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Abstract. This article consists of two parts. In Part 1, we present a formulation of two-

dimensional topological quantum field theories in terms of a functor from a category of ribbon

graphs to the endofuntor category of a monoidal category. The key point is that the category of
ribbon graphs produces all Frobenius objects. Necessary backgrounds from Frobenius algebras,

topological quantum field theories, and cohomological field theories are reviewed. A result on

Frobenius algebra twisted topological recursion is included at the end of Part 1.
In Part 2, we explain a geometric theory of quantum curves. The focus is placed on the process

of quantization as a passage from families of Hitchin spectral curves to families of opers. To make
the presentation simpler, we unfold the story using SL2(C)-opers and rank 2 Higgs bundles defined

on a compact Riemann surface C of genus greater than 1. In this case, quantum curves, opers,

and projective structures in C all become the same notion. Background materials on projective
coordinate systems, Higgs bundles, opers, and non-Abelian Hodge correspondence are explained.

Contents

0. Preface: An inspiration from the past 2

Part 1. Topological Quantum Field Theory 5
1. Frobenius algebras 5
2. TQFT 9
3. Silhouette of Gromov-Witten theory 13
4. Cohomological field theory 18
5. Category of cell graphs 23
6. 2D TQFT from cell graphs 29
7. TQFT-valued topological recursion 31

Part 2. Quantization of Higgs Bundles 35
8. Quantum curves 35
9. Projective structures, opers, and Higgs bundles 38
10. Semi-classical limit of SL2(C)-opers 50
11. Non-Abelian Hodge correspondence between Hitchin moduli spaces 51
References 53

2010 Mathematics Subject Classification. Primary: 14H15, 14N35, 81T45; Secondary: 14F10, 14J26, 33C05,
33C10, 33C15, 34M60, 53D37.

Key words and phrases. Topological quantum field theory; quantum curves; opers; Hitchin moduli spaces; Higgs
bundles; Hitchin section; quantization; topological recursion.

1



2 O. DUMITRESCU AND M. MULASE

0. Preface: An inspiration from the past

A recent discovery of a cuneiform tablet dated around 350 to 50 B.C.E. suggests that
ancient Babylonians must have used geometry of time-momentum space to establish accu-
rate calculations of Jupiter’s orbit [94]. This impressive paper also contains the picture of
the tablet which describes the Babylonian’s method of integration.

Figure 0.1. The cuneiform tablet used in the analysis of [94].

The orbit of Jupiter is a graph in coordinate space-time. By considering the graph of
momentum of Jupiter in time-momentum space, Babylonians visualized the integral of the
momentum by the area underneath the curve, and using a trapezoidal approximation, they
actually obtained an estimated value of the integral. This gives a prototype of Newton’s
Fundamental Theorem of Calculus. This idea of Babylonians relating geometry of time-
momentum space with the analysis of actual orbit of Jupiter is striking, because it suggests
their equal treatment of coordinate space and momentum space. Although it is a stretch,
we could imagine the very foundation of symplectic geometry here.

Many mathematical cuneiform tablets recording numbers and algebraic calculations have
been our source of imagination. The most famous is Plimpton 322 of around 1,800 B.C.E.
(see Figure 0.2). It lists 15 Pythagorean numbers in increasing order of hypotenuse angles
from about 45 degrees to 60 degrees [97].

Figure 0.2. Plimpton 322
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Babylonians seem to have known an algorithm to calculate an approximate value of the
square root of any number. For example, there is a cuneiform tablet that shows the sexages-
imal expansion of

√
2. Although there have been many speculations for practical purposes

of Plimpton 322 and mechanisms to come up with the listed numbers, our imagination goes
to the surprise of the creator of the tablet. For the pair of numbers (y, z) listed in the
second and the third columns, z2−y2 is always a perfect square. Therefore, the square root
algorithm terminates in a finite number of steps for these values, and gives an exact answer.
They must have found finiteness in the forest of infinity. This is a strong sentiment that
resonates with our mind today.

The tablet of Figure 0.1 does not show any geometry. The author of [94] convincingly
argues that behind the list of these seemingly meaningless numbers on the tablets, there
is a profound geometric investigation of the planetary motion. Our imagination is piqued
by the discovery: the interplay between algebra, geometry, and astronomy; and the equal
treatment of momentum space and coordinate space. What the feeling of the authors of the
tablet would have been, when they were creating it? It must have been a sharp happiness
of discovery that mathematics correctly predicts the very nature surrounding us, such as
planetary motion.

The accuracy of calculations of Babylonians is another astonishment, in addition to the
lack of pictures. It is in sharp contrast to Euclid’s Elements, which was written around
the same time in Greece. In Elements, we see many beautiful geometric pictures, and
proofs. The discovery of axiomatic method culminated in it. This dichotomy, being able
to calculate a quantity to a high precision, vs. having a proof of the formula based on
a finiteness property, is our very motivation for writing these notes. There are a lot of
amazing formulas around us in the direction that we describe. At this moment, we do not
have the final understanding of them, yet.

In the first part of these lectures, we explore two-dimensional topological quantum field
theories formulated in terms of cell graphs. A cell graph of type (g, n) is the 1-skeleton of a
cell-decomposition of a compact oriented topological surface of genus g ≥ 0 with n labeled
0-cells, or vertices. Such graphs are called by many different names: ribbon graphs, dessins
d’enfants, maps, embedded graphs, etc. We use the terminology “cell graph” indicating the
different nature of the graphs on surfaces, which record degeneration of surfaces. Although
a cell graph is a 1-dimensional object, the notion of a face is well defined as a 2-cell of the
cell decomposition that the cell graph defines on a given surface.

The degree of a vertex of a cell graph is the number of incident half-edges. We call a
1-cell an edge of the graph. As explained in our previous lecture notes [31], the number of
cell graphs of type (0, 1) with the unique vertex of degree 2m is 1

2mCm, where

Cm =
1

m+ 1

(
2m

m

)
is the m-th Catalan number. A generating function

z = z(x) =
∞∑
m=0

Cm
1

x2m+1

of Catalan numbers satisfies an algebraic equation

(0.1) x = z +
1

z
.

The story of [31, Section 2] tells us that the enumeration problem of cell graphs of arbitrary
type (g, n) is solved by the quantization of the algebraic curve (0.1). The key formula for
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the quantization comes from the Laplace transform of a combinatorial equation [31, Catalan
Recursion, Section 2.1]. There, the combinatorial formula is derived by analyzing the effect
of edge-contraction operations on cell graphs.

The new story we wish to tell in these lectures is that the category of cell graphs carries
the information of all two-dimensional topological quantum field theories. In Part 1 of this
article, we will present an axiomatic setup of 2D TQFT. The key idea is simple: exact same
edge-contraction operations characterize Frobenius algebras. When we contract an edge of
a cell graph, two vertices collide. It represents multiplication. When we shrink a loop, since
it is a cycle on a topological surface, the process breaks a vertex into two vertices. This
is the operation of comultiplication. The topological structure of a cell graph makes these
operations dual to one another in the context of Frobenius algebras.

We start with defining Frobenius algebras. Topological quantum field theories (TQFT)
and cohomological field theories (CohFT) are introduced in the following sections. A cate-
gory of cell graphs is defined. We explain that this category generates all Frobenius algebras.
We then make a connection between cell graphs and 2D TQFT. The theory of topological
recursion is a leitmotif in this article. It is another manifestation of a quantization proce-
dure. Since there are many review articles on topological recursion, we touch the subject
only tangentially in this article. Our new result related to this topic is the 2D TQFT-twisted
topological recursion, which is explained in the end of Part 1.

The cohomology ring of a closed oriented manifold X is a Frobenius algebra. When we
consider an even dimensional manifold and only even degree cohomologies

(0.2) A = Heven(X,Q),

we have a commutative Frobenius algebra, which is equivalent to a 2D TQFT. The Gromov-
Witten invariants of X of genus 0 determine a quantum deformation of the ring A, known
as the big quantum cohomology. This quantum structure then defines a holomorphic object
Y , the mirror of X. Thus the holomorphic geometry of Y captures quantum cohomology of
X. Gromov-Witten invariants are generalized to arbitrary genera. Here arises a question:

Question 0.1. What should be the holomorphic geometry on Y that corresponds to higher-
genus Gromov-Witten theory of X?

If we consider the passage from genus 0 to higher genera Gromov-Witten theory as
quantization, then on the side on Y , we need a quantized holomorphic geometry. A good
candidate is D-module theory. The simplest such theory fitting to this context is the notion
of quantum curves. The relation between quantum curves and B-model geometry is
considered in [2, 20, 18, 28, 29, 31, 50, 52] and others. The key point for this idea to work
is when the holomorphic geometry Y corresponding to the Gromov-Witten theory of X
is captured by an algebraic or analytic curve. These curves often appear in other areas
of mathematics as spectral curves, such as integrable systems, random matrix theory, and
Hitchin’s theory of Higgs bundles. A spectral curve naturally comes with a projection to a
base curve, making it a covering of the base curve. A quantum curve is a D-module on this
base curve, quantizing the spectral curve.

Since a CohFT based on the Frobenius algebra Heven(X,Q) plays a role similar to
Gromov-Witten theory of X, CohFT is a quantization of 2D TQFT. This process con-
sists of two steps of quantizations. The first one is from the classical cohomology ring A to
its quantum deformation, which is the mirror geometry. If the mirror is a curve, then the
second step should be parallel to the quantization of a spectral curve to a quantum curve.
We may be able to understand the reconstruction [37] of CohFT based on a semi-simple
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Frobenius algebra from the 2D TQFT, that is obtained as the degree 0 part of the coho-
mology H0(Mg,n,Q) of the moduli space of stable curves, analogous to the construction of
quantum curves.

Part 2 deals with quantum curves. Since the authors have produced a long article [31]
explaining the relation between quantum curves and topological recursion, the present ar-
ticle is focused on geometry of the process of quantization of Hitchin spectral curves from a
perspective of opers. Instead of providing a general theory of [26, 27, 32], we use SL2(C)
to explain our ideas here. We will show that the classical notion of projective structures on
a compact Riemann surface C of genus g ≥ 2 studied by Gunning [53], SL2(C)-opers, and
quantum curves of Hitchin spectral curves, are indeed the exact same notion. A conjecture
of Gaiotto [43] relating non-Abelian Hodge correspondence and opers, together with its
solution by [27], will be briefly explained in the final section.
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Part 1. Topological Quantum Field Theory

In Part 1 of this article, we present our new formulation of two-dimensional topological
quantum field theory as a monoidal functor from a category of ribbon graphs into the
endofunctor category of a monoidal category [30, 34]. We start with a quick review of a
few necessary accounts from Frobenius algebras, topological quantum field theory, Gromov-
Witten invariants, and cohomological field theory. There are numerous excellent textbooks
available on these topics. We refer to [15, 65, 72] for more detail on these topics. We also
refer to [98, 103] for the origin of TQFT in physics.

1. Frobenius algebras

Throughout this article, we denote by K a field of characteristic 0. Most of the cases
we consider K = Q or K = C. Let A be a finite-dimensional, unital, and associative
algebra defined over K. A bialgebra comes with an extra set of structures, including a
comultiplication. Examples of bialgebras include the group algebra A = K[G] of a finite
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group G. Its algebra structure is canonically determined by the multiplication rule of G.
However, the group algebra has two distinct co-algebra structures. One of which makesK[G]
a Frobenius algebra, and the other makes it a Hopf algebra. This difference is reflected in
which topological invariants we are dealing with. The Frobenius structure is useful for two-
dimensional topology, and the Hopf structure is natural for three-dimensional topological
invariants.

Let us start with defining Frobenius algebras.

