle E.

Remark 3.6. An OC ⊗ C[~]-coherent D̃C-module is equivalent to a vector bundle on C
equipped with an ~-connection.

In analysis, the semi-classical limit of a differential operator P (x, ~) of (3.2) is defined
by

(3.15) lim
~→0

(
e−

1
~S0(x)P (x, ~)e

1
~S0(x)

)
=

r∑
`=0

a`(x)
(
S′0(x)

)r−`
,

where S0(x) ∈ OC(U). The equation

(3.16) lim
~→0

(
e−

1
~S0(x)P (x, ~)e

1
~S0(x)

)
= 0

then determines the first term of the singular perturbation expansion

(3.17) Ψ(x, ~) = exp

( ∞∑
m=0

~m−1Sm(x)

)
of the solution Ψ(x, ~) of the differential equation

P (x, ~)Ψ(x, ~) = 0

on U. Since dS0(x) is a local section of T ∗C on U ⊂ C, y = S′0(x) gives the local trivialization
of T ∗C|U , with y ∈ T ∗xC a fiber coordinate. Equations (3.15) and (3.16) then give an
equation

(3.18)
r∑
`=0

a`(x)yr−` = 0
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of a curve in T ∗C|U . This motivates us to give the following definition:

Definition 3.7 (Semi-classical limit of a Rees differential operator). Let U ⊂ C be an open
subset of C with a local coordinate x such that T ∗C is trivial over U with a fiber coordinate
y. The semi-classical limit of a local section

P (x, ~) =

r∑
`=0

a`(x)

(
~
d

dx

)r−`
of the Rees ring D̃C of the sheaf of differential operators DC on U is the holomorphic
function

r∑
`=0

a`(x)yr−`

defined on T ∗C|U .

Definition 3.8 (Semi-classical limit). Suppose a Rees D̃C-module M̃ is written as

(3.19) M̃(U) = D̃C(U)
/
D̃C(U)PU

on every coordinate neighborhood U ⊂ C with a differential operator PU of the form (3.2).
Using this expression (3.2) for PU , we construct a meromorphic function

(3.20) pU (x, y) =
r∑
`=0

a`(x)yr−`

on T ∗C|U , where y is the fiber coordinate of T ∗C, which is trivialized on U . Define

(3.21) ΣU = (pU (x, y))0

as the divisor of zero of the function pU (x, y). If ΣU ’s glue together to a spectral curve

Σ ⊂ T ∗C, then we call Σ the semi-classlical limit of the Rees D̃C-module M̃.

Remark 3.9. For the local equation (3.20) to be consistent globally on C, the coefficients
of (3.2) have to satisfy

(3.22) a`(x) ∈ Γ
(
U,K⊗`C

)
.

Definition 3.10 (Quantum curve for holomorphic Higgs bundle). A quantum curve
associated with the spectral curve Σ ⊂ T ∗C of a holomorphic Higgs bundle on a projective

algebraic curve C is a Rees D̃C-module E whose semi-classical limit is Σ.

The main reason we need to extend our framework to meromorphic connections is that
there are no non-trivial holomorphic connections on P1, whereas many important classical
examples of differential equations are naturally defined over P1 with regular and irregular
singularities. A C-linear homomorphism

∇ : E −→ KC(D)⊗OC E
is said to be a meromorphic connection with poles along an effective divisor D if

∇(f · v) = f∇(v) + df ⊗ v
for every f ∈ OC and v ∈ E. Let us denote by

OC(∗D) := lim
−→
OC(mD), E(∗D) := E ⊗OC OC(∗D).

Then ∇ extends to
∇ : E(∗D) −→ KC(∗D)⊗OC(∗D) E(∗D).
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Since ∇ is holomorphic on C \ supp(D), it induces a DC\supp(D)-module structure in

E|C\supp(D). The DC-module direct image Ẽ = j∗
(
E|C\supp(D)

)
associated with the open

inclusion map j : C \ supp(D) −→ C is then naturally isomorphic to

(3.23) Ẽ = j∗
(
E|C\supp(D)

) ∼= E(∗D)

as a DC-module. (3.23) is called the meromorphic extension of the DC\supp(D)-module
E|C\supp(D).

Let us take a local coordinate x of C, this time around a pole pj ∈ supp(D). If a generator

P̃ of Ẽ near x = 0 has a local expression

(3.24) P̃ (x, d/dx) = xk
r∑
`=0

b`(x)

(
x
d

dx

)r−`
around pj with locally defined holomorphic functions b`(x), b0(0) 6= 0, and an integer k ∈ Z,

then P̃ has a regular singular point at pj . Otherwise, pj is an irregular singular point of P̃ .

Definition 3.11 (Quantum curve for a meromorphic Higgs bundle). Let (E, φ) be a mero-
morphic Higgs bundle defined over a projective algebraic curve C of any genus with poles
along an effective divisor D, and Σ ⊂ T ∗C its spectral curve. A quantum curve associated

with Σ is the meromorphic extension of a Rees D̃C-module E on C \ supp(D) such that the
closure of its semi-classical limit Σ◦ ⊂ T ∗C|C\supp(D) in the compactified cotangent bundle

T ∗C agrees with Σ.

4. Geometry of spectral curves in the compactified cotangent bundle

To construct quantum curves using the topological recursion, we need a smooth Eynard-
Orantin spectral curve [24] for which we can apply the recursion mechanism. When the
given Hitchin spectral curve Σ is singular, we have to find a non-singular model. In this

paper we use the normalization Σ̃ of the singular spectral curve. Since the quantum curve
reflects the geometry of Σ ⊂ T ∗C, it is important to identify the choice of the blow-up space

Bl(T ∗C) of (1.6) in which Σ̃ is realized as a smooth divisor. We then determine the initial
value W0,1 for the topological recursion.

The geometry of a spectral curve also gives us the information of the singularity of the
quantum curve. For example, when we have a component of a spectral curve tangent
to the divisor C∞, the quantum curve has an irregular singular point, and the class of
the irregularity is determined by the degree of tangency. We will give a classification of the
singularity of the quantum curves in terms of the geometry of spectral curves in Section 6.3.

In this section, we give the construction of the canonical blow-up space Bl(T ∗C), and

determine the genus of the normalization Σ̃. This genus is necessary to identify the Riemann
prime form on it, which determines another input datum W0,2 for the topological recursion.

There are two different ways of defining the spectral curve for Higgs bundles with mero-
morphic Higgs field. Our definition of the previous section uses the compactified cotangent
bundle. This idea also appears in [39]. The traditional definition, which assumes the pole
divisor D of the Higgs field to be reduced, is suitable for the study of moduli spaces of para-
bolic Higgs bundles. When we deal with non-reduced effective divisors, parabolic structures
do not play any role. Non-reduced divisors appear naturally when we deal with classical
equations such as the Airy differential equation, which has an irregular singular point of
class 3

2 at ∞ ∈ P1.
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Our point of view of spectral curves is also closely related to considering the stable pairs
of pure dimension 1 on T ∗C. Through Hitchin’s abelianization idea, the moduli space of
stable pairs and the moduli space of Higgs bundles are identified [36].

Let E be an algebraic vector bundle of rank 2 on a non-singular projective algebraic curve
C of genus g, and

φ : E −→ KC(D)⊗OC E
a meromorphic Higgs field with poles along an effective divisor D. The trace and the
determinant of φ,

a1 := −tr(φ) ∈ H0 (C,KC(D)) ,(4.1)

a2 := det(φ) ∈ H0
(
C,K⊗2

C (2D)
)
,(4.2)

are well defined and determine the spectral curve Σ of (3.9). For the purpose of investigating
the geometry of Σ, we do not need the information of the Higgs bundle (E, φ), or even the
pole divisor D. Thus in what follows, we only assume that a1 is a meromorphic section of
KC , and that a2 a meromorphic section of K⊗2

C . Then the spectral curve is re-defined as

the zero-locus in T ∗C of a quadratic equation with a1 and a2 its coefficients:

(4.3) Σ :=
(
η2 + π∗(a1)η + π∗(a2)

)
0
.

The only condition we impose here is that the spectral curve is irreducible. In the language
of Higgs bundles, this condition corresponds to the stability of (E, φ).

Recall that Pic(T ∗C) is generated by the zero section C0 of T ∗C and fibers of the projec-
tion map π : T ∗C −→ C. Since the spectral curve Σ is a double covering of C, as a divisor
it is expressed as

(4.4) Σ = 2C0 +
a∑
j=1

π∗(pj) ∈ Pic(T ∗C),

where α =
∑a

j=1 pj ∈ Pica(C) is a divisor on C of degree a. As an element of the Néron-
Severi group

NS(T ∗C) = Pic(T ∗C)/Pic0(T ∗C),

it is simply

Σ = 2C0 + aF ∈ NS(T ∗C)

for a typical fiber class F . Since the intersection FC∞ = 1, we have a = ΣC∞ in NS(T ∗C).
From the genus formula

pa(Σ) =
1

2
Σ · (Σ +KT ∗C) + 1

and

KT ∗C = −2C0 + (4g − 4)F ∈ NS(T ∗C),

we find that the arithmetic genus of the spectral curve Σ is

(4.5) pa(Σ) = 4g − 3 + a,

where a is the number of intersections of Σ and C∞. Now we wish to find the geometric
genus of Σ.

Motivated by the completion of square expression of the defining equation (4.3),

(4.6) η2 + π∗(a1)η + π∗(a2) =

(
η +

1

2
π∗(a1)

)2

−
(

1

4
π∗(a1)2 − π∗(a2)

)
as a meromorphic section of π∗K⊗2

C , we give the following definition.
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Definition 4.1 (Discriminant divisor). The discriminant divisor of the spectral curve
(4.3) is a divisor on C defined by

(4.7) ∆ :=

(
1

4
a2

1 − a2

)
= ∆0 −∆∞,

where

∆0 =

m∑
i=1

miqi, mi > 0, qi ∈ C,(4.8)

∆∞ =
n∑
j=1

njpj , nj > 0, pj ∈ C.(4.9)

Since 1
4a

2
1 − a2 is a meromorphic section of K⊗2

C , we have

(4.10) deg ∆ =
m∑
i=1

mi −
n∑
j=1

nj = 4g − 4.

Theorem 4.2 (Geometric genus formula). Let us define an invariant of the discriminant
divisor by

(4.11) δ = |{i | mi ≡ 1 mod 2}|+ |{j | nj ≡ 1 mod 2}|.

Then the geometric genus of the spectral curve Σ of (4.3) is given by

(4.12) g̃ := pg(Σ) = 2g − 1 +
1

2
δ.

We note that (4.10) implies δ ≡ 0 mod 2.

Remark 4.3. If φ is a holomorphic Higgs field, then a1 = −tr(φ), a2 = det(φ), and

m = δ = 4g − 4, n = 0.

Therefore we have g̃ = 4g − 3, which agrees with the genus formula of [18, Eq.(2.5)].

Before giving the proof of the formula, first we wish to identify the geometric meaning of
the invariant δ. Since Σ ⊂ T ∗C is a double covering of C in a ruled surface, locally at every
singular point p, Σ is either irreducible, or reducible and consisting of two components.
When irreducible, it is locally isomorphic to

(4.13) t2 − s2m+1 = 0, m ≥ 1.

If it has two components, then it is locally isomorphic to

(4.14) t2 − s2m = (t− sm)(t+ sm) = 0.

Since the local form of Σ at a ramification point of π : Σ −→ C is written as (4.13) with
m = 0, by extending the terminology “singularity” to “critical points” of the morphism π,
we include a ramification point as a cusp with m = 0.

Proposition 4.4. The invariant δ of (4.11) counts the number of cusps of the spectral
curve Σ.

Thus we have

(4.15) pg(Σ) = 2g(C)− 1 +
1

2
(the number of cusps).
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Proof of (4.15), assuming Proposition 4.4. Let νmin : Σmin −→ Σ be the minimal resolution
of singularities of Σ. Then πmin = π ◦ νmin : Σmin −→ C is a double sheeted covering of
C by a smooth curve Σmin. If Σ has two components at a singularity P as in (4.14), then
π−1

min(P ) consists of two points and πmin is not ramified there. If P is a cusp (4.13), then

π−1
min(P ) is a ramification point of the covering πmin. If δ counts the total number of cusp

singularities and the ramification points of π : Σ −→ C, then the Riemann-Hurwitz formula
gives us

2− 2g (Σmin)− δ = 2 (2− 2g(C)− δ) ,
which yields the genus formula (4.15). �

Since we wish to give all information of (1.6) from the defining equation (4.3), we proceed
to derive a local structure of Σ at each singularity from the global equation in what follows.

Proof of Theorem 4.2 and Proposition 4.4. The proof is broken into four cases. Cases 3 and
4 are related to the Newton Polygon we mentioned in Introduction, (1.17).

Case 1. First we consider the case with a holomorphic a1 ∈ H0(C,KC), and both ∆0 and
∆∞ are reduced. As we see below, in this case Σ is non-singular, and the two genera (4.5)
and (4.12) agree.

Let us consider the graph Γ− 1
2
a1

of the holomorphic 1-form −1
2a1 in T ∗C. Since T ∗C is

the total space of the canonical bundle KC , the graph is a cross-section of T ∗C. We define
an involution σ : T ∗C −→ T ∗C as a reflection about Γ− 1

2
a1

along each fiber of π. In terms

of the fiber coordinate y ∈ T ∗xC, it is written as

(4.16) ydx 7−→ −ydx− a1, ydx ∈ T ∗xC.
The spectral curve is invariant under the involution, σ : Σ −→ Σ, because of (4.6). By
definition, Γ− 1

2
a1
⊂ T ∗C is a fixed-point set of the involution σ. The divisor C∞ is also

fixed by σ. Note that we have in this case

(4.17) Gal(Σ/C) = 〈σ〉.
Thus for a holomorphic a1, the Galois action of π : Σ −→ C extends to the whole ruled
surface T ∗C. This does not hold for a meromorphic a1.

As remarked above, if a2 ∈ H0(C,K⊗2
C ) is also holomorphic, then π : Σ −→ C is simply

branched over ∆ = ∆0, and Σ is a smooth curve of genus 4g − 3. This is in agreement of
(4.5) because n = 0 in this case.

If a2 is meromorphic, then the pole divisor of a2 is given by (a2)∞ = ∆∞ of degree n.
Since ∆∞ is reduced, from (4.6) we see that π : Σ −→ C is ramified at the intersection of
C∞ and π−1(∆∞). The spectral curve is also ramified at its intersection with Γ− 1

2
a1

, which

occurs along the fibers π−1(∆0). Note that deg ∆0 = 4g − 4 + n because of (4.10). Thus
π : Σ −→ C is simply ramified at a total of 4g−4+2n points. Therefore, Σ is non-singular,
and we deduce that its genus is given by

pg(Σ) = pa(Σ) = 4g − 3 + n

from the Riemann-Hurwitz formula. As a divisor class, we have

Σ = 2C0 + π∗(∆∞) ∈ Pic(T ∗C),

in agreement of (4.4).

Case 2. Still a1 ∈ H0(C,KC) is holomorphic, but ∆ is non-reduced. The first example of
Table 1.2, the Airy differential equation, at x =∞ falls into this category.
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The involution (4.16) is well defined. Let qi ∈ supp(∆0) be a point at which mi > 1.
From the global equation (4.6), we see that the curve germ of Σ at its intersection Q with
the fiber π−1(qi) is given by a formula

y2 = xmi ,

where x is the pull-back of the base coordinate on C and y a fiber coordinate, possibly tilted
by a holomorphic function in x. We blow up once at (x, y) = (0, 0), using a local parameter
y1 = y/x on the exceptional divisor. The proper transform of the curve germ becomes

y2
1 = xmi−2.

Repeat this process at (x, y1) = (0, 0), until we reach the equation

y2
` = xε,

where ε = 0 or 1. The proper transform of the curve germ is now non-singular. We see
that after a sequence of bmi2 c blow-ups starting at the point Q ∈ Σ ∩ π−1(qi), the proper
transform of Σ is simply ramified over qi ∈ C if mi is odd, and unramified if mi is even. We
apply the same sequence of blow-ups at each qi with higher multiplicity.

Now let pj ∈ supp(∆∞) with nj > 1. The intersection P = Σ ∩ π−1(pj) lies on C∞, and
Σ has a singularity at P . Let z = 1/y be a fiber coordinate of π−1(pj) at the infinity. Then
the curve germ of Σ at the point P is given by

z2 = xnj .

The involution σ in this coordinate is z 7−→ −z. The blow-up process we apply at P is
the same as before. After bnj2 c blow-ups starting at the point P ∈ Σ ∩ π−1(pj), the proper
transform of Σ is simply ramified over pj ∈ C if nj is odd, and unramified if nj is even.
Again we do this process for all pj with a higher multiplicity.

Let us define Blmin(T ∗C) as the application of a total of

(4.18)

m∑
i=1

⌊mi

2

⌋
+

n∑
j=1

⌊nj
2

⌋
times blow-ups on T ∗C as described above.