Definition 1.1 (Frobenius algebra). A finite-dimensional, unital, and associative algebra
A over a field K is a Frobenius algebra if there exists a linear map ε : A −→ K called
counit such that for every u ∈ A, ε(ux) = 0, or ε(xu) = 0, for all x ∈ A implies that u = 0.
An algebra homomorphism h : A1 −→ A2 from a Frobenius algebra (A1, ε1) to another
Frobenius algebra (A2, ε2) is a Frobenius homomorphism if h satisfies

(1.1)

A1
h−−−−→ A2

ε1

y yε2 .
K K

Proposition 1.2. If A1 and A2 are Frobenius algebras, then A1 ⊕ A2 and A1 ⊗ A2 are
also Frobenius algebras. Let us denote by A the category of Frobenius algebras over K, with
morphisms defined by (1.1). Then C = (A,⊗,K) is a monoidal category.

Proof. Denote by εi : Ai −→ K the counit of Ai, i = 1, 2. Then (A1 ⊕ A2, ε1 + ε2) is a
Frobenius algebra. Similarly,

ε1 · ε2 : A1 ⊗A2 3 u1 ⊗ u2 7−→ ε1(u1)ε2(u2) ∈ K

makes A1 ⊗A2 a Frobenius algebra. �

Example 1.3. The one-dimensional vector space A = K, with the identity map ε(u) = u, is
a simple commutative Frobenius algebra. More generally, by taking the direct sum A = K⊕n

and defining ε(u1, . . . , un) = u1 + · · · + un ∈ K, we construct a semi-simple commutative
Frobenius algebra K⊕n.

Example 1.4. The full matrix algebra A = Matn(K) consisting of n × n matrices with
ε(u) = trace(u) is a non-commutative simple Frobenius algebra for n ≥ 2.

Example 1.5. As mentioned above, the group algebra A = K[G] of a finite group G is a
Frobenius algebra. Here, we define ε : K[G] −→ K by linearly extending the map whose
value for every g ∈ G is given by

ε(g) =

{
1 g = 1

0 g 6= 1.

Remark 1.6. If we define ε(g) = 1 for all g ∈ G, then the group algebra becomes a Hopf
algebra.

Example 1.7. The cohomology ring H∗(M,R) of an oriented compact differential manifold
M of dimRM = n with the cup product and

ε : H∗(M,R) −→ Hn(M,R) = R

is a Frobenius algebra.
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The above example makes us wonder if an analogue of Poincaré pairing exists in a general
Frobenius algebra. Indeed, the counterpart is a Frobenius bilinear form defined by

(1.2) η : A⊗A −→ K, η(u, v) = ε(uv)

in terms of the counit ε : A −→ K. The Frobenius form satisfies the Frobenius associativity

(1.3) η(uv,w) = η(u, vw), u, v, w ∈ A.

The condition for the counit ε of Definition 1.1 exactly means that the Frobenius form η is
non-degenerate. It therefore defines a canonical isomorphism

(1.4) λ : A
∼−→ A∗, 〈λ(u), v〉 = η(u, v), u, v ∈ A.

This isomorphism determines a unique comultiplication δ : A −→ A⊗A by the following
commutative diagram:

(1.5) A

λ
��

δ // A⊗A

λ⊗λ .
��

A∗
m∗

// A∗ ⊗A∗

Here, m∗ : A∗ −→ A∗ ⊗ A∗ is the dual of the multiplication operation m : A⊗ A −→ A in
A. Since we are not assuming the multiplication to be commutative, we define the natural
pairing

(A∗ ⊗A∗)⊗ (A⊗A) −→ K

by observing the order of entities as written. For example, for α, β ∈ A∗ and u, v ∈ A, we
calculate

(1.6) 〈α⊗ β, u⊗ v〉 = 〈α, 〈β, u〉v〉 = 〈β, u〉〈α, v〉.

As the dual of the associative multiplication, the comultiplication δ is coassociative, i.e., it
satisfies

(1.7) A⊗A
δ⊗1

&&
A

δ
88

δ &&

A⊗A⊗A.

A⊗A
1⊗δ

88

Note that the identity element 1 ∈ A corresponds to ε ∈ A∗ by λ, i.e., λ(1) = ε. This is
because

η(1, u) = η(u,1) = ε(u).

We now have the full set of data (A,1,m, ε, δ) that defines a bialgebra. The algebra and
coalgebra structures satisfy a compatibility condition, as described below.
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Proposition 1.8. The following diagram commutes:

(1.8) A⊗A⊗A
m⊗1

&&
A⊗A

1⊗δ
88

m //

δ⊗1 &&

A
δ // A⊗A.

A⊗A⊗A
1⊗m

88

Remark 1.9. Alternatively, we can define a Frobenius algebra as a bialgebra satisfying
(1.8), together with a non-degenerate Frobenius form satisfying (1.3).

Proof. Let 〈e1, e2, . . . , er〉 be a K-basis for A, where r = dimK A. The bilinear form η
defines r × r matrices

(1.9) η = [ηij ], η−1 = [ηij ], ηij := η(ei, ej).

It gives the canonical basis expansion of v ∈ A:

(1.10) v =
∑
a,b

η(v, ea)η
abeb =

∑
a,b

η(ea, v)ηbaeb.

From (1.5), we calculate

δ(v) =
∑
i,j,a,b

η(v, eiej)(η
jbeb)⊗ (ηiaea)

=
∑
i,j,a,b

η(vei, ej)(η
jbeb)⊗ (ηiaea)

=
∑
i,a

(vei)⊗ (ηiaea)

= (m⊗ 1)(v ⊗ δ(1)),

using the pairing convention (1.6) and

(1.11) δ(1) =
∑
a,b

ηabea ⊗ eb.

We then have

(1⊗m) ◦ (δ ⊗ 1)(u⊗ v) = (1⊗m)

∑
i,j,a,b

η(u, eiej)(η
jbeb)⊗ (ηiaea)⊗ v


=
∑
i,j,a,b

η(uei, ej)(η
jbeb)⊗ (ηiaeav)

=
∑

i,j,a,b,c,d

η(uei, ej)(η
jbeb)⊗ ηiaη(eav, ec)η

cded

=
∑
i,a,c,d

uei ⊗ ηiaη(ea, vec)η
cded

=
∑
c,d

(uvec)⊗ ηcded

= (m⊗ 1)(uv ⊗ δ(1)) = δ(uv).
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Similarly,

(m⊗ 1) ◦ (1⊗ δ)(u⊗ v) = (m⊗ 1)

u⊗ ∑
i,j,a,b

η(v, eiej)(η
jbeb)⊗ (ηiaea)


=
∑
i,j,a,b

uη(vei, ej)(η
jbeb)⊗ (ηiaea)

=
∑
i,a

uvei ⊗ ηiaea

= (m⊗ 1)(uv ⊗ δ(1)) = δ(uv).

This completes the proof of Proposition 1.8. �

Remark 1.10. We note that if A is commutative, then the quantities

(1.12) η
(
ei1 · · · eij , eij+1 · · · en

)
= ε(ei1 · · · ein), 1 ≤ j < n,

are completely symmetric with respect to permutations of indices.

Definition 1.11 (Euler element). The Euler element of a Frobenius algebra A is defined
by

(1.13) e := m ◦ δ(1).

In terms of basis, it is given by

(1.14) e =
∑
a,b

ηabeaeb.

The Euler element provides the genus expansion of 2D TQFT, allowing us to calculate
higher genus correlation functions from the genus 0 part of the theory.

Another application of (1.10) is the following formula that relates the multiplication and
comultiplication:

(1.15) (λ(u)⊗ 1) δ(v) = uv.

This is because

(λ(u)⊗ 1) δ(v) = (λ(u)⊗ 1)
∑
a,b

(vηabea)⊗ eb

=
∑
a,b

η(u, vea)η
abeb

=
∑
a,b

η(uv, ea)η
abeb = uv.

2. TQFT

In this section, we briefly review TQFT. For the origin of TQFT in physics, we refer
to [98, 103]. Although there have been explosive mathematical developments in higher
dimensional topological quantum field theories mixing different dimensions during the last
decade (see for example, [13, 71] and more recent work inspired by them), we restrict
our attention to the two-dimensional speciality in these lectures. From now on, Frobenius
algebras we consider are finite-dimensional, unital, associative, and commutative. It has
been established (see [1, 17]) that 2D TQFT’s are classified by these types of Frobenius
algebras.
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The axiomatic formulation of conformal and topological quantum field theories was dis-
covered in the 1980s by Atiyah [4] and Segal [99] (see also [65, 72, 98, 101]). A (d − 1)-
dimensional TQFT is a symmetric monoidal functor Z from the monoidal category of
(d − 1)-dimensional closed (i.e., compact without boundary) oriented smooth manifolds
with oriented d-dimensional cobordism as morphisms, to the monoidal category of finite-
dimensional vector spaces defined over a field K. The monoidal structure in the category of
(d− 1)-dimensional smooth manifolds is defined by the operation of taking disjoint union,
which is a symmetric operation. Disjoint union with the empty set is the identity of this
operation. Therefore, we define the monoidal category of K-vector spaces by symmetric
tensor products, with the field K serving as the identity operation of tensor product. The
functor Z satisfies the non-triviality condition

Z(∅) = K,

and maps a disjoint union of smooth (d− 1)-dimensional manifolds to a symmetric tensor
product of vector spaces.

Let us denote by M an oriented closed smooth manifold of dimension d − 1, and by
Mop the same manifold with the opposite orientation. The functor Z satisfies the duality
condition

Z(Mop) = Z(M)∗,

where Z(M)∗ is the dual vector space of Z(M). Suppose we have an oriented bordered
d-dimensional smooth manifold N . The boundary ∂N is a smooth manifold of dimension
d− 1, and the complement N \∂N is an oriented smooth manifold of dimension d. We give
the orientation induced from N to its boundary ∂N . The TQFT functor Z then gives an
element

Z(N) ∈ Z(∂N).

If N is closed, i.e., ∂N = ∅, then

Z(N) ∈ Z(∅) = K

is a number that represents a topological invariant of N .
Now consider a bordered oriented smooth manifold N1 with boundary

∂N1 = Mop
1 tM2,

meaning that the two separate boundaries carry different orientations. We choose that M2

is given the induced orientation from N1, and M1 the opposite orientation. We interpret
the situation as N1 giving an oriented cobordism from M1 to M2. In this case, the functor
Z defines an element Z(N1) ∈ Z(M1)∗ ⊗ Z(M2), or equivalently, a linear map

Z(N1) : Z(M1) −→ Z(M2).

Suppose we have another smooth manifold N2 with boundary

∂N2 = Mop
2 tM3

corresponding to a linear map

Z(N2) : Z(M2) −→ Z(M3).

We can then smoothly glue N1 and N2 along the common boundary component M2 forming
a new manifold

N = N1 ∪M2 N2.

See, for example, [4]. Clearly
∂N = Mop

1 tM3,
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and N gives a cobordism from M1 to M3. The Atiyah-Segal sewing axiom [4] asserts that

(2.1) Z(M1)
Z(N1) //

‖
��

Z(M2)
Z(N2)// Z(M3)

‖
��

Z(M1)
Z(N) // Z(M3).