(4.19) Σmin

π̄

��

ī //

νmin

  

Blmin(T ∗C)
νmin

&&
Σ

π

}}

i // T ∗C.

π

rrC

The proper transform Σmin is the minimal desingularization of Σ. Note that the morphism

(4.20) π̄ = π ◦ ν : Σmin −→ C

is a double covering, ramified exactly at δ points. Since pa(Σmin) = pg(Σ), (4.12) follows
from the Riemann-Hurwitz formula applied to π̄ : Σmin −→ C. It is also obvious that δ
counts the number of cusp points of Σ, including smooth ramification points of π.

Case 3. We are now led to considering a meromorphic a1. Let p ∈ C be a pole of a1 of
order k ≥ 1. Assume that a2 also has a pole of oder ` at p, and that ` > k. The second,
the third, and the fourth examples of Table 1.2, all at x =∞, fall into this category.
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Choose a local coordinate x of C around p, and express

a1 =
c1

xk
, a2 =

c2

x`
,

where c1 and c2 ∈ OC,p are unit elements. Since both of a1 and a2 have poles at p, the
spectral curve intersects with C∞ along the fiber π−1(p). The curve germ at this intersection
point is given by the equation

(4.21) y2 +
c1

xk
y +

c2

x`
= 0,

or equivalently,

(4.22) z2 +
c1

c2
x`−kz +

1

c2
x` =

(
z +

1

2

c1

c2
x`−k

)2

− 1

4

(
c1

c2
x`−k

)2

+
1

c2
x` = 0,

where z = 1/y is a fiber coordinate of π−1(p) at infinity. Note that the coefficients of (4.22)
are all in OC,p. The discriminants of (4.21) and (4.22) are given by

(4.23) ∆y :=
1

4

c2
1

x2k
− c2

x`
, ∆z :=

1

4

(
c1

c2
x`−k

)2

− 1

c2
x`.

If 2k > `, then the contribution from p in ∆∞ is −2kp, which does not count in δ. Since
this inequality is equivalent to 2(`− k) < `, the contribution from p in the discriminant ∆z

is 2(` − k)p. Locally around the singularity, the spectral curve is thus reducible with two
components. We can apply the blow-up process of Case 2 to (4.22) and obtain a resolved
curve germ unramified over p ∈ C. For the case of the Hermite differential equation given
as the second example of Table 1.2, we have k = 3 and ` = 4.

If 2k ≤ `, then the contribution from p in ∆∞ is −`p. Therefore, depending on the parity
of `, it has a contribution to δ. The infinity point x = ∞ of the Gauß hypergeometric
equation, the third example of Table 1.2, falls into this case, where we have k = 1 and
` = 2. The inequality 2k ≤ ` is the same as 2(` − k) ≥ `, hence the contribution of p in
∆z is `p. Therefore, whether the resolved curve germ is ramified or unramified depends on
the parity of `, which is exactly recorded in δ. If it is odd, then the singularity is a cusp,
contributing 1 to δ.

The above consideration shows that we need to perform `− k times blow-ups if 2k > `,
and b `2c times blow-ups if 2k ≤ `, to construct Blmin(T ∗C) and Σmin.

Case 4. Finally, we assume that a1 has a pole of oder k ≥ 1 at p ∈ C, and a2 has a pole of
order ` at p, with k ≥ `. We allow a2 to be holomorphic at p. The third example of Table 1.2,
the Gauß hypergeomtric equation at x = 0, 1, and the final example, at x = ±1,∞, fall into
this case.

The equation of the spectral curve is the same as (4.21), and its discriminant is given by
∆y of (4.23). Since k ≥ `, the contribution of p in ∆∞ is −2kp, which is not counted in δ.
Let us re-write (4.22) as

(4.24) xk−`z2 +
c1

c2
z +

1

c2
xk = 0.

Since c1/c2 ∈ OC,p is a unit, we can see from this equation that the curve germ passes
through (x, z) = (0, 0) only once as a regular point. Indeed the discriminant of (4.24) does
not vanish at x = 0. In particular, Σ is non-singular at its intersection of π−1(p). Therefore,
p ∈ C does not contribute into the Rimann-Hurwitz formula, which agrees with the fact
that δ does not record p.
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This completes the proof of Theorem 4.2, and the fact that δ counts the total number of
odd cusps on Σ. �

The proof of the above theorem give us the way to construct the blow-up space Bl(T ∗C)
of (1.6). The data we need is not only the discriminant divisor (4.7), but also the pole
divisors of the coefficients of the defining equation (4.3) of the spectral curve. Let us write

(4.25) (a1)∞ =

n∑
j−1

kjpj , (a2)∞ =

n∑
j−1

`jpj ,

where {p1, . . . , pj} = supp(∆∞). At each pj , a Newton polygon is defined as the upper part
of the convex hull of three points (0, 0), (1, kj), (2, `j) ∈ R2, as in Definition 1.9. We also
define the invariant

(4.26) rj =

{
kj 2kj ≥ `j ,
`j
2 2kj ≤ `j .

If our mission is only to resolve the singularities of Σ, then we can use the following
blow-up method.

Definition 4.5 (Construction of the minimal blow-up space). The minimal blow-up space
Blmin(T ∗C) of (4.19) is defined by blowing up T ∗C in the following way, as analyzed in the
proof of Theorem 4.2.

• At each qi of (4.8), blow up at the intersection Σ ∩ π−1(qi) a total of bmi2 c times.

• At each pj of (4.9), blow up at the intersection Σ ∩ π−1(pj) a total of
(1) bnj2 c times, if kj = 0, or kj > 0 and `j ≥ 2kj , and
(2) `j − kj times, if kj > 0 and 2`j > 2kj > `j .
Here, kj (`j , resp.) is the order of pole of a1 (a2, resp.) at pj .

Remark 4.6. The last case, kj > 0 and 2`j > 2kj > `j , is counter intuitive and does
not follow the rest of the pattern. The singularity of the spectral curve of the Hermite
differential equation at x = ∞ (the second row of Table 1.2) gives a good example. While
the pole divisor of the discriminant has order 6, and the intersection of the spectral curve
Σ and C∞ has degree 4, we only need one time blow-up.

The cumbersome definition of Blmin(T ∗C) becomes simple if we appeal to the Newton
polygon.

Definition 4.7 (Construction of the blow-up space). The blow-up space Bl(T ∗C) of (1.6)
is defined by blowing up T ∗C in the following way.

• At each qi of (4.8), blow up at the intersection Σ ∩ π−1(qi) a total of bmi2 c times.

• At each pj of (4.9), blow up at the intersection Σ ∩ π−1(pj) a total of drje times.

Theorem 4.8. In the blow-up space Bl(T ∗C), we have the following.

• The proper transform Σ̃ of the spectral curve Σ ⊂ T ∗C by the birational morphism

ν : Bl(T ∗C) −→ T ∗C is a smooth curve with a holomorphic map π̃ = π◦ν : Σ̃ −→ C.

• The proper transform of C∞ and Σ̃ do not intersect in Bl(T ∗C).

• The Galois action σ : Σ −→ Σ lifts to an involution of Σ̃, and the morphism

(4.27) π̃ : Σ̃ −→ C
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is a Galois covering with the Galois group Gal(Σ̃/C) = 〈σ̃〉 ∼= Z/2Z.

(4.28)

Σ̃
ν−−−−→ Σ

π−−−−→ C

σ̃

y yσ ∥∥∥
Σ̃ −−−−→

ν
Σ −−−−→

π
C

Proof. The curve we are trying to desingularize is the support Σ ∪ C∞ of the total divisor
(1.4) of the characteristic polynomial. Even Σ is smooth at its intersection with C∞, the
support Σ ∪ C∞ is always singular. The key point is that the drje times blow-up at the
intersection is exactly what we need to desingularize Σ ∪ C∞.

Let P ∈ Σ ∩ C∞ so that π(P ) = pj . We drop the index j in the rest of this proof.
The only case P is a smooth point of Σ is Case 4. From (4.24), we see that the spectral

curve near P is given by z = xk. Thus it is tangent to C∞ with the multiplicity k. Therefore,
we need k times blow-ups to separate the proper transforms of Σ and C∞. By (4.26), we
have r = k.

The point P is a cusp singularity only when 0 ≤ 2k ≤ ` and ` is odd. We have r = `/2, and
we need b`/2c-times blow-ups to desingularize Σ at P . To separate the proper transforms
of Σ and C∞ in the end, we need one more blow-up. Therefore, we need a total of dre
blow-ups.

If 0 ≤ 2k ≤ ` and ` is even, then still we have r = `/2. In this case the spectral curve
is locally reducible at P , and requires r-times blow-ups for desingularization. Since the
proper transform of P consists of two distinct points, the proper transforms of Σ and C∞
are separated after r-th blow-up.

The remaining case is 0 < k < ` < 2k. We have r = k. We need only (` − k) times
blow-ups to desingularize the spectral curve at P . Let us take a close look at (4.22). We
take z2 = 0 to see the infinitesimal relation between Σ and C∞. Then the equation becomes

(4.29) c1z + xk = 0,

which represents an irreducible component of the spectral curve near P that is tangent to
C∞. The degree of tangency is k, hence it requires k-times blowing up to separate the
proper transforms of Σ and C∞.

Since the spectral curve Σ is a double covering of C, Gal(Σ/C) ∼= Z/2Z. The involution
σ is its generator, which may or may not extend to the whole T ∗C. Since we construct
Σmin ⊂ Bl(T ∗C) as a simply ramified double covering over C in Theorem 4.2, it is non-
singular and there is a natural involution on it. The additional blow-ups

ν̄ : Bl(T ∗C) −→ Blmin(T ∗C)

does not affect the proper transform Σ̃ of Σmin, which also has an involution σ̃. The
involution σ̃ agrees with σ on the complement of the singular locus of Σ, thus satisfying
ν ◦ σ = σ̃ ◦ ν.

This completes the proof. �

5. The spectral curve as a divisor and its minimal resolution

In this section we give a formula for the minimal resolution Σmin of the spectral curve Σ
as an element of the Picard group Pic

(
Blmin(T ∗C)

)
. We also give a genus formula for Σmin

in terms of its geometry in Blmin(T ∗C). This gives another interpretation of the invariant
δ of the genus formula (4.12).
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The Picard group of T ∗C is generated by the pull-back of Pic(C) and the zero-section
C0 of the cotangent bundle T ∗C. Denote by F the fiber over a point of the morphism
π : T ∗C −→ C. We have the following intersection table:

F 2 = 0

C2
0 = 2g(C)− 2

FC0 = 1.

(5.1)

For the sake of simplicity, in what follows we denote simply

(5.2) αF := π∗(α)

for any divisor α ∈ Pic(C) (see [31, Chapter V.2]). In this notation, the canonical divisor
of T ∗C is given by

(5.3) KT ∗C = −2C0 + βF

with a divisor β ∈ Pic4g−4(C) of degree 4g − 4.
In Section 4 we identified a spectral curve Σ as a divisor in the ruled surface T ∗C. With

the convention of (5.2), (4.4) reads

(5.4) Σ = αF + 2C0,

where

α = ΣC∞ ∈ Pic(C∞) ∼= Pic(C)

is a divisor of degree a on C.
Since we deal only with the spectral curve of a rank 2 Higgs bundle, its singularities are

mild, and we can describe their resolution in detail. A singular spectral curve has infinitely
near singularities, which require iterative sequence of blow-ups on the ruled surface to be
resolved. For every singular point, say P ∈ Σ, we introduce a sequence of blow-ups

(5.5) BlPi (T ∗C)
νPi−→ · · ·

νP2−→ BlP1 (T ∗C)
νP1−→ BlP0 (T ∗C) = T ∗C.

Here, νPj+1 : BlPj+1(T ∗C) −→ BlPj (T ∗C), j = 1, · · · , i − 1, is a blow-up at the singular

point of Σj ⊂ BlPj (T ∗C), and Σj is the proper transform of Σj−1 ⊂ BlPj−1(T ∗C) under the

blow-up νPj . Each νPj introduces an exceptional divisor EPj with self-intersection −1 on

BlPj (T ∗C). By abuse of notation, we also write

(5.6) EPj := (νPj+1)
∗
(EPj )− EPj+1,

which is the proper transform of the divisor EPj on BlPj (T ∗C) by νPj+1. On BlPi+1(T ∗C), we
have a chain of self-intersection −2 curves with the following intersections properties:

(EP1 )
2

= . . . = (EPi )
2

= −2

(EPi+1)
2

= −1

EPj−1E
P
j = 1, for all 2 ≤ j ≤ i+ 1

EPj E
P
k = 0, for all 1 ≤ j, k ≤ i+ 1 with |j − k| > 1.

(5.7)

From (5.4), we see that Σ has only infinitely near double singularities. We denote by

(5.8) Σi
νPi−→ · · ·

νP2−→ Σ1
νP1−→ Σ0 = Σ
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the sequence of proper transforms of Σ under (5.5). The multiplicity of the singularity
P ∈ Σ is defined to be the least i of (5.8) such that Σi is non-singular.

Theorem 5.1. Let Q1, Q2, . . . , Qc be the singularities of Σ not on the zero section C0 or on
the divisor C∞, and Qc+1, . . . , Qs the singularities on C∞. We denote by nk the multiplicity
of Qk, k = 1, 2, . . . , s. Let

(5.9) Σmin ⊂ Blmin(T ∗C)
νmin−−−−→ T ∗C

be the minimal resolution of Σ after performing the blow-ups at each singularity exactly as
required, which includes blow-ups on the singularities on C0. Then the genus of the smooth
curve Σmin is given by

(5.10) g(Σmin) = 2g − 1 +
N0 +N∞

2
−

c∑
k=1

nk,

where N0 (resp. N∞) is the number of intersection points of Σmin with the proper transform
of C0 (resp. C∞) in Blmin(T ∗C).

Denote by Ekj the exceptional divisor of (5.6) for P = Qk, k = 1, 2, . . . , s. Then as an
element of the Picard group, we have

(5.11) Σmin = 2C0 + αF − 2
s∑

k=1

nk∑
j=1

jEkj ∈ Pic
(
Blmin(T ∗C)

)
,

where α ∈ Pic(C) is a divisor on C of degree

(5.12) a = N∞ + 2
s∑

k=c+1

nk.

Remark 5.2. If Σ is smooth, then N0 − N∞ = 4g − 4 and a = N∞. Therefore, (5.10)
agrees with (4.5).

Proof. Let us denote by P1, ..., Pt the singular points of Σ on the zero section C0 with

multiplicities m1, . . . ,mt. To avoid confusion, we denote by Gkj := EPkj the exceptional

divisor of (5.6) at P = Pk. The construction of Σmin and Blmin(T ∗C) requires also sequences
of blow-ups at these points. We use the same notation C0 for the proper transform of the
zero section via any of the blow-up appearing in this construction of the minimal resolution.

The Picard group Pic
(
Blmin(T ∗C)

)
is generated by Pic(C), the divisors Ekj ’s and Gkj ’s,

and C0. These generators satisfy, in addition to (5.7), the following:

(5.13)
C2

0 = 2g − 2−
t∑

k=1

mk

C0Gmk = 1, for every 1 ≤ k ≤ t.

Since the singular points of the spectral curve are not in general position, to give an explicit
expression for Σmin as a divisor, we consider two separate cases.

(1) Resolving singularities of Σ on the zero section C0.

For a singular point Pk, the resolution Σmk is of the form

(5.14) Σmk = αkF + 2C0,
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where αk ∈ Pic(C). At each step of the blow-ups, the canonical divisor of BlPkj (T ∗C), for

j ≤ mk, is Kj = (νj)
∗(Kj−1) +Gj . Therefore,

Kj = (νj)
∗(Kj−1) +Gj

= −2(C0 +Gj)− (νj)
∗

(
j−1∑
`=1

`G`

)
+ βF +Gj

= −2C0 −
j−2∑
`=1

`G` − (j − 1)(Gj−1 +Gj)−Gj + βF

= −2C0 + βF −
j∑
`=1

`G`,

where β is the divisor of (5.3).

(2) Resolving singularities of Σ not on the zero section.

We now consider the singular point Qk. The proper transform of Σ under nk iterated
blow-ups is

(5.15) Σnk = Σ− 2

nk∑
i=1

 i∑
j=1

Enk−j+1

 = Σ− 2

nk∑
i=1

iEi.

The canonical divisor on the blown up ruled surface at the point BlQki (T ∗C) is

Ki = (νi)
∗(Ki−1) + Ei

= −2C0 + βF + (νi)
∗

 i−1∑
j=1

jEj

+ Ei

= −2C0 + βF +

i−2∑
j=1

jEj + (i− 1)(Ei−1 + Ei) + Ei

= −2C0 + βF +

i∑
j=1

jEj .