A d-dimensional TQFT Z defines a topological invariant Z(N) for each closed d-manifold
N . The essence of TQFT is to break N into simpler pieces by cutting along (d − 1)-
dimensional submanifolds, and represent the invariant Z(N) from that of simpler pieces.
The situation is special for the case of 2D TQFT. First of all, we already know all topological
invariants of a closed surface. They are just functions of the genus g of the surface. So there
should be no reason for another theory to study them. Since there is only one 1-dimensional
connected compact smooth manifold, a 2D TQFT is based on a single vector space

(2.2) Z(S1) = A,

and its tensor products. What else could we gain?
The biggest surprise is that a 2D TQFT is further quantized [15, 25, 49, 67, 72]. This

process starts with a Frobenius algebra A of (0.2). It is quantized to a quantum cohomology,
and then further to Gromov-Witten invariants. Construction of spectral curves, and then
quantizing them, have a parallelism to this story. This is the story we now explore in this
and the next sections, but only to take a snapshot of the converse direction, i.e., from a
quantum theory to a classical theory.

Let us denote by Σg,m̄,n a connected, bordered, oriented, smooth surface of genus g with
m+ n boundary circles. This is a surface obtained by removing m+ n disjoint open discs
from a compact oriented two-dimensional smooth manifold of genus g without boundary.
We assume that the boundary of Σg,m̄,n itself is a smooth manifold, hence it is a disjoint
union of m + n circles. We give the induced orientation from the surface to n boundary
circles, and the opposite orientation to the m boundary circles. The surface Σg,m̄,n gives
a cobordism of m circles to n circles. The orientation-preserving diffeomorphism class of
such a surface is determined by the genus g and the two numbers m and n of boundary
circles with different orientations. Therefore, the oriented equivalence class of cobordism is
also determined by (g,m, n). The TQFT functor Z then assigns to each cobordism Σg,m̄,n

a multilinear map

ωg,m̄,n
def
= Z(Σg,m̄,n) : A⊗m −→ A⊗n,

which is completely determined by the label (g,m, n). This is the special situation of the
two-dimensionality of TQFT, reflecting the simple topological classification of surfaces.

Suppose we have another cobordism Σh,k̄,m of genus h from k circles to m circles, with
orientation on the m circles induced from the surface, and the opposite orientation on k
circles. We can compose two cobordisms, sewing the m circles of the first cobordism with
the m circles of the second [65]. Here, we notice that on each pair of circles, one from
the first surface and the other from the second, the orientations are the same, and hence
we can put one on top of the other. Therefore, the orientations of the two surfaces are
consistent after sewing. This sewing process generates a new surface Σg+h+m−1,k̄,n of genus
g + h + m − 1. This is because the m pairs of circles sewn together create m − 1 handles
(see Figure 2.1). The sewing axiom of Atiyah-Segal [4] then requires that the functor
Z associates the composition of linear maps to the composition of cobordisms. In our
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situation, the composition of two maps generates a new map

ωg,m̄,n ◦ ωh,k̄,m = ωg+h+m−1,k̄,n : A⊗k −→ A⊗n,

corresponding to the sewing of cobordisms.

Figure 2.1. A string of String Interactions. The physics of a simple model for
interacting strings is captured by the sewing axiom of Atiyah-Segal.

The sewing procedure can be generalized, allowing partial sewing of the boundary circles
of matching orientation. For example, if j ≤ ` and j ≤ m, then gluing only j pairs of circles,
we have a composition

(2.3) ωg,m̄,n ◦ ωh,k̄,` = ωg+h+j−1,k+m−j,n+`−j : A⊗k+m−j −→ A⊗n+`−j .

Furthermore, since TQFT does not require cobordism to be given by a connected manifold,
we can stack up disjoint union of surfaces and apply partial sewing to create a variety of
linear maps from A⊗n to A⊗m.

It was Dijkgraaf [17] who noticed the equivalence between 2D TQFTs and commutative
Frobenius algebras. We can see the resemblance immediately. On the vector space A, we
have operations defined by

(2.4)

1 = ω0,0̄,1 : K −→ A, m = ω0,2̄,1 : A⊗2 −→ A,

ε = ω0,1̄,0 : A −→ K, δ = ω0,1̄,2 : A −→ A⊗2,

η = ω0,2̄,0 : A⊗2 −→ K.

A connected cobordism of m incoming circles and n outgoing circles is classified by the genus
g of the surface. It does not depend on the history of how the cobordisms are glued together.
Thus the diffeomorphism classes of surfaces after sewing cobordisms tell us relations among
the operations of (2.4). For example,

ω0,1̄,0 ◦ ω0,2̄,1 = ω0,2̄,0 =⇒ ε ◦m = η,

which is (1.2). Associativity of multiplication comes from uniqueness of the topology of
Σ0,3̄,1 with one boundary circle carrying the induced orientation and three the opposite
orientation. Changing the orientation of each boundary component to its opposite provides
coassociativity. In this way A = Z(S1) acquires a bialgebra structure. To assure duality
between algebra and coalgebra structures, we need to impose another condition here: non-
degeneracy of η = ω0,2̄,0. Then A becomes a commutative Frobenius algebra.

Conversely, if we start with a finite-dimensional commutative Frobenius algebra A, then
we first construct ω0,m̄,n on the list of (2.4). More general maps ωg,m̄,n are constructed
by partial sewing (2.3). By construction, all these maps are associated with cobordism of
circles, and hence determine a 2D TQFT [1, 65].

With the above considerations, we give the following definition.
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Definition 2.1 (Two-dimensional Topological Quantum Field Theory). Let (A, ε, λ) be a
set of data consisting of a finite-dimensional vector space A over K, a non-trivial linear
map ε : A −→ K, and an isomorphism λ : A

∼−→ A∗. A Two-dimensional Topological
Quantum Field Theory is a system (A, {ωg,m̄,n}) consisting of linear maps

ωg,k̄,` : A⊗k −→ A⊗`, 0 ≤ g, k, `,
satisfying the following axioms.

• TQFT 1. Symmetry:

(2.5) ωg,k̄,` : A⊗k −→ A⊗`

is symmetric with respect to the Sk-action on the domain.
• TQFT 2. Non-triviality:

(2.6) ω0,1̄,0 = ε : A −→ K.

• TQFT 3. Duality:

(2.7) A⊗m

λ⊗m

��

ωg,m̄,n // A⊗n

λ⊗n .
��

(A∗)⊗m
(ωg,n̄,m)∗ // (A∗)⊗n

• TQFT 4. Sewing:

(2.8) ωg,m̄,n ◦ ωh,k̄,` = ωg+h+j−1,k+m−j,n+`−j : A⊗k+m−j −→ A⊗n+`−j , j ≤ m, j ≤ `.

Remark 2.2. As noted above, the vector space A acquires the structure of a commutative
Frobenius algebra from these axioms. Conversely, if A is a commutative Frobenius algebra,
then ω0,m̄,n of (2.4) can be extended to ωg,m̄,n that satisfy the TQFT axioms.

3. Silhouette of Gromov-Witten theory

Recall that for any oriented closed manifold X, its cohomology ring H∗(X,K) is a Frobe-
nius algebra defined over K. If we restrict ourselves to even dimensional manifold X and
consider only even part of the cohomology, then A = Heven(X,K) is a finite-dimensional
commutative Frobenius algebra. This Frobenius algebra naturally defines a 2D TQFT. The
role of a TQFT in general dimension is to represent a topological invariant of higher di-
mensional manifolds. We are now seeing that the classical topology of a manifold X is a
2D TQFT. Changing our point of view, we can ask if we start with X, then how do we
find the corresponding 2D TQFT? Of course the Frobenius algebra structure automatically
determines the unique 2D TQFT as we have seen in Section 2. But then the picture of
sewing cobordisms is lost in this algebraic formulation. What is the role of the cobordism
of circles in the context of understanding the manifold X?

The amazing vision emerged in the early 1990s is that 2D TQFT can be further quantized
into Gromov-Witten theory, which produces quantum topological invariants of X that
may carry more information than classical invariants. This epoch making discovery was one
of the decisive moments of the fruitful interaction of string theory and geometry, which is
still continuing today.

String theory deals with flying strings in a space-time manifold X. The trajectory of a
moving string is a curved cylinder embedded in the manifold X, like a duct pipe in the
attic. When strings are considered as quantum objects, they can interact one another. For
example, Figure 2.1 can be interpreted as a string of string interactions. First, three
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strings collide in a complicated interaction to produce two strings. The complexity of the
interaction is classified as “g = 2” in terms of the genus of the first surface. These two
strings created in the first interaction then collide in an even more complicated (i.e., g = 3)
interaction to produce four strings in the end. The trajectories of these interactions form a
bordered surface of genus 6 with 7 boundary components embedded in the space-time X.

Models for string theory were originally introduced to understand Regge trajectories, the
poles of the scattering amplitude of a quantum system as a function in energy and angular
momentum being considered as complex variables, in the context of quark confinement [89].
This complex analytic nature of string theory was further extended in the discovery [51]
that geometry of the space-time X dictates possible string interactions. In this process, the
importance of Calabi-Yau spaces was recognized, through considerations on the consistency
of string theory, known as anomaly cancellation, as a physical theory. By changing the point
of view 180◦, researchers then noticed that a simple model of string interactions could be
used to obtain a totally new class of topological invariants of X itself. These new invariants
are not necessarily captured by the classical topology, such as (co)homology groups and
homotopy groups. We use the terminology of quantum topological invariants for the
invariants obtained by string theory considerations.

Gromov-Witten theory is a mathematically rigorous interpretation of a model for a quan-
tum string theory. A trajectory of interacting strings in X is the image of a map

(3.1) f : Σg,m̄,n −→ X

from a bordered surface Σg,m̄,n into X. Recall that the fundamental group π1(X,x0) of X
is determined by the connectivity of the pointed loop space

L(X,x0) = C∞
(
(S1, ∗), (X,x0)

)
,

which is the moduli space of differentiable maps from S1 to X that send a reference point
∗ ∈ S1 to x0 ∈ X. In the same spirit, Gromov-Witten invariants are defined by looking
at the classical topological invariants of appropriate moduli spaces of maps from Σg,m̄,n

to X. When we have the notion of size of a string, the trajectory Σg,m̄,n has a metric on
it. If the ambient manifold X has a geometric structure, such as a symplectic structure,
complex structure, or a Kähler structure, then the map f needs to be compatible with
the structures of the source and the target. For example, if X is Kähler, then we give a
complex structure on Σg,m̄,n that is compatible with the metric it has, and require that f
is a holomorphic map. Technical difficulties arise in defining moduli spaces of such maps.
Even the moduli spaces are defined, they are often very different objects from the usual
differentiable manifolds. We need to extend the notion of manifolds here. Thus identifying
reasonable classical topological invariants of these spaces also poses a difficult problem.

The simplest scenario is the following: We take X = pt to be just a single point. Of
course nobody needs to know the topological structure of a point. We all know it! By
exploring the Gromov-Witten theory of a point, we learn the structure of the theory itself.
Since we can map anything to a point, a point may not be such a simple object, after all.
It is like considering a vacuum in physics. Again, anything can be thrown into a vacuum.
A quantum theory of a vacuum is inevitably a rich theory.

When X = pt is a point, we consider all incoming and outgoing strings to be infinitesi-
mally small. Thus the surfaces we are considering become closed, and boundary components
are just several points identified on them. By considering its conformal class, a metric on a
closed surface naturally gives rise to a unique complex structure, making it a compact Rie-
mann surface. And every compact Riemann surface acquires a unique projective algebraic
structure, becoming a projective algebraic curve. Since we are allowing strings to shrink
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infinitesimally small during the interaction, the trajectory may contain a process of an em-
bedded S1 in the surface shrinking to a point, and then expanding into a finite size circle
again a moment later. Such a process can be understood in complex algebraic geometry as
a nodal singularity of an algebraic curve. Locally, every nodal singularity of a curve is
the same as the neighborhood of the origin of a singular algebraic curve

{(x, y) ∈ C2 | xy = 0}.