Alter all these blowups, we obtain the expression of the canonical divisor on Blmin(T ∗C):

(5.16) KBlmin(T ∗C) = −2C0 + βF +
s∑

k=1

nk∑
i=1

iEki −
t∑

k=1

mk∑
i=1

iGki .

From (5.14) and (5.15) we obtain

(5.17) Σmin = (2C0 + αF )− 2

s∑
k=1

nk∑
i=1

iEki ,

where α is the sum of all αk of (5.14).
Let us now turn our attention to determining the degree of α. We recall the genus formula

pa(Σmin) =
Σmin

(
Σmin +KBlmin(T ∗C)

)
2

+ 1.
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Equations (5.16) and (5.17) yield

Σmin +KBlmin(T ∗C) = (α+ β)F −
s∑

k=1

nk∑
i=1

iEki −
t∑

k=1

mk∑
i=1

iGki .

Denoting degα = a, the above gnus formula yields

2pa(Σmin)− 2

= 2(a+ 4g − 4)C0F − 2
t∑

k=1

mk∑
i=1

iC0G
k
i + 2

(
s∑

k=1

nk∑
i=1

iEki

)2

= 2(a+ 4g − 4)− 2

t∑
k=1

mkC0G
k
mk

+ 2

s∑
k=1

(
nk−1∑
i=1

(−2)i2 − n2
k + 2

nk−1∑
i=1

i(i+ 1)

)

= 2(a+ 4g − 4)− 2

t∑
k=1

mk + 2

s∑
k=1

(
−n2

k + 2

nk−1∑
k=1

i

)

= 2(a+ 4g − 4)− 2
t∑

k=1

mk − 2
s∑

k=1

nk.

We therefore conclude that

(5.18) g(Σmin) = a+ 4g − 3−
t∑

k=1

mk −
s∑

k=1

nk.

Since the proper transform of C0 on Blmin(T ∗C) does not intersect with the exceptional
divisors Ekj ’s, from (5.17) we have

Σmin · C0 = (αF + 2C0)C0 = N0.

This yields

(5.19) 4g − 4 + a =

t∑
i=k

2mk +N0.

The proper transform of C∞ on Blmin(T ∗C) is given by

(5.20) C∞ −
t∑

k=1

mk∑
j=1

jEkj ,

which we also denote simply by C∞ if there is no confusion. We recall that on Blmin(T ∗C)
we have

C∞F = 1, C∞C0 = 0,

C∞E
k
j =

{
nk j = nk, k = c+ 1, . . . , s

0 otherwise.

Thus from the intersection of (5.17) and C∞, we obtain

(5.21) a = N∞ + 2
s∑

k=c+1

nk.

This proves (5.12).
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Substituting (5.21) in (5.19), we obtain

4g − 4 = 2
t∑

k=1

mk − 2
s∑

k=c+1

nk +N0 −N∞,

which shows that N0 ±N∞ is even. From (5.18) we have

g(Σmin) = (a+ 4g − 3)−
t∑

k=1

mk −
c∑

k=1

nk −
s∑

k=c+1

nk

= 1 +N0 +
t∑

k=1

mk −
c∑

k=1

nk −
s∑

k=c+1

nk.

From the above two equations, we obtain

4g − 4 = 2g(Σmin)− 2 + 2

c∑
k=1

nk −N0 −N∞,

which yields

g(Σmin) = 2g − 1 +
N0 +N∞

2
−

c∑
k=1

nk.

This completes the proof of Theorem 5.1. �

6. Construction of the quantum curve

When we say that the quantization of a characteristic equation

(6.1) η2 − π∗tr(φ)η + π∗ det(φ) = 0

of a Higgs field φ is a differential quation

(6.2)

((
~
d

dx

)2

− tr(φ(x))

(
~
d

dx

)
+ det(φ(x))

)
Ψ(x, ~) = 0,

it may sound obvious. The point is that since x and the differential operator d/dx do not
commute, there are many different differential equations other than (6.2) that correspond to
the starting algebraic equation (6.1). The mechanism we use to identify the correct formula
for the quantization is the topological recursion. In this section, first we formulate our main
theorem of quantization. Then we give the definition of the topological recursion, using the
desingularization of the spectral curve (1.6), constructed in Theorem 4.8 and Definition 4.7.
The rest of the section is devoted to proving the main theorem.

6.1. The main theorem. The main theorem of this paper is the construction of the
quantum curve guided by the asymptotic expansion of its solutions, which is obtained by
the topological recursion.

Theorem 6.1 (Main Theorem). Let C be a smooth projective curve of an arbitrary genus,
and (E, φ) a rank 2 Higgs bundle consisting of a topologically trivial vector bundle E and
an arbitrary meromorphic Higgs field φ. We denote by Σ ⊂ T ∗C the spectral curve defined

by (3.9). Then there exists a Rees D-module M̃ on C whose semi-classical limit agrees
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with the spectral curve Σ. On every coordinate chart U of C with a local coordinate x, a

generator of M̃ is given by a differential operator

(6.3) P (x, ~) =

(
~
d

dx

)2

− trφ(x)

(
~
d

dx

)
+ detφ(x) ∈ D̃C(U),

so that we have

(6.4) M̃ = D̃C(U)
/
D̃C(U) · P (x, ~).

Let q ∈ C be one of the critical values of the projection π : Σ −→ C that corresponds to

a branch point of the desingularized covering π̃ : Σ̃ −→ C. Then there exists a coordinate
neighborhood Uq ⊂ C of q with a coordinate x centered at q such that the following holds.

(1) For an arbitrary point p ∈ Uq, there is a contractible open neighborhood Vp ⊂ Uq of
p that does not contain q.

(2) Choose an eigenvalue α of φ on Vp. Then there is an all-order asymptotic solution
to the differential equation

(6.5) P (x, ~)Ψα(x, ~) = 0

that is defined on Vp.
(3) The asymptotic expansion is given by

(6.6) Ψα(x, ~) = exp

( ∞∑
m=0

~m−1Sαm(x)

)
.

Here,
• the 0-th term Sα0 (x) is determined by solving (6.14);
• the first term Sα1 (x) is determined by solving (6.15);
• Sαm(x) for m ≥ 2 is given by

(6.7) Sαm(x) =
∑

2g−2+n=m−1

1

n!
Fαg,n(x);

• the free energies Fg,n(z1, · · · , zn) for 2g − 2 + n > 1 are determined by the
differential recursion (6.11);
• and each Fαg,n(x) is the principal specialization of the restriction of the free

energy to the open subset Vα ⊂ Σ of Σ that corresponds to the eigenvalue α on
Vp, which we identify with Vp by π : Vα

∼−→ Vp.

Remark 6.2. Since trφ and detφ are globally defined meromorphic sections of KC and

K⊗2
C , respectively, the existence of the Rees D-module M̃ is obvious. We can simply define

it by (6.3) and (6.4). Therefore, the point here is that the differential operator P (x, ~) has
a particular solution that is prescribed in the main theorem.

6.2. The topological recursion and the WKB method. Let us start with defining
each terminology in the main theorem.

Although the topological recursion can be formulated for an arbitrary ramified covering
of a base curve C of any degree, for the purpose of quantization in this paper, we need a
Galois covering, and we also need to calculate the residues in the formula. Therefore, we
deal with the topological recursion only for a covering of degree 2 in this paper.

Definition 6.3 (Integral topological recursion for a degree 2 covering). Let C be a non-

singular projective algebraic curve, and π̃ : Σ̃ −→ C a degree 2 covering by another non-

singular curve Σ̃. We denote by R the ramification divisor of π̃. In this case the covering
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π̃ is a Galois covering with the Galois group Z/2Z = 〈σ̃〉, and R is the fixed-point divisor
of the involution σ̃. The integral topological recursion is an inductive mechanism of

constructing meromorphic differential forms Wg,n on the Hilbert scheme Σ̃[n] of n-points on

Σ̃ for all g ≥ 0 and n ≥ 1 in the stable range 2g − 2 + n > 0, from given initial data W0,1

and W0,2.

• W0,1 is a meromorphic 1-form on Σ̃.
• W0,2 is defined to be

(6.8) W0,2(z1, z2) = d1d2 logE
Σ̃

(z1, z2),

where E
Σ̃

(z1, z2) is the normalized Riemann prime form on Σ̃×Σ̃ (see [18, Section 2]).

Let ωa−b(z) be a normalized Cauchy kernel on Σ̃, which has simple poles at z = a of residue
1 and at z = b of residue −1. Then (see [18, Section 2])

d1ω
z1−b(z2) = W0,2(z1, z2).