We are talking about an abstract notion of trajectories here, because nothing can move in
X = pt. In terms of the map idea (3.1), we note that there is a unique map f from any
projective algebraic curve to a point, which satisfies any reasonable requirement of maps
such as being a morphism of algebraic varieties. Then the moduli space of all maps simply
means the moduli space of the source.

A stable curve [67] is a projective algebraic curve with only nodal singularities and a
finite number of smooth points marked on the curve such that it has only a finite number
of algebraic automorphisms fixing each marked point. We recall that the holomorphic
automorphism group of P1,

Aut(P1) = PSL2(C),

acts on P1 triply transitively. The number of automorphisms fixing up to 2 points is infinity.
Since PSL2(C) is compact and three-dimensional, if we choose three distinct points on P1

and require the automorphism to fix each of these points, then we have only finitely many
choices. Actually in our case, it is unique. For an elliptic curve E, since it is an abelian
group, E acts on E transitively. To avoid these translations, we need to choose a point
on E. We can naturally identify it as the identity element of the elliptic curve as a group.
Automorphisms of an elliptic curve fixing a point then form a finite group. If a compact
Riemann surface C has genus g = g(C) ≥ 2, then it is known that the order of the analytic
automorphism group is bounded by

|Aut(C)| ≤ 84(g − 1).

This bound comes from hyperbolic geometry. It is easy to see the finiteness. First, we note
that universal covering of C is the upper half plane

H = {z ∈ C | Im(z) > 0},

and C is constructed by the quotient

C
∼−→ H/ρ(π1(C))

through a faithful representation

(3.2) ρ : π1(C) −→ PSL2(R) = Aut(H)

of the fundamental group of C into the automorphism group of H. Every holomorphic
automorphism of C extends to an automorphism of H. We know that C does not have any
non-trivial holomorphic vector field v. If it did, then v would be a differentiable vector field
with isolated zeros, and each zero comes with positive index, because locally it is given by
znd/dz. We learn from topology that the sum of the indices of isolated zeros of a vector
field on C is equal to χ(C) = 2 − 2g < 0. It is a contradiction. Thus Aut(C) ⊂ PSL2(C)
is a discrete subgroup. Since PSL2(R) is compact, |Aut(C)| is finite.

An algebraic curve C is stable if and only if (1) every singularity is nodal, and (2) every
irreducible component C ′ of C has a finite number of automorphisms. The second condition
means that the total number of smooth marked points and singular points of C that are on
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C ′ has to be 3 or more if g(C ′) = 0, and 1 or more if g(C ′) = 1. There is no condition for
an irreducible component of genus two or more.

For a pair (g, n) of integers g ≥ 0 and n ≥ 1 in the stable range 2g − 2 + n > 0, we
denote by Mg,n the moduli space of stable curves of genus g and n smooth marked points.
It is a complex orbifold of dimension 3g− 3 +n. Quantum topological invariants of a point
X = pt are then realized as classical topological invariants of Mg,n. Alas to this day, we

cannot identify the cohomology groups H i(Mg,n,Q) for all values of i, g, n. From the very
definition of these moduli spaces, we can construct many concrete cohomology classes on
each of Mg,n, called tautological classes. What we do not know is indeed how much more

we need to know to determine all of H i(Mg,n,Q). The surprise of Witten’s conjecture
[104], proved in [66], is that we can actually explicitly write intersection relations of certain
tautological classes for all values of g and n.

Among many different proofs available for the Witten conjecture (see for example, [64,
66, 76, 77, 86, 92]), [77, 86] deal with recursive relations among surfaces much in the same
spirit of TQFT. These relations are first noticed in [21]. We will discuss these relations in
connection to topological recursion later in these lectures.

Geometric relations among Mg,n’s for different values of (g, n) have a simple meaning.
Let us denote by Mg,n the moduli space of smooth n-pointed curves. Then the boundary

Mg,n \Mg,n

consists of points representing singular curves. Simplest singular stable curve has one nodal
singularity, which can be described as collision of two smooth points. Analyzing how these
singularities occur via degeneration, we come up with three types of natural morphisms
among the moduli spaces Mg,n. They are the forgetful morphisms

(3.3) π :Mg,n+1 −→Mg,n

which simply erase one of the marked points on a stable curve, and gluing morphisms

gl1 :Mg−1,n+2 −→Mg,n(3.4)

gl2 :Mg1,n1+1 ×Mg2,n2+1 −→Mg1+g2,n1+n2(3.5)

that construct boundary strata of Mg,n. Under a gluing morphism, we put two smooth
points of stable curves together to form a one nodal singularity. The first one gl1 glues two
points on the same curve together, and gl2 one each on two curves.

The fiber of π at a stable curve (C, p1, . . . , pn) ∈ Mg,n is the curve C itself, because
another marked point can be placed anywhere on C. Thus π is a universal family of curves
parameterized by the base moduli space Mg,n. Let us examine the fiber more carefully.
When we place an extra marked point pn+1 at pi, i = 1, . . . , n, the data represented by this
point of Mg,n+1 on the fiber of π is a singular curve that is obtained by joining C itself
with a P1 at the location of pi ∈ C, but the two marked points pi, pn+1 are actually placed
on the line P1. Assigning this singular curve to (C, p1, . . . , pn) defines a section

σi :Mg,n −→Mg,n+1,

which is a right inverse of π. Geometrically, σi sends (C, p1, . . . , pn) to the point pi on the
fiber C = π−1(C, p1, . . . , pn). Obviously,

π ◦ σi :Mg,n −→Mg,n

is the identity map. This is because erasing pn+1 causes the P1 component becoming
unstable, hence π corresponds to the operation of eliminating the component altogether
and placing pi at the location of P1. This process is called stabilization. The description
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of the fiber over (C, p1, . . . , pn) with a singular stable curve C is similar, when we try to
choose the location of pn+1 at a singular point of C. We first locally normalize C near at
the nodal singularity. Thus we have two points of the local normalization that correspond
to the original singular point. We then connect these two points by a line P1. Finally, we
place pn+1 as the third point on P1. Therefore, when the image of the section σi hits a
singular point of the fiber, the image point represents a singular curve that has exactly one
more singular point. The forgetful morphism erases pn+1, but then the process leaves only
two points on the P1 component, which is unstable. We appeal to the stabilization again.

Gromov-Witten theory for a Kähler manifold X [15] concerns topological structure of
the moduli space

Mg,n(X,β) =
{
f : (C, p1, . . . , pn) −→ X

∣∣ [f(C)] = β
}

of stable holomorphic maps f from a nodal curve C with n smooth marked points p1, . . . , pn ∈
C to X such that the homology class of the image f(C) agrees with a prescribed homology
class β ∈ H2(X,Z). Here, stability of f is defined by imposing the finiteness of possible
automorphisms. Giving a definition of this moduli space is beyond our scope of this article.
We refer to [15]. The moduli space, once defined, should come with natural maps

Mg,n(X,β)
evi−−−−→ X

φ

y
Mg,n,

where the forgetful map φ assigns the stabilization of the source (C, p1, . . . , pn) to the map
f by forgetting about the map itself, and

evi
(
f : (C, p1, . . . , pn) −→ X

)
= f(pi) ∈ X, i = 1, . . . , n,

is the value of f at the i-th marked point pi ∈ C. Stabilization means that every irreducible
component of (C, p1, . . . , pn) that is not stable is shrunk to a point. It is necessary because
a stable map f may be defined on an unstable source. If we indeed know the moduli space
Mg,n(X,β) and that its cohomology theory behaves as we expect, then we would have

H∗
(
Mg,n(X,β),Q

) ev∗i←−−−− H∗(X,Q)

φ!

y
H∗(Mg,n,Q),

where φ! is the Gysin map defined by integration along fiber. IfMg,n(X,β) were a manifold,

and the map φ : Mg,n(X,β) −→ Mg,n were a fiber bundle, then Mg,n(X,β) would have
been locally a direct product, hence the Gysin map φ! associated with φ would be defined
by integrating de Rham cohomology classes of Mg,n(X,β) along fiber of φ. Choose any
cohomology classes v1, . . . vn ∈ H∗(X,Q) of X. We then could have defined the Gromov-
Witten invariants by

GWX,β
g,n (v1, . . . , vn) :=

∫
Mg,n

φ!

(
ev∗1(v1) · · · ev∗(vn)

)
.

However, the general construction of the Gysin map does not work as we hope. This is
due to the complicated nature of the moduli space Mg,n(X,β), which often has compo-
nents of unexpected dimensions. The remedy is to define the virtual fundamental class
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[Mg,n(X,β)]vir of the expected dimension, and avoid the use of φ! by defining

(3.6) GWX,β
g,n (v1, . . . , vn) :=

∫
[Mg,n(X,β)]vir

ev∗1(v1) · · · ev∗(vn).

We refer to [15, 72] for more detail.
A = Heven(X,Q) is a Frobenius algebra. Although Gromov-Witten theory goes through

a big black box [Mg,n(X,β)]vir, what we wish is a map

Ωg,n : Heven(X,Q)⊗n −→ H∗(Mg,n,Q)

whose integral over Mg,n gives quantum invariants of X. Then what are the properties
that Gromov-Witten invariants should satisfy? Can we list the properties as axioms for the
above map Ωg,n so that we can characterize Gromov-Witten invariants? This was one of
the motivations of Kontsevich and Manin to introduce cohomological field theory in [67, 72].
As we see below, a 2D TQFT can be obtained as a special case of a CohFT. The amazing
relation between TQFT and CohFT, i.e., the reconstruction of CohFT from its restriction
to TQFT due to Givental and Teleman [49, 101], plays a key role in many new developments
(see for example, [3, 37, 40, 73]), some of which are deeply related with topological recursion.

4. Cohomological field theory

The idea of moduli spaces of algebraic curves was introduced by Riemann [96] in 1857
as a parameter space of birational equivalence classes of algebraic curves. The use of the
word moduli is due to him. He also noticed that a point of this space can be realized as a
Riemann period matrix. A characterization of period matrices among symmetric matrices
can be obtained by an infinite-dimensional integrable system of non-linear partial differen-
tial equations (see for example [79]). The deformation theory of Kodaira and Spencer of
the 1950s gave a definition of infinitesimal moduli spaces in any dimensions. The modern
concept of global moduli of curves is culminated in [16], which identifies Mg as a stack.
Once this concept is established, it becomes possible to ask its global topology. Yet it has
taken a few more decades for mathematics community to arrive at the idea that the mod-
uli of pointed curves form a network, which provides inductive mechanisms to investigate
topological structures of Mg,n [54, 67, 72, 87]. In this context, extremely surprisingly, an
infinite-dimensional integrable system of the same nature appears again [66, 104].

Following Pixton [95], let us introduce stable graphs. This naming is an abbreviation of
“dual graphs of stable curves.” A stable graph γ = (V,E, L) is a connected graph consisting
of a set V of vertices, a set E of edges, and a set L of legs, with prescribed incidence relations
among them. Every edge is incident to two vertices, which can be the same, i.e., an edge
can be a loop. Two vertices can be connected by two or more edges. Each vertex v ∈ V
carries a non-negative integer g(v) called the genus of v. A leg is a line segment attached
to a vertex. We do not consider the other end of a leg as a vertex. The sum of the number
of legs attached to a vertex v and the degree of v, i.e., the number of half-edges incident to
v, is denoted by n(v). The stability condition we impose is that at each vertex, we have

(4.1) 2g(v)− 2 + n(v) > 0.