Define

(6.9) Ω := σ̃∗W0,1 −W0,1.

Then σ̃∗Ω = −Ω, hence supp(R) ⊂ supp(Ω), where supp(Ω) denotes the support of both
zero and pole divisors of Ω. The inductive formula of the topological recursion is then given
by the following:

(6.10) Wg,n(z1, . . . , zn) =
1

2

1

2π
√
−1

∑
p∈supp(Ω)

∮
γp

ωz̃−z(z1)

Ω(z)

×

Wg−1,n+1(z, z̃, z2, . . . , zn) +

No (0,1)∑
g1+g2=g

ItJ={2,...,n}

Wg1,|I|+1(z, zI)Wg2,|J |+1(z̃, zJ)

 .
Here,

• γp is a positively oriented small loop around a point p ∈ supp(Ω);
• the integration is taken with respect to z ∈ γp for each p ∈ supp(Ω);

• z̃ = σ̃(z) is the Galois conjugate of z ∈ Σ̃;
• the operation 1/Ω denotes the contraction of the meromorphic vector field dual to

the 1-form Ω, considered as a meromorphic section of K−1

Σ̃
;

• “No (0, 1)” means that g1 = 0 and I = ∅, or g2 = 0 and J = ∅, are excluded in the
summation;
• the sum runs over all partitions of g and set partitions of {2, . . . , n}, other than

those containing the (0, 1) geometry;
• |I| is the cardinality of the subset I ⊂ {2, . . . , n}; and
• zI = (zi)i∈I .

The passage from the topological recursion (6.10) to the quantum curve (1.9) is the
evaluation of the residues in the formula.

Definition 6.4 (Free energies). The free energy of type (g, n) is a function Fg,n(z1, . . . , zn)

defined on the universal covering Un of Σ̃n such that

d1 · · · dnFg,n = Wg,n.
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Remark 6.5. The free energies may contain logarithmic singularities, since it is an integral
of a meromorphic function. For example, F0,2 is the Riemann prime form itself considered
as a function on U2, which has logarithmic singularities along the diagonal [18, Section 2].

Definition 6.6 (Differential recursion for a degree 2 covering). The differential recursion
is the following partial differential equation for all (g, n) subject to 2g − 2 + n ≥ 2:

(6.11) d1Fg,n(z1, . . . , zn)

=

n∑
j=2

[
ωzj−σ(zj)(z1)

Ω(z1)
· d1Fg,n−1

(
z[ĵ]

)
− ωzj−σ(zj)(z1)

Ω(zj)
· djFg,n−1

(
z[1̂]

)]

+
1

Ω(z1)
du1du2

Fg−1,n+1

(
u1, u2, z[1̂]

)
+

stable∑
g1+g2=g
ItJ=[1̂]

Fg1,|I|+1(u1, zI)Fg2,|J |+1(u2, zJ)


∣∣∣∣∣∣∣∣
u1=z1
u2=z1

.

Here, 1/Ω is again the contraction operation, and the index subset [ĵ] denotes the exclusion
of j ∈ {1, 2, . . . , n}.

Remark 6.7. As pointed out in [18, Remark 4.8], (6.11) is a coordinate-free equation,
written in terms of exterior differentiations and the contraction operation on the universal

covering of Σ̃.

Theorem 6.8. Let $ : U −→ Σ̃ be the universal covering of Σ̃. Suppose that Fg,n for

2g − 2 + n > 0 are globally meromorphic on U [n] with poles located only along the divisor
of U [n] when one of the factors lies in the pull-back divisor $∗(Ω)0 of zeros of Ω. Define
Wg,n := d1 · · · dnFg,n. If Fg,n’s satisfy the differential recursion (6.11), then Wg,n’s satisfy
the integral topological recursion (6.10).

Although the context of the statement is slightly different, the proof is essentially the
same as that of [18, Theorem 4.7].

Now let us consider a spectral curve Σ ⊂ T ∗C of (3.9) defined by a pair of meromorphic

sections a1 = −trφ of KC and a2 = detφ of K⊗2
C . Let Σ̃ be the desingularization of Σ in

(1.6). We apply the topological recursion (6.10) to the covering π̃ : Σ̃ −→ C of (4.27). The
geometry of the spectral curve Σ provides us with a canonical choice of the initial differential
forms (1.7). At this point we pay a special attention that the topological recursions (6.10)

and (6.11) are both defined on the spectral curve Σ̃, while we wish to construct a Rees

D-module on C. Since the free energies are defined on the universal covering of Σ̃, we need
to have a mechanism to relate a coordinate on the desingularized spectral curve and that
of the base curve C.

Take an arbitrary point p ∈ C \ supp(∆), and a local coordinate x around p. Here, ∆
is the discriminant divisor (4.7). By choosing a small disc V around p, we can make the

inverse image of π̃ : Σ̃ −→ C consisting of two isomorphic discs. Since V is away from the
critical values of π̃, the inverse image consists of two discs in the original spectral curve Σ.
Note that we choose an eigenvalue α of φ on V in Theorem 6.1. We are thus specifying one
of the inverse image discs here. Let us name the disc Vα that corresponds to α.
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At this point apply the WKB analysis to the differential equation (6.5) with the WKB
expansion of the solution

(6.12) Ψα(x, ~) = exp

( ∞∑
m=0

~m−1Sm
(
x(z)

))
= expFα(x, ~),

where we choose a coordinate z of Vα so that the function x = x(z) represents the projection
π : Vα −→ V . The equation PΨα = PeF

α
= 0 reads

(6.13) ~2 d
2

dx2
Fα + ~2dF

α

dx

dFα

dx
+ a1~

dFα

dx
+ a2 = 0.

The ~-expansion of (6.13) gives

~0-terms : (S′0(x))2 + a1S
′
0(x) + a2 = 0,(6.14)

~1-terms : 2S′0(x)S′1(x) + S′′0 (x) + a1S
′
1(x) = 0,(6.15)

~m+1-terms : S′′m(x) +
∑

a+b=m+1

S′a(x)S′b(x) + a1S
′
m+1(x) = 0, m ≥ 1,(6.16)

where ′ denotes the x-derivative. The WKB method is to solve these equations iteratively
and find Sm(x) for all m ≥ 0. Here, (6.14) is the semi-classical limit of (6.5), and (6.15)
is the consistency condition we need to solve the WKB expansion. Since the 1-form dS0(x)
is a local section of T ∗C, we identify y = S′0(x). Then (6.14) is the local expression of the
spectral curve equation (4.3). This expression is the same everywhere for p ∈ C \ supp(∆).
We note a1 and a2 are globally defined. Therefore, we recover the spectral curve Σ from
the differential operator (6.3).

The topological recursion provides a closed formula for each Sm(x).

Theorem 6.9 (Topological recursion and WKB). Let us determine S0(x) and S1(x) from
the semi-classical limit and the consistency condition. Then the principal specialization
of (6.11) is equivalent to (6.16).

Proof. First let us take q ∈ C one of the qi’s of (4.8), above which π̃ : Σ̃ −→ C is simply

ramified at Q := π̃−1(q) ∈ Σ̃. We choose a local coordinate x on C centered at q. The

Galois action of σ̃ on Σ̃ fixes Q. Let Ũ ⊂ Σ̃ be a neighborhood of Q such that p ∈ π̃(Ũ)

and a1 ∈ H0
(
π̃(Ũ),KC

)
, i.e., holomorphic on π̃(Ũ). The defining equation of the spectral

curve Σ on π̃(Ũ) is (
ydx+

1

2
a1

)2

−
(

1

4
a2

1 − a2

)
= 0.

Since a1 is holomorphic at x = q, the Galois action of σ on the spectral curve Σ extends
to T ∗C|

π̃(Ũ)
by the formula given in (4.16). As we have shown in Case 1 of the proof of

Theorem 4.2, the degree mi of zero of the discriminant 1
4a

2
1 − a2 at q = qi is odd, say

mi = 2µ+ 1, and the construction of Blmin(T ∗C) contains blow-ups of b2µ+1
2 c = µ times at

the singular point above q. In terms of the coordinate x, we can write

a1 = a1(x)dx, a2 = a2(x)(dx)2,
1

4
a1(x)2 − a2(x) = cx2µ+1

with a unit c ∈ OC,q. Define y0 := y+ 1
2a1(x). Then the first blow-up at the singular point

above q is done by replacing y0 = y1x so that the proper transform is locally defined by

y2
1 = cx2µ−1.



38 O. DUMITRESCU AND M. MULASE

The coordinate y1 is the affine coordinate of the exceptional divisor. Repeating this process
µ-times, we end up with a coordinate yµ−1 = yµx and an equation

y2
µ = cx.