The graph γ is a 1-dimensional topological space. We denote by hi(γ), i = 0, 1, the dimen-
sion of the homology group Hi(γ,Q). A stable graph γ is of type (g, n) if

(4.2)

{
g =

∑
v∈V g(v) + h1(γ)

n = |L|.
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A stable graph represents a stable curve of arithmetic genus g with n marked points, con-
sisting of |V | irreducible components of geometric genus g(v) for each v ∈ V connected by
|E| nodal singularities. A leg attached v indicates on which component this marked point
is placed. An edge between v, w ∈ V describes a nodal singularity, which is the intersection
of the components corresponding to these two vertices. A loop attached to a single vertex
represents a self-intersection of the component.

2

2
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4

4

1 2

3

4

1

Figure 4.1. Stable graphs of type (12, 3). The arrows show degeneration of stable
curves. The reverse direction of an arrow is an edge-contraction operation. When
a loop is contracted at a vertex, the genus of the vertex is increased by 1. When an
edge in between two vertices is contracted, the genera of the two vertices are added
together.

A smooth curve of genus g with n marked points is represented by a stable graph of one
vertex of genus g and n legs attached to it. Since there is no singularity on this curve, the
stable graph has no edge. The number of edges |E| shows the codimension of the boundary
stratum of Mg,n on which the stable curve belongs. Thus the maximum number of edges
on a stable graph of type (g, n) is 3g − 3 + n. The Euler characteristic of γ is

h0(γ)− h1(γ) = 1− g.
Therefore, the maximum number of vertices of a stable graph is 2g − 2 + n, in which case
every vertex v ∈ V carries genus 0 and n(v) = 3.

2
0

0

0 0

00

Figure 4.2. Stable graphs of type (2, 3), showing two degenerations of a smooth
curve to singular stable curves consisting of components of geometric genus 0.

The network of stable graphs of the same type is connected by edge-contraction oper-
ations. In the next section we will study edge contractions for cell graphs. Even as the
same operation called edge contraction, the nature of this operation for a cell graph is quite
different from stable graphs. In a stable graph, an edge represents a nodal singularity of a
stable curve. Thus contracting this edge is a process in the reverse direction of the degen-
eration of a curve forming a nodal singularity. As shown in Figure 4.1, when we contract
an edge connecting two vertices v and w of a stable graph γ = (V,E,L), the genus of the
vertex becomes g(v) + g(w). When we contract a loop attached to v, the genus goes up by



20 O. DUMITRESCU AND M. MULASE

1 at v. If we contract all edges of a stable graph of type (g, n), then we obtain the graph
with a single vertex of genus g and all n legs attached to it. Thus the network of stable
graphs of the same type is connected by edge-contraction operations.

Definition 4.1 (Cohomological Field Theory [67, 72]). LetA be a finite-dimensional, unital,
associative, and commutative Frobenius algebra with a basis {e1, . . . , er}. A Cohomolog-
ical Field Theory is a system (A, {Ωg,n}) consisting of linear maps

(4.3) Ωg,n : A⊗n −→ H∗(Mg,n,K)

defined for (g, n) in the stable range 2g − 2 + n > 0 and satisfying the following axioms:

CohFT 0: Ωg,n is Sn-invariant, and Ω0,3(v1, v2, v3) = η(v1v2, v3).

CohFT 1: Ωg,n+1(v1, . . . , vn,1) = π∗Ωg,n(v1, . . . , vn).

CohFT 2: gl∗1Ωg,n(v1, . . . , vn) =
∑
a,b

Ωg−1,n+2(v1, . . . , vn, ea, eb)η
ab.

CohFT 3: gl∗2Ωg1+g2,|I|+|J |(vI , vJ) =
∑
a,b

ηabΩg1,|I|+1(vI , ea)⊗ Ωg2,|J |+1(vJ , eb),

where I t J = {1, . . . , n} is a disjoint partition of the index set, and the tensor product
operation on the right-hand side is performed via the Künneth formula of cohomology rings

H∗(Mg1,n1+1 ×Mg2,n2+1,K) ∼= H∗(Mg1,n1+1,K)⊗H∗(Mg2,n2+1,K).

Remark 4.2. The condition Ω0,3(v1, v2, v3) = η(v1v2, v3) says that the product of the
Frobenius algebra is determined by the (0, 3)-value of the CohFT.

Remark 4.3. The condition for gluing morphisms says the following: The assignment of
1 to a singular point after gluing is identified with assigning δ(1) to the two normalization
points via (1.11). In terms of stable graphs, the formulas read as follows. We consider a
stable graph of type (g, n) with exactly one edge. First we assign 1 to this edge. Next, we
cut it to create two extra legs. This process corresponds to the normalization at the nodal
singularity represented by the edge. Then we assign δ(1) to these two legs, and identify
the pull-back of Ωg,n with the value coming from the corresponding boundary strata to the
stable graph.

Proposition 4.4 (2D TQFT is a CohFT). Every 2D TQFT is a CohFT that takes values
in H0(Mg,n,K). More precisely, let (A,ωg,m̄,n) be a 2D TQFT. Then ωg,n = ωg,n̄,0 satisfies

the CohFT axioms, by identifying K = H0(Mg,n,K).

Proof. Since Mg,n is connected, the three types of morphisms (3.3), (3.4), and (3.5) all
produce isomorphisms of degree 0 cohomologies. Thus the axioms CohFT 1–3 become

ωg,n+1(v1, . . . , vn,1) = ωg,n(v1, . . . , vn),(4.4)

ωg,n(v1, . . . , vn) =
∑
a,b

ωg−1,n+2(v1, . . . , vn, ea, eb)η
ab,(4.5)

ωg1+g2,|I|+|J |(vI , vJ) =
∑
a,b

ηabωg1,|I|+1(vI , ea) · ωg2,|J |+1(vJ , eb).(4.6)

We wish to show that (4.4)-(4.6) are consequences of the partial sewing axiom (2.8) of
TQFT under the identification ωg,n = ωg,n̄,0.

Since ω0,0̄,1 = 1, we have

ωg,n+1,0 ◦(n+1) ω0,0̄,1 = ωg,n̄,0 = ωg,n : A⊗n −→ K
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from (2.8), which is (4.4). Here, ◦(n+1) is the composition taken at the (n + 1)-th slot of
the input variables of ωg,n+1,0. Next, we need to identify ω0,0̄,2 : K −→ A ⊗ A. Since

ω0,0̄,2 = ω0,1̄,2 ◦ω0,0̄,1, we see that ω0,0̄,2(1) = δ(1) =
∑

a,b η
abea⊗eb. Denoting by ◦(n+1,n+2)

to indicate composition taking at the last two slots of variables, we have (4.5)

ωg−1,n+2,0 ◦(n+1,n+2) ω0,0̄,2 = ωg,n̄,0 : A⊗n −→ K.

If we have two disjoint sets of variables vI and vJ , then we can apply composition of ω0,0̄,2

simultaneously to two different maps. For example, we have(
ω
g1,|I|+1,0

⊗ ω
g2,|J |+1,0

)
◦ ω0,0̄,2 = ω

g1+g2,|I|+|J |,0 : A⊗(|I|+|J |) −→ K,

which is (4.6).
Notice that a linear map

ωg,m+n : A⊗m ⊗A⊗n −→ K

is equivalent to A⊗m −→ (A∗)⊗n. Thus we can re-construct a map ωg,m̄,n from ωg,m+n by

(4.7) A⊗m

‖
��

ωg,m+n // (A∗)⊗n
(λ−1)⊗n // A⊗n

‖ ,
��

A⊗m
ωg,m̄,n // A⊗n

where λ : A
∼−→ A∗ is the isomorphism of (1.4). For the case of g = 0, m = 2, and n = 1,

(4.7) implies that
λ−1ω0,3(v1, v2, · ) = ω0,2̄,1(v1, v2) = v1v2

for v1, v2 ∈ A. Or equivalently, we have

(4.8) ω0,3(v1, v2, v3) = η(v1v2, v3) = ε(v1v2v3).

This completes the proof. �

Conversely, the degree 0 part of the cohomology of a CohFT is a 2D TQFT.

Proposition 4.5 (Restriction of CohFT to the degree 0 part of the cohomology ring). Let
(A,Ωg,n) be a CohFT associated with a Frobenius algebra A. The Frobenius algebra A itself
defines a unique 2D TQFT (A,ωg,m̄,n). Denote by

r : H∗(Mg,n,K) −→ H0(Mg,n,K) = K

the restriction of the cohomology ring to its degree 0 component, and define

(4.9) ωg,n = r ◦ Ωg,n : A⊗n −→ K.

Then we have the equality of maps

(4.10) ωg,n = ωg,n̄,0 : A⊗n −→ K

for all (g, n) with 2g− 2 +n > 0. In other words, the degree 0 restriction of a CohFT is the
2D TQFT determined by the Frobenius algebra A.

Proof. We already know that (A,ωg,m̄,n) defines a CohFT with values in H0(Mg,n,K). We
need to show that this CohFT is exactly the degree 0 restriction of the given CohFT we
start with. First we extend ωg,n to the unstable range by

(4.11) ω0,1 = ε : A −→ K, ω0,2 = η : A⊗2 −→ K.

We then note that from (2.4) and (4.11), we see that (4.10) holds for ω0,1 and ω0,2. The
general case of (4.10) follows by induction on 3g−3+n, provided that ω0,3 is appropriately
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defined. This is because (4.5) and (4.6) are induction formula recursively generating ωg,n
from those with smaller values of g and n. Since

• Case of (4.5): 3g − 3 + n = [3(g − 1)− 3 + (n+ 2)] + 1,
• Case of (4.6): 3(g1 + g2)− 3 + |I|+ |J | = [3g1 − 3 + |I|+ 1] + [3g2 − 3 + |J |+ 1] + 1,

we see that the complexity 3g−3+n is always reduced by 1 in each of the recursive formulas.
Finally, we see that since M0,3 is just a point as we have noted above in the discussion

of Aut(P1), ω0,3 = Ω0,3 holds. Hence

(4.12) ω0,3(v1, v2, v3) = η(v1v2, v3),

which makes (4.10) holds for all values of (g, n). This completes the proof. �

Remark 4.6. The above two propositions show that a 2D TQFT can be defined either
just by a commutative Frobenius algebra A, by a system of maps {ωg,m̄,n} satisfying the
TQFT axioms, or the degree 0 part of a CohFT. From now on, we use (A,ωg,n) to denote
a 2D TQFT, which is less cumbersome and easier to deal with.

Proposition 4.7. The genus 0 values of a 2D TQFT is given by

(4.13) ω0,n(v1, . . . , vn) = ε(v1 · · · vn).

Proof. This is a direct consequence of CohFT 3 and (1.10). �

One of the original motivations of TQFT [4, 99] is to identify the topological invariant
Z(N) of a closed manifold N . In our current setting, it is defined as

(4.14) Z(Σg) := ε
(
λ−1(ωg,1)

)
for a closed oriented surface Σg of genus g. Here, ωg,1 : A −→ K is an element of A∗, and

λ : A
∼−→ A∗ is the canonical isomorphism (1.4).

Proposition 4.8. The topological invariant Z(Σg) of (4.14) is given by

(4.15) Z(Σg) = ε(eg),

where e ∈ A is the Euler element of (1.13).

Lemma 4.9. We have

(4.16) e := m ◦ δ(1) = λ−1(ω1,1).

Proof. This follows from

ω1,1(v) =
∑
a,b

ω0,3(v, ea, eb)η
ab =

∑
a,b

η(v, eaeb)η
ab = η(v, e)

for every v ∈ A. �

Proof of Proposition 4.8. Since the starting case g = 1 follows from the above Lemma, we
prove the formula by induction, which goes as follows:

ωg,1(v) =
∑
a,b

ωg−1,3(v, ea, eb)η
ab

=
∑
i,j,a,b

ω0,4(v, ea, eb, ei)ωg−1,1(ej)η
abηij

=
∑
i,j,a,b

η(veaeb, ei)ωg−1,1(ej)η
abηij
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=
∑
i,j

η(ve, ei)ωg−1,1(ej)η
ij

= ωg−1,1(ve)

= ω1,1(veg−1)

= η(veg−1, e) = η(v, eg).

�

A closed genus g surface is obtained by sewing g genus 1 pieces with one output boundaries
to a genus 0 surface with g input boundaries. Since the Euler element is the output of the
genus 1 surface with one boundary, we obtain the same result

Z(Σg) = ω0,g(

g︷ ︸︸ ︷
e, . . . , e).

Finally we have the following:

Theorem 4.10. The value of a 2D TQFT is given by

(4.17) ωg,n(v1, . . . , vn) = ε(v1 · · · vneg).

Proof. The argument is the same as the proof of Proposition 4.8:

ωg,n(v1, . . . , vn) = ω1,n(v1e
g−1, v2, . . . , vn)

=
∑
a,b

ω0,n+2(v1e
g−1, v2, . . . , vn, ea, eb)η

ab

= ε(v1 · · · vneg).

�

Remark 4.11. Since Mg,n is connected and the restriction of its degree 0 cohomology
group to any boundary stratum is isomorphic, we can calculate ωg,n by using any stable
graph we like. For example, we can use the one on the right of Figure 4.2, which has a
vertex of genus 0 with n legs and g loops. We assign 1 to every loop, and cut it at the
midpoint. CohFT 2 and (4.13) then gives the same value as in (4.17).

5. Category of cell graphs

In the original formulation of 2D TQFT, the operations of multiplication and comulti-
plication are associated with an oriented surface of genus 0 with three boundary circles. In
this section, we introduce a category of ribbon graphs, which carries the information of all
finite-dimensional Frobenius algebras. To avoid unnecessary confusion, we use the termi-
nology of cell graphs in this article, instead of more common ribbon graphs. Ribbon graphs
naturally appear for encoding complex structures of a topological surface (see for example,
[66, 81]). Our purpose of using ribbon graphs are for degeneration of stable curves, and we
label vertices, instead of faces, of a ribbon graph.

Definition 5.1 (Cell graphs). A connected cell graph of topological type (g, n) is the
1-skeleton of a cell-decomposition of a connected closed oriented surface of genus g with n
labeled 0-cells. We call a 0-cell a vertex, a 1-cell an edge, and a 2-cell a face, of the cell
graph. We denote by Γg,n the set of connected cell graphs of type (g, n). Each edge consists
of two half-edges connected at the midpoint of the edge.
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Remark 5.2. • The dual of a cell graph is a ribbon graph, or Grothendieck’s dessin
d’enfant. We note that we label vertices of a cell graph, which corresponds to face
labeling of a ribbon graph. Ribbon graphs are also called by different names, such
as embedded graphs and maps.
• We identify two cell graphs if there is a homeomorphism of the surfaces that brings

one cell-decomposition to the other, keeping the labeling of 0-cells. The only possible
automorphisms of a cell graph come from cyclic rotations of half-edges at each vertex.

Definition 5.3 (Directed cell graph). A directed cell graph is a cell graph for which an
arrow is assigned to each edge. An arrow is the same as an ordering of the two half-edges
forming an edge.

Remark 5.4. A directed cell graph is a quiver. Since our graph is drawn on an oriented
surface, a directed cell graph carries more information than its underlying quiver structure.
The tail vertex of an arrowed edge is called the source, and the head of the arrow the target,
in the quiver language. The quiver structure allows us to deal with non-commutative
Frobenius algebras.

To label n vertices, we normally use the n-set

[n] := {1, 2, . . . , n}.
However, it is often easier to use any totally ordered set of n elements for labeling. The main
reason we label the vertices of a cell graph is we wish to assign an element of a K-vector
space A to each vertex. In this article, we consider the case that a cell graph γ ∈ Γg,n
defines a linear map

(5.1) Γg,n 3 γ : A⊗n −→ K.

The set of values of these functions γ can be more general. We discuss some of the general
cases in [34].

An effective tool in graph enumeration is edge-contraction operations. Often edge con-
traction leads to an inductive formula for counting problems of graphs. The same edge-
contraction operations acquire algebraic meaning in our consideration.

Definition 5.5 (Edge-contraction operations). There are two types of edge-contraction
operations applied to cell graphs.

• ECO 1: Suppose there is a directed edge ~E =
−→
pipi in a cell graph γ ∈ Γg,n,

connecting the tail vertex pi and the head vertex pj . We contract ~E in γ, and put
the two vertices pi and pj together. We use i for the label of this new vertex, and
call it again pi. Then we have a new cell graph γ′ ∈ Γg,n−1 with one less vertices. In
this process, the topology of the surface on which γ is drawn does not change. Thus
genus g of the graph stays the same.

pi pj pi

E

Figure 5.1. Edge-contraction operation ECO 1. The edge bounded by two vertices
pi and pj is contracted to a single vertex pi.
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• We use the notation ~E for the edge-contraction operation

(5.2) ~E : Γg,n 3 γ 7−→ γ′ ∈ Γg,n−1.

• ECO 2: Suppose there is a directed loop ~L in γ ∈ Γg,n at the i-th vertex pi. Since
a loop in the 1-skeleton of a cell decomposition is a topological cycle on the surface,
its contraction inevitably changes the topology of the surface. First we look at the
half-edges incident to vertex pi. Locally around pi on the surface, the directed loop
~L separates the neighborhood of pi into two pieces. Accordingly, we put the incident
half-edges into two groups. We then break the vertex pi into two vertices, pi1 and
pi2 , so that one group of half-edges are incident to pi1 , and the other group to pi2 .

The order of two vertices is determined by placing the loop ~L upward near at vertex
pi. Then we name the new vertex on its left by pi1 , and on its right by pi2 .

Let γ′ denote the possibly disconnected graph obtained by contracting ~L and
separating the vertex to two distinct vertices labeled by i1 and i2.

pi

1
pi 2

piL

Figure 5.2. Edge-contraction operation ECO 2. The contracted edge is a loop ~L

of a cell graph. Place the loop so that it is upward near at pi to which ~L is attached.
The vertex pi is then broken into two vertices, pi1 on the left, and pi2 on the right.
Half-edges incident to pi are separated into two groups, belonging to two sides of
the loop near pi.

• If γ′ is connected, then it is in Γg−1,n+1. The loop ~L is a loop of handle. We use the

same notation ~L to indicate the edge-contraction operation

(5.3) ~L : Γg,n 3 γ 7−→ γ′ ∈ Γg−1,n+1.

• If γ′ is disconnected, then write γ′ = (γ1, γ2) ∈ Γg1,|I|+1 × Γg2,|J |+1, where

(5.4)

{
g = g1 + g2

I t J = {1, . . . , î, . . . , n}
.

The edge-contraction operation is again denoted by

(5.5) ~L : Γg,n 3 γ 7−→ (γ1, γ2) ∈ Γg1,|I|+1 × Γg2,|J |+1.

In this case we call ~L a separating loop. Here, vertices labeled by I belong to
the connected component of genus g1, and those labeled by J are on the other
component of genus g2. Let (I−, i, I+) (reps. (J−, i, J+)) be the reordering of I t{i}
(resp. J t {i}) in the increasing order. Although we give labeling i1, i2 to the two
vertices created by breaking pi, since they belong to distinct graphs, we can simply

use i for the label of pi1 ∈ γ1 and the same i for pi2 ∈ γ2. The arrow of ~L translates
into the information of ordering among the two vertices pi1 and pi2 .
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Remark 5.6. Let us define m(γ) = 2g − 2 + n for a graph γ ∈ Γg,n. Then every edge-
contraction operation reduces m(γ) exactly by 1. Indeed, for ECO 1, we have

m(γ′) = 2g − 2 + (n− 1) = m(γ)− 1.

The ECO 2 applied to a loop of handle produces

m(γ′) = 2(g − 1)− 2 + (n+ 1) = m(γ)− 1.

For a separating loop, we have

2g1 − 2 + |I|+ 1
+) 2g2 − 2 + |J |+ 1

2g1 + 2g2 − 4 + |I|+ |J |+ 2 = 2g − 2 + n− 1.

The motivation for our introduction of directed cell graphs is that we need them when
we deal with non-commutative Frobenius algebras. The operation of taking disjoint union
is symmetric. Therefore, 2D TQFT inevitably leads to a commutative Frobenius algebra.
The advantage of our formalism using directed cell graphs is that we can deal with non-
commutative Frobenius algebras and non-symmetric tensor products.

For the purpose of presenting the idea of the category of cell graphs as simple as possible,
we restrict ourselves to undirected cell graphs in this article. Therefore, we will only recover
commutative Frobenius algebras and usual 2D TQFT. A more general theory will be given
in [34].

We now introduce the category of cell graphs. The most unusual point we present here is
that a morphism between cell graphs is not a cell map. Recall that a cell map f : γ −→ γ′

from a cell graph γ to another cell graph γ′ is a topological map between 1-dimensional cell
complexes. Thus f sends a vertex of γ to a vertex of γ′, and an edge of γ to either an edge
or a vertex of γ′, keeping the incidence relations. In particular, a cell map is continuous
with respect to the topological structure on cell graphs indued from the surface on which
they are drawn.

Definition 5.7 (Category of cell graphs). The category CG of cell graphs is defined as
follows.

• The set of objects of CG is the set of all cell graphs:

(5.6) Ob(CG) =
∐

g≥0,n>0

Γg,n.

• A morphism
f ∈ Hom(γ, γ′)

is a composition of a finite sequence of edge-contraction operations and cell graph
automorphisms. In particular, Hom(γ, γ) = Aut(γ). If there is no way to bring γ to
γ′ by consecutive applications of edge-contraction operations and automorphisms,
then we define Hom(γ, γ′) = ∅, even though there may be cell maps between them.

Remark 5.8. The triple (CG,t, ∅) forms a symmetric monoidal category.

Remark 5.9. Automorphisms of a cell graph and ECOs of the first kind are cell maps, but
ECOs2 operations are not. When an ECO 2 is involved, a morphism between cell graphs
does not have to be a cell map. It may not be continuous.

Example 5.10. A few simple examples of morphisms are given below. Note that vertices
are all labeled, and automorphisms are required to keep labeling.

Hom (•, •) = {id}.(5.7)
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Hom
(
•, • •

)
= ∅.(5.8)

Hom(•E1•E2•, • •) = {E1, E2}.(5.9)

Hom(•E1•E2•, •) = {E1E2 = E2E1}.(5.10)

Hom

(
E1

•©•
E2

, •©
)

= {E1, E2 = σ(E1)}.(5.11)

Hom

(
E1

•©•
E2

, • •
)

= {E1E2 = E2E1}.(5.12)

In (5.10), we note that E1E2 := E1 ◦ E2 is equal to E2E1 := E2 ◦ E1, because they both
produce the same result • • • → • • → •. The cell graph of the left of (5.11) and
(5.12) has an automorphism σ that interchanges E1 and E2. Thus as an edge-contraction
operation, E2 = E1 ◦ σ = σ(E1). Note that there is a 2 : 1 covering cell map for the case of

(5.11) that sends both edges E1 and E2 on
E1

•©•
E2

to the single loop of •©, and the two vertices

on the first graph to the single vertex on the second. Since it is not an edge-contraction,
this cell map is not a morphism. The morphism of (5.12) is not a cell map, since it is not
continuous.