Here again, yµ is the affine coordinate of the last exceptional divisor resulted from the µ-th
blow-up. We now write z = yµ so that the proper transform of the µ-times blow-ups is
given by

(6.17) z2 = cx.

Note that the Galois action of σ̃ at Q is simply z 7−→ −z. Solving (6.17) as a functional
equation, we obtain a Galois invariant local expression

(6.18) x = x(z) = cQ(z2)z2,

where cQ ∈ OΣ̃,Q
is a unit element. This formula (6.18) is precisely the local expression of

the morphism π̃ : Σ −→ C at Q ∈ Σ. On the other hand, from the construction we also
have

y0 = zxµ = y +
1

2
a1(x),

or equivalently,

(6.19) η = y(z)dx = zxµdx− 1

2
a1, y(z) = zxµ − 1

2
a1(x).

We have thus obtained the normalization coordinate z on the desingularized curve Σ near
Q:

(6.20)

{
x = x(z) = cQ(z2)z2,

y = y(z) = zxµ − 1
2a1(x).

Notice that we now have a parametric equation for the singular spectral curve Σ:(
y(z) +

1

2
a1(x(z))

)2

= z2x(z)2µ = cx(z)2µ+1 =
1

4
a1(x(z))2 − a2(x(z)).

The differential form η of (6.19) is the local expression of the form Ω in the differential
topological recursion (6.11).

We have now established the local expression of all functions and forms involved in the
topological recursion. From here the rest of the proof is parallel to [18].

As we have shown in the process of the proof of Theorem 4.2, the situation is the same

if q ∈ C corresponds to a branch point of π̃ : Σ̃ −→ C that comes from an odd cusp of Σ
on the divisor C∞. A similar argument of the above proof works for this case.

This completes the proof. �

We have thus completed the proof of Theorem 6.1.

6.3. Singularity of quantum curves. Let p be a pole of the discriminant divisor ∆ of
(4.9). The local equation for the spectral curve around p is

y2 + a1(x)y + a2(x) = 0.

As we have shown above, the local generator of the quantum curve as a Rees D-module is
given by a differential operator(

~
d

dx

)2

+ a1(x)

(
~
d

dx

)
+ a2(x).



QUANTIZATION OF MEROMORPHIC HIGGS BUNDLES 39

Therefore, the type of the singularity of the quantum curve is determined by the local
geometry of the spectral curve. We have the following.

Theorem 6.10 (Regular and irregular singular points of the quantum curve). Let P ∈
Σ∩C∞ be a point at the intersection of the spectral curve Σ and the divisor C∞ at infinity
of the ruled surface T ∗C. Suppose it requires ρ times blow up at P to construct Bl(T ∗C).
Then the quantum curve of Theorem 6.1 has

• a regular singular point at p = π(P ) if ρ = 1.
• If ρ > 1, then the quantum curve has an irregular singular point at p = π(P ) of class

either ρ− 1 or ρ− 3
2 , the latter occurring only when P is a cusp singularity of Σ.

Proof. As in the proof of Theorem 4.2, we denote by k (reps. `) the pole order of a1(x)
(reps. a2(x)) at x = p. Let r be the invariant defined in (4.26). Then by Definition 1.9, p is
a regular singular point of the quantum curve if 0 < r ≤ 1. In this case we need to blow-up
once at P for construction of Bl(T ∗C), because dre = 1. If r > 1, then the singularity is
irregular with class r − 1, and we need dre times blow-ups. As we see from the proof of
Theorem 4.8, a non-integer r occurs only when P is a cusp. This completes the proof. �

7. The classical differential equations as quantum curves

The key examples of the theory of quantum curves as presented in this paper are the
classical differential equations. In this section, we present the Hermite and Gauss hyperge-
ometric differential equations.

7.1. Hermite differential equation. The base curve is C = P1, as in the Airy case. The
stable Higgs bundle (E, φ) consists of the trivial vector bundle E = OP1 ⊕OP1 and a Higgs
field

(7.1) φ =

[
1

−1 −x

]
dx : E −→ E ⊗KP1(2) = E.

In the affine coordinate (x, y) of the Hirzebruch surface F2, the spectral curve Σ is given by

(7.2) det
(
η − π∗(φ)

)
= (y2 + xy + 1)(dx)2 = 0,

where π : F2 −→ P1 is the projection. In the other affine coordinate (u,w) of (1.20), the
spectral curve is singular at (u,w) = (0, 0):

(7.3) u4 − uw + w2 = 0.

These equations tell us that Σ · C0 = 0 and Σ · C∞ = 4. Therefore,

Σ = 2C0 + 4F ∈ NS(F2).

The discriminant of the defining equation (7.2) is(
−1

4
x2 + 1

)
(dx)2 = −1

4
(x− 2)(x+ 2)(dx)2 =

u2 − 1
4

u6
(du)2.

It has two simple zeros at x = ±2 and a pole of order 6 at x =∞. We note that

tr(φ) = −xdx =
du

u3

has a cubic pole at u = 0. As explained in Case 3 of the proof of Theorem 4.2, we need to
compare the poles of tr(φ) and

det(φ) = (dx)2 =
(du)2

u4
.
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Figure 7.1. The spectral curve Σ of (7.2). The horizontal line is the divisor C∞
at infinity, and the vertical line is the fiber class F . The spectral curve intersects
with C∞ four times. One of the two curve germ components is given by w = u, and
the other by w = u3.

Figure 7.2. The desingularization Σ̃ of the spectral curve (7.2).

Since 4 − 3 = 1, we blow up Σ once at its nodal singularity (u,w) = (0, 0). We introduce
w = w1u. Then (7.3) becomes

(7.4) u2 +

(
w1 −

1

2

)2

=
1

4
.

The geometric genus formula (4.12) tells us that Σmin has genus 0, and Σmin −→ C is
ramified at two points, corresponding to the original ramification points (x, y) = (±2,∓1)
of Σ. The rational parametrization of (7.4) is given by{

u = 1
2 ·

t2−1
t2+1

w1 = 1
2 −

t
t2+1

,

where t is an affine coordinate of Σ̃ such that t = ±1 gives (u,w) = (0, 0). The parameter
t is a normalization coordinate of the spectral curve Σ:

(7.5)

{
x = 2 + 4

t2+1

y = − t+1
t−1 ,

{
u = 1

2 ·
t2−1
t2+1

w = 1
4 ·

(t−1)3(t+1)
(t2+1)2

.

We notice that the expression of (7.5) is exactly the same as [19, (3.13), (3.14)]. The integral

topological recursion applied to Σ̃ again agrees with that of [19].
The quantum curve construction of [46] is thus consistent with our new definition. The

result is

(7.6)

((
~
d

dx

)2

+ x

(
~
d

dx

)
+ 1

)
Ψ(x, ~) = 0.

Since x and d/dx do not commute, the passage from (7.2) to (7.6) is non-trivial, in the
sense that the constant term could have contained a term c · ~. On the affine open subset
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U1 = P1 \ {0}, the operator of (7.6) has an expression

u4

(
~
d

du

)2

+ (2u3~− u)

(
~
d

du

)
+ 1 ∈ D̃U1 .

Thus the point ∞ ∈ P1 is an irregular singular point of class 2 of (7.6) for ~ 6= 0.
The semi-classical limit (6.14) of (7.6) using the WKB formula (1.8) is

(7.7) S′0(x)2 + xS′0(x) + 1 = 0.

Following [19], define

(7.8) z =
t+ 1

t− 1
=

∞∑
m=0

Cm
x2m+1

,

where Cm = 1
m+1

(
2m
m

)
is the m-th Catalan number. The inverse function of (7.8) for

x =∞⇒ z = 0 is given by x = x(z) = z + 1
z . In terms of z, the two solutions of (7.7) are

given by

(7.9) S0

(
x(z)

)
=

{
−1

2z
2 + log z + const

−1
2

1
z2
− log z + const.

Corresponding to these choices, the solutions to the consistency condition (6.15) are given
by

(7.10) S1

(
x(z)

)
=

{
−1

2 log(1− z2) + const

−1
2 log(1− z2) + log z + const.

Every solution of (7.6) is a linear combination of two solutions, with coefficients given
by arbitrary functions in ~. One is given by the Kummer confluent hypergeomtric
function of (1.24):

Ψ1(x, ~) = 1F1

(
1

2~
;
1

2
;−x

2

2~

)
.