Let Vect be the category of finite-dimensional K-vector spaces. The triple

C = (Vect,⊗,K)

forms a monoidal category. Again for simplicity, we are concerned only with symmetric
tensor products in this article, so we consider C a symmetric monoidal category. A K-
object in Vect is a pair (V, ε : V −→ K) consisting of a vector space V and a linear map
ε : V −→ K. We denote by Vect/K the category of K-objects in Vect. It has the unique
final object (K, id : K −→ K). Therefore,

C/K =
(
Vect/K,⊗, (K, id : K −→ K)

)
is again a monoidal category. We denote by

(5.13) Fun(C/K, C/K)

the endofunctor category of the monoidal category C/K, which consists of monoidal
functors α : C/K −→ C/K as its objects, and their natural transformations τ as morphisms.
Schematically, we have

V

h

��

f

��

α(V )

α(h)

��

α(f)

��

τ // β(V )

β(h)

��

β(f)

��
K K

τ // K.

W

g

>>

α(W )

α(g)
<<

τ // β(W )
β(g)

<<

Here, the triangle on the left shows two objects (V, f : V −→ K) and (W, g : W −→ K)
of C/K, and a morphism h between them. The prism shape on the right represents two
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monoidal endofunctors α and β that assigns

V 7−→ α(V ), V 7−→ β(V )

W 7−→ α(W ), W 7−→ β(W ),

and a natural transformation τ : α −→ β among them. The final object of Fun(C/K, C/K)
is the functor

(5.14) φ : (V, f : V −→ K) −→ (K, idK : K −→ K)

which assigns the final object of the codomain C/K to everything in the domain C/K.
With respect to the tensor product and the above functor (5.14) as its identity object, the
endofunctor category Fun(C/K, C/K) is again a monoidal category.

Definition 5.11 (ECO functor, [34]). The ECO functor is a monoidal functor

(5.15) ω : CG −→ Fun(C/K, C/K)

satisfying the following conditions.

• The graph • ∈ Γ0,1 consisting of only one vertex and no edge corresponds to the
identity functor

(5.16) ω(•) = id : C/K −→ C/K.

• Each graph γ ∈ Γg,n corresponds to a functor

(5.17) ω(γ) : (V, ε : V −→ K) 7−→ (V ⊗n, ωV (γ) : V ⊗n −→ K).

• Edge-contraction operations correspond to natural transformations.

Let us recall the notion of Frobenius object.

Definition 5.12 (Frobenius object). Let (C,⊗,K) be a symmetric monoidal category. A
Frobenius object is an object V ∈ Ob(C) together with morphisms

m : V ⊗ V −→ V, 1 : K −→ V, δ : V −→ V ⊗ V, ε : V −→ K,

satisfying the following conditions:

• (V,m,1) is a monoid object in C.
• (V, δ, ε) is a comonoid object in C.

We also require the compatibility condition (1.8) among morphisms m and δ:

V ⊗ V ⊗ V
m⊗id

''
V ⊗ V

id⊗δ
88

m //

δ⊗id &&

V
δ // V ⊗ V.

V ⊗ V ⊗ V
id⊗m

88

Since we are considering the monoidal category of K-objects in Vect, there is a priori
no notion of 1 in V . The existence of the morphism 1 : K −→ V requires a non-degeneracy
condition. The following theorem is proved in [34].

Theorem 5.13 (Generation of Frobenius objects [34]). An object (V, ε : V −→ K) of C/K
is a Frobenius object if ωV (• •) : V ⊗V −→ K defines a non-degenerate symmetric bilinear
form on V .
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6. 2D TQFT from cell graphs

The result of Section 4 tells us that a 2D TQFT can be defined as a system (A,ωg,n) of
linear maps

(6.1) ωg,n : A⊗n −→ K

defined for all values of g ≥ 0 and n ≥ 1, satisfying a set of conditions. The required
conditions are the following: First, (A,ωg,n) is a CohFT for 2g− 2 +n > 0. In addition, we
require that

(6.2)
ω0,1 = ε : A −→ K,

ω0,2 = η : A⊗A −→ K.

In this section we give a different formulation of a 2D TQFT, based on cell graphs and a
different set of axioms. Our ultimate goal is to relate 2D TQFT, CohFT, mirror symmetry,
topological recursion, and quantum curves. Later in these lectures, we introduce quantum
curves. Relations between all these subjects will be discussed elsewhere [34].

Theorem 6.1 (Graph independence [30]). Let (A, ε : A −→ K) be a Frobenius object under
the ECO functor ω of Definition 5.11. Then every connected cell graph γ ∈ Γg,n gives rise
to the same map

(6.3) ωA(γ) : A⊗n 3 v1 ⊗ · · · ⊗ vn 7−→ ε(v1 · · · vneg) ∈ K,
where e is the Euler element of (1.13).

Corollary 6.2 (ECO implies TQFT). Define ωg,n(v1, . . . , vn) = ωA(γ)(v1, . . . , vn) for every
γ ∈ Γg,n. Then {ωg,n} is a 2D TQFT.

Proof. Since the value of (6.3) is the same as (4.17), it is a 2D TQFT. �

The rest of the section is devoted to proving Theorem 6.1. We first give three examples
of graph independence.

Lemma 6.3 (Edge-removal lemma). Let γ ∈ Γg,n.

• Case 1. There is a disc-bounding loop L in γ. Let γ′ ∈ Γg,n be the graph obtained
by simply removing L from γ. Note that we are not contracting L.
• Case 2. The graph γ contains two edges E1 and E2 between two distinct vertices pi

and pj that bound a disc. Let γ′ ∈ Γg,n be the graph obtained by removing E2. Here
again, we are just eliminating E2.
• Case 3. Two loops, L1 and L2, in γ are attached to the i-th vertex pi. If they are

homotopic, then let γ′ ∈ Γg,n be the graph obtained by removing L2 from γ.

In each of the above cases, we have

(6.4) ωA(γ)(v1, . . . , vn) = ωA(γ′)(v1, . . . , vn).

Figure 6.1. Removal of disc-bounding edges.
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Proof. Case 1. Contracting a disc-bounding loop attached to pi creates (γ0, γ
′) ∈ Γ0,1×Γg,n,

where γ0 consists of only one vertex and no edges. The natural transformation corresponding
to ECO 1 then gives

ωA(γ)(v1, . . . , vn) =
∑
a,b,k,`

η(vi, eke`)η
kaη`bωA(γ0)(ea)ωA(γ′)(v1, . . . , vi−1, eb, vi+1 . . . , vn)

=
∑
a,b,k,`

η(vi, eke`)η
kaη`bη(1, ea)ωA(γ′)(v1, . . . , vi−1, eb, vi+1 . . . , vn)

=
∑
b,k,`

η(vi,1 · e`)η`bωA(γ′)(v1, . . . , vi−1, eb, vi+1 . . . , vn)

=
∑
b,`

η(vi, e`)η
`bωA(γ′)(v1, . . . , vi−1, eb, vi+1 . . . , vn)

= ωA(γ′)(v1, . . . , vi−1, vi, vi+1 . . . , vn).

Case 2. Contracting Edge E1 makes E2 a disc-bounding loop at pi. We can remove it
by Case 1. Note that the new vertex is assigned with vivj . Restoring E1 makes the graph
exactly the one obtained by removing E2 from γ. Thus (6.4) holds.

Case 3. Contracting Loop L1 makes L2 a disc-bounding loop. Hence we can remove it
by Case 1. Then restoring L1 creates a graph obtained from γ by removing L2. Thus (6.4)
holds. �

Remark 6.4. The three cases treated above correspond to removing degree 1 and 2 vertices
from the dual ribbon graph.

Definition 6.5 (Reduced graph). A cell graph is reduced if it does not contain any disc-
bounding loops or disc-bounding bigons. In terms of dual ribbon graphs, the dual of a
reduced cell graph has no vertices of degree 1 or 2.

We can see from Lemma 6.3, Case 1, that every graph γ ∈ Γ0,1 gives the same map

(6.5) ωA(γ)(v) = ε(v).

Similarly, Cases 2 and 3 of Lemma 6.3 show that every graph γ ∈ Γ0,2 defines

ωA(γ)(v1, v2) = η(v1, v2).

This is because we can remove all edges and loops but one that connects the two vertices.
Then by the natural transformation corresponding to ECO 1, the value of the assignment
ωA(γ) is ε(v1v2) = η(v1, v2).

Proof of Theorem 6.1. We use the induction on m = 2g − 2 + n. The base case is m = −1,
or (g, n) = (0, 1), for which the theorem holds by (6.5). Assume that (6.3) holds for all
(g, n) with 2g − 2 + n < m. Now let γ ∈ Γg,n be a cell graph of type (g, n) such that
2n− 2 +n = m. Choose an arbitrary straight edge of γ that connects two distinct vertices,
say pi and pj . Then the natural transformation of contracting this edge to γ′ gives

ωA(γ)(v1, . . . , vn) = ωA(γ′)(v1, . . . , vi−1, vivj , vi+1 . . . , v̂j , . . . , vn) = ε(v1 . . . vne
g).

If we have chosen an arbitrary loop attached to pi, then its contraction by ECO 2 gives
two cases, depending on whether the loop is a loop of handle or a separating loop. For the
former case, we have a graph γ′, and by appealing to (1.10) and (1.14), we obtain

ωA(γ)(v1, . . . , vn) =
∑
a,b,k,`

η(vi, eke`)η
kaη`bωA(γ′)(v1, . . . , vi−1, ea, eb, vi+1, . . . , vn)
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=
∑
a,b,k,`

η(viek, e`)η
kaη`bωA(γ′)(v1, . . . , vi−1, ea, eb, vi+1, . . . , vn)

=
∑
a,k

ηkaωA(γ′)(v1, . . . , vi−1, ea, viek, vi+1, . . . , vn)

=
∑
a,k

ηkaε(v1 · · · vneg−1eaeb)

= ε(v1 · · · vneg).

For the case of a separating loop, ECO 2 makes γ → (γ1, γ2), and we have

ωA(γ)(v1, . . . , vn) =
∑
a,b,k,`

η(vi, eke`)η
kaη`bωA(γ1)

(
vI− , ea, vI+

)
ωA(γ2)

(
vJ− , eb, vJ+

)
=
∑
a,b,k,`

η(vi, eke`)η
kaη`bε

(
ea
∏
c∈I

vce
g1

)
ε

(
eb
∏
d∈J

vde
g2

)

=
∑
a,b,k,`

η(viek, e`)η
kaη`bη

(∏
c∈I

vc, eae
g1

)
ε

(
eb
∏
d∈J

vde
g2

)

=
∑
a,k

ηkaη

(∏
c∈I

vce
g1 , ea

)
ε

(
viek

∏
d∈J

vde
g2

)

= ε

(
vi
∏
c∈I

vce
g1
∏
d∈J

vde
g2

)
= ε(v1 · · · vneg1+g2).

Therefore, no matter how we apply ECO 1 or ECO 2, we always obtain the same result.
This completes the proof. �

7. TQFT-valued topological recursion

There is a direct relation between a Frobenius algebra and Gromov-Witten theory when
A is given by the big quantum cohomology of a target space. Since these Frobenius algebras
are usually infinite-dimensional over the ground field, they do not correspond to a 2D TQFT
discussed in the previous sections. But for the case that the target space is 0-dimensional,
the TQFT indeed captures the whole Gromov-Witten theory.

In this section, we present a general framework. Fundamental examples are A = Q, which
gives ψ-class intersection numbers on Mg,n, and the center of the group algebra of a finite
group A = ZC[G], which produces Gromov-Witten invariants of the classifying space BG.
The first example is considered in [30, 31]. The latter case will be discussed elsewhere [34].