The other is a bit more complicated function known as the Tricomi confluent hyperge-
omtric function

(7.11) Ψ2(x, ~) =
Γ[1

2 ]

Γ[ 1
2~ + 1

2 ]
1F1

(
1

2~
;
1

2
;−x

2

2~

)
+

Γ[−1
2 ]

Γ[ 1
2~ ]

√
x2

−2~1F1

(
1

2~
+

1

2
;
3

2
;−x

2

2~

)
.

For a positive real ~ > 0, let us consider a special solution

(7.12) ΨCatalan(x, ~) :=

(
− 1

2~

) 1
2~

Ψ2(x, ~).

This solution corresponds to the WKB solution (1.8) for the first choices of (7.9) and
(7.10), with both constants of integration to be set 0. Then we have a closed formula for
the all-order asymptotics of this particular confluent hypergeometric function:

(7.13)

ΨCatalan(x, ~) =

(
1

x

) 1
~ ∞∑
n=0

~n
(

1
~
)

2n

(2n)!!
· 1

x2n

= exp

 ∑
2g−2+n≥−1

1

n!
~2g−2+nFCatalan

g,n (x, . . . , x)

 ,
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where (1/~)2n is the Pochhammer symbol (1.25). The free energies are defined by

(7.14) FCatalan
g,n (x1, . . . , xn) =

∑
µ1,...,µn>0

Cg,n(µ1, . . . , µn)

µ1 · · ·µn

n∏
i=1

x−µii

for 2g−2+n > 0, and FCatalan
0,1 (x) = S0(x) and 1

2F
Catalan
0,2 (x) = S1(x). Here, Cg,n(µ1, . . . , µn)

is the generalized Catalan number of genus g and n labeled vertices of degrees (µ1, . . . , µn)
that counts the number of cellular graphs [19, 48]. In [19, Theorem 4.3, Proposition
A.1], we show that FCg,n satisfies the differential recursion equation (6.11). (We note that
the differential recursion of [19] is derived by taking the Laplace transform of [48, Equation
6]). The initial geometric data (1.7) are also the same as [19, (3.12), (4.3)]. Therefore, the
application of the topological recursion to the desingularized spectral curve Σmin produces
(7.14), and the quantum curve (7.6).

At the special value ~ = 1, the expansion (7.13) has the following simple form

∞∑
n=0

(2n− 1)!!

x2n+1
= exp

 ∑
2g−2+n≥−1

1

n!

∑
µ1,...,µn>0

Cg,n(µ1, . . . , µn)

µ1 · · ·µn

n∏
i=1

x−(µ1+···+µn)

 .

Note that the sum of the degrees of the vertices µ1 + · · · + µn is always even. Therefore,
except for the unstable geometries (g, n) = (0, 1) and (0, 2), the above expansion is in x−2.
This indicates that the Hermite equation has an irregular singular point of class 2 at x =∞.

7.2. Gauß hypergeometric differential equation. The Higgs bundle (E, φ) on P1 is
again given by the trivial bundle E = OP1 ⊕OP1 , and a Higgs field

(7.15) φ =

 1
x

− ab
x−1 − (a+b+1)x−c

x(x−1)

 dx,
where a, b, c are constant parameters. The spectral curve Σ ∈ F2 is defined by

(7.16) x(x− 1)y2 + ((a+ b+ 1)x− c)y + ab = 0.

In terms of the (u,w) coordinate of (1.20), the spectral curve is given by

(7.17) abw2 + (cu− a− b)uw − u2(u− 1) = 0.

It has an ordinary double point at (u,w) = (0, 0). The discriminant divisor of (4.7) is

(7.18) ∆Gauß =

((
1
4((a+ b+ 1)x− 1)2 − abx(x− 1)

)
(dx)2

x2(x− 1)2

)
,

which consists of two simple zeros and 3 double poles at x = 0, 1,∞. Following Defini-
tion 4.7, we blow up F2 once at the point at infinity of Σ to construct the normalization
Σmin. The invariant β of (4.11) is equal to 2, and hence Σmin is isomorphic to P1.

The quantum curve we obtain is a Gauß hypergeometric differential equation

(7.19)

(
x(x− 1)

(
~
d

dx

)2

+ ((a+ b+ 1)x− c) ~ d
dx

+ ab

)
ΨGauß(x, ~) = 0.

One of the two independent solutions that is holomorphic at x = 0 is given in terms of a
Gauß hypergeometric function



QUANTIZATION OF MEROMORPHIC HIGGS BUNDLES 43

(7.20) ΨGauß(x, ~) = 2F1

(
−

√
(a+ b+ 1− ~)2 − 4ab

2~
+
a+ b+ 1

2~
− 1

2
,√

(a+ b+ 1− ~)2 − 4ab

2~
+
a+ b+ 1

2~
− 1

2
;
c

~
;x

)
.

If we choose
√

(a+ b+ 1− ~)2 − 4ab = b− a when ~ = 1, then

(7.21) ΨGauß(x, 1) = 2F1(a, b; c, x) =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!

solves the standard form of the Gauß hypergeometric equation

(7.22)

(
x(x− 1)

(
d

dx

)2

+ ((a+ b+ 1)x− c) d

dx
+ ab

)
ΨGauß(x, 1) = 0.

Now let us specialize a = b = 1
2 , c = 1. We have the relation between the hypergeometric

function and the period function of (1.11):

(7.23)
ω1(x)

π
= 2F1

(
1

2
,
1

2
; 1, x

)
.

The spectral curve (7.16) becomes

(7.24) x(x− 1)y2 + (2x− 1)y +
1

4
= 0.

On the normalization Σ̃, we have W0,1(x) = ydx, which actually depends of the sheet of

the covering π̃ : Σ̃ −→ P1. For our purpose, we choose

(7.25) y = y(x) =
−(2x− 1)−

√
3x2 − 3x+ 1

2x (x− 1)
.

Then

(7.26) S0(x) = F0,1(x) =

∫
y(x)dx

=
x

4
−

21
(
4
√

3− 7
)

32
(
2
√

3− 3
)2x2 +

23
(
26
√

3− 45
)

32
(
2
√

3− 3
)3 x3 −

2547
(
56
√

3− 97
)

1024
(
2
√

3− 3
)4 x4

+
7281

(
362
√

3− 627
)

2560
(
2
√

3− 3
)5 x5 −

38115
(
780
√

3− 1351
)

4096
(
2
√

3− 3
)6 x6 +

265869
(
5042
√

3− 8733
)

28672
(
2
√

3− 3
)7 x7 + · · ·

solves the semi-classical limit equation (6.14). The solution of the consistency condition
(6.15) is given by

(7.27) S1(x) = −
∫

y′(x)

2y(x) + 2x−1
x(x−1)

dx

= − 7

32
x2 − 53

96
x3 − 1075

1024
x4 − 4319

2560
x5 − 28319

12288
x6 − 72109

28672
x7 + · · · .

The solution of (6.16) for m = 1 is

(7.28) S2(x) =
7x2

32
+

113x3

96
+

1821x4

512
+

1269x5

160
+

56151x6

4096
+

487323x7

28672
+ · · · .
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From (7.26), (7.27) and (7.28), we have an expression

(7.29) exp

(
1

~
S0(x) + S1(x) + ~S2(x)

)
= 1 +

x

4~
+

1 + 7~− 7~2 + 7~3

32~2
x2 +

1 + 21~ + 71~2 − 191~3 + · · ·
384~3

x3

+
1 + 42~ + 473~2 + 598~3 + · · ·

6144~4
x4 +

1 + 70~ + 1585~2 + 1141− ~3 + · · ·
122880~5

x5 + · · · .

This is in good agreement of the hypergeometric function of (7.20), which can be expanded
as

ΨGauß(x, ~) = 1 +
∞∑
n=1

1

4nn!

∏n
m=1

(
1 + 8(m− 1)~ + 4(m− 1)(m− 2)~2

)∏n
m=1 (1 + (m− 1)~)

(x
~

)n
= 1 +

x

4~
+

1 + 8~
32~(1 + ~)

x2 +
(1 + 8~)(1 + 16~ + 8~2)

384~3(1 + ~)(1 + 2~)
x3

+
(1 + 8~)(1 + 16~ + 8~2)(1 + 24~ + 24~2)

6144~4(1 + ~)(1 + 2~)(1 + 3~)
x4 + · · · ,

up to order of ~3 of the numerator of every coefficient of xn, n ≥ 0. The topological recursion
applied to the spectral curve (7.16) with F0,1 = S0(x) and the standard Riemann prime

form on Σ̃ = P1 for F0,2 then gives a genus expansion of ΨGauß(x, ~), constructing a genus
g B-model on the curve (7.16).
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