We wish to solve a graph enumeration problem, where as a graph we consider a cell
graph, and each of its vertex is colored by a parameter v ∈ A. We also impose functoriality
under the edge-contraction of Definition 5.5 for this coloring. The ECOs reduce the com-
plexity of coloring considerably, because the functoriality makes the coloring process graph
independent, as we have shown in the last section. Thus the answer is just the number of
graphs times the value ε(v1 · · · vneg) for each topological type (g, n). Here comes the dif-
ficulty: there are infinitely many graphs for each topological type, since we allow multiple
edges and loops. The standard idea for such counting problem is to appeal to the Laplace
transform, which is introduced by Laplace for this particular context of counting an infinite
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number of objects. Let us denote by

(7.1) Γg,n(µ1, . . . , µn)

the set of all cell graphs with labeled vertices of degrees (µ1, . . . , µn). Denoting by cd the
number of d-cells in a cell-decomposition of a surface of genus g, d = 0, 1, 2, we have n = c0,∑n

i=1 µi = 2c1, and 2− 2g = n− c1 + c2. Therefore, (7.1) is a finite set.
Counting processes become easier if we do not have any object with non-trivial auto-

morphism. There are many ways to eliminate automorphism, for example, the minimalistic
way of imposing the least possible conditions, or an excessive way to kill automorphisms
but for the most objects the conditions are redundant. Actually, it is known that most
of the cell graphs counted in (7.1) are without any non-trivial automorphisms. Since any
possible automorphism induces a cyclic permutation of half-edges incident to each vertex,
the easiest way to disallow any automorphism is to assign an outgoing arrow to one of
these half-edges, as in [35, 85] (but not as a quiver). An automorphism should preserve the
arrowed half-edges, in addition to labeled vertices. We denote by

(7.2) Γ̂g,n(µ1, . . . , µn)

the set of arrowed cell graphs with labeled vertices of degrees (µ1, . . . , µn), and by

(7.3) Cg,n(µ1, . . . , µn) :=
∣∣∣Γ̂g,n(µ1, . . . , µn)

∣∣∣
its cardinality. This number is always a non-negative integer, and C0,1(2m) = 1

m+1

(
2m
m

)
is

the m-th Catalan number.
We use the notation ωA(γ) = ωg,n : A⊗n −→ K of Corollary 6.2 for γ ∈ Γ̂g,n(µ1, . . . , µn).

We are interested in considering the Cg,n(µ1, . . . , µn)-weighted TQFT

(7.4) Cg,n(µ1, . . . , µn) · ωg,n : A⊗n −→ K,

and applying the edge-contraction operations to these maps. We contract the edge of γ that
carries the outgoing arrow at the first vertex p1, then place a new arrow to the half-edge
next to the original half-edge with respect to the cyclic ordering induced by the orientation
of the surface. If the edge that carries the outgoing arrow at p1 is a loop, then after splitting
p1, we place another arrow to the next half-edge at each of the two newly created vertices,
again next to the original loop. From this process we obtain the following counting formula:

Proposition 7.1. The 2D TQFT weighted by the number of arrowed cell graphs satisfies
the following equation.

(7.5)

Cg,n(µ1, . . . , µn) · ωg,n(v1, . . . , vn)

=
n∑
j=2

µjCg,n−1(µ1 + µj − 2, µ2, . . . , µ̂j , . . . , µn) · ωg,n−1(v1vj , v2, . . . , v̂j , . . . , vn)

+
∑

α+β=µ1−2

Cg−1,n+1(α, β, µ2, . . . , µn) · ωg−1,n+1

(
δ(v1), v2, . . . , vn

)
+

∑
α+β=µ1−2

∑
g1+g2=g

ItJ={2,...,n}

∑
a,b,k,`

η(v1, eke`)η
kaη`b

×
(
Cg1,|I|+1(α, µI) · ωg1,|I|+1(ea, vI)

) (
Cg2,|J |+1(β, µJ) · ωg2,|J |+1(eb, vJ)

)
.

This is exactly the same formula of [35, 85, 102] multiplied by

ωg,n(v1, . . . , vn) = ε(v1 . . . vne
g).
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Let us now consider a Frobenius algebra twisted topological recursion. To simplify
the notation, we adopt the following way of writing:

(7.6) (f ⊗ h) ◦ δ =
∑
a,b,k,`

η(•, eke`)ηkaη`bf(ea)h(eb),

where f, h : A −→ K are linear functions on A.
First let us review the original topological recursion of [39] defined on a spectral curve

Σ, which is just a disjoint union of r copies of open discs. Let U be the unit disc centered
at 0 of the complex z-line. We choose r sets of functions (xα, yα), α = 1, . . . , r, defined on
U with Taylor expansions

(7.7) xα(z) = z2 +

∞∑
k=3

aα,kz
k, yα(z) = z +

∞∑
k=2

bα,kz
k,

and a meromorphic 1-form (Cauchy kernel)

(7.8) ωp−qα (z) =
dz

z − p
− dz

z − q
+ ωα

on U , where p, q ∈ U , and ωα is a holomorphic 1-form on U . Since each xα : U −→ C is a
2 : 1 map, we have an involution on U that keeps the same xα-value:

(7.9) σα : U −→ U, xα
(
σα(z)

)
= xα(z).

To avoid confusion, we label r copies of U by U1, . . . , Ur, and consider the functions (xα, yα)
to be defined on Uα. The topological recursion is the following recursive equation

(7.10) Wg,n(z1, . . . , zn) =
1

2πi

r∑
α=1

∮
∂Uα

ω
σα(z)−z
α (z1)(

yα
(
σα(z)

)
− yα(z)

)
dxα(z)

×

Wg−1,n+1

(
z, σα(z), z2, . . . , zn

)
+

No (0,1)∑
g1+g2=g

ItJ={2,...,n}

Wg1,|I|+1(z, zI)Wg2,|J |+1

(
σα(z), zJ

)
on symmetric meromorphic n-differential forms Wg,n defined on the disjoint union Un1 t
· · · t Unr for 2g − 2 + n > 0. Here, zI = (zi)i∈I , and “No (0, 1)” in the summation means
the partition g = g1 + g2 and the set partition I t J = {2, . . . , n} do not allow g1 = 0
and I = ∅, or g2 = 0 and J = ∅. The integration is performed with respect to z ∈ ∂U .
Note that the differential form in the big bracket [ ] in (7.10) is a symmetric quadratic
differential in the variable z ∈ Uα. The expression 1/dxα(z) is a meromorphic section
of K−1

Uα
, where KUα denotes the canonical sheaf of holomorphic 1-forms on Uα. Thus the

integrand of the recursion becomes a meromorphic 1-form on Uα in the z-variable, for which

the integration is performed. The multiplication by ω
σα(z)−z
α (z1) is simply the symmetric

tensor product with a 1-form proportional to dz1. The 1-form W0,1 and the 2-form W0,2

are defined separately:

(7.11) W0,1(z) :=
r∑

α=1

yα(z)dxα(z)

is defined on the disjoint union U1 t · · · t Ur. If z ∈ Uα, then W0,1(z) = yα(z)dxα(z). In
the form of (7.10), however, W0,1 does not appear anywhere. Similarly, W0,2 is defined by

(7.12) W0,2(z1, z2) := dz1ω
z1−q
α (z2)
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if z1, z2 ∈ Uα. Here, the constant q ∈ Uα does not play any role. This 2-form explicitly
appears in the recursion part (the terms in the big bracket [ ]) of the formula.

Definition 7.2. A Frobenius algebra twisted topological recursion for

Wg,n =Wg,n(z1, . . . , zn) : A⊗n −→ K

is the following formula:

(7.13)

Wg,n(z1, . . . , zn; v1, . . . , vn) =
1

2πi

r∑
α=1

∮
∂Uα

∑
a,b,k,`

Kα
(
z, σα(z), z1; ek, e`, v1

)

×

Wg−1,n+1

(
z, σα(z), z2, . . . , zn; ea, eb, v2, . . . , vn)

+

No (0,1)∑
g1+g2=g

ItJ={2,...,n}

Wg1,|I|+1(z, zI ; ea, vI)Wg2,|J |+1

(
σα(z), zJ ; eb, vJ

) .
Here

(7.14) Kα
(
z, σα(z), z1; ek, e`, v1

)
=
ω
σα(z)−z
α (z1)η(eke`, v1)ηkaη`b(
yα
(
σα(z)

)
− yα(z)

)
dxα(z)

is the integration-summation kernel. Symbolically we can write (7.13) as

(7.15)

Wg,n =
1

2πi

r∑
α=1

∮
∂Uα

Kα

(
z, σα(z), z1

)

×

Wg−1,n+1 ◦ δ +

No (0,1)∑
g1+g2=g

ItJ={2,...,n}

(
Wg1,|I|+1 ⊗Wg2,|J |+1

)
◦ δ


with the usual integration kernel

Kα

(
z, σα(z), z1

)
:=

ω
σα(z)−z
α (z1)(

yα
(
σα(z)

)
− yα(z)

)
dxα(z)

.

Theorem 7.3. The topological recursion (7.13) uniquely determines the (A⊗n)∗-valued n-
linear differential form Wg,n from the initial data W0,2. If the initial data is given by

W0,2(z1, z2; v1, v2) = W0,2(z1, z2) · η(v1, v2)

for a 2-form (7.12), then there exists a solution {Wg,n} of the topological recursion (7.10)
and a 2D TQFT {ωg,n} such that

(7.16) Wg,n(z1, . . . , zn; v1, . . . , vn) = Wg,n(z1, . . . , zn) · ωg,n(v1, . . . , vn).

Proof. The proof is done by induction on m = 2g − 2 + n with the base case m = 0. We
assume that (7.16) holds for all (g, n) such that 2g − 2 + n < m, and use the value ωg,n =
ε(v1 · · · vneg) given by (4.17) for the values of (g, n) in the range of induction hypothesis.
Then by (7.13) and functoriality under ECO 2, we conclude that (7.16) also holds for all
(g, n) such that 2g − 2 + n = m. �
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Remark 7.4. In comparison to edge-contraction operations, we note that the multiplication
case ECO 1 does not seem to have a counterpart in an explicit way. It is actually included
in the terms involving g1 = 0, |I| = 1 and g2 = 0, |J | = 1 in the partition sum, and (1.15)
is used to change the comultiplication to multiplication. More precisely, if I = {i}, then it
gives a term

W0,2(z, zi; ea, vi)Wg,n−1

(
σα(z), z2, . . . , ẑi, . . . , zn; eb, v2, . . . , v̂i, . . . , vn

)
= W0,2(z, zi)Wg,n−1

(
σα(z), z2, . . . , ẑi, . . . , zn

)
· ω0,2(ea, vi)ωg,n−1(eb, v2, . . . , v̂i, . . . , vn)

in the partition sum, assuming the induction hypothesis. We also note that∑
a,b,k,`

η(eke`, v1)ηkaη`bω0,2(ea, vi)ωg,n−1(eb, v2, . . . , v̂i, . . . , vn)

=
∑
b,`

η`bω0,2(v1e`, vi)ωg,n−1(eb, v2, . . . , v̂i, . . . , vn)

=
∑
b,`

η`bη(v1vi, e`)ωg,n−1(eb, v2, . . . , v̂i, . . . , vn)

= ωg,n−1(v1vi, v1, . . . , v̂i, . . . , vn).

By taking the Laplace transform of (7.5) using the method of [35, 85], we obtain a
solution Wg,n = WD

g,n(z1, . . . , zn) · ωg,n to the topological recursion, where WD
g,n is given by

[35, (4.14)] with respect to a global spectral curve of [35, Theorem 4.3], and ωg,n is the
TQFT corresponding to the Frobenius algebra A.

Part 2. Quantization of Higgs Bundles

8. Quantum curves

The cohomology ring H∗(X,C) of a compact Kähler variety X is a Z/2Z-graded, Z/2Z-
commutative Frobenius algebra over C. The genus 0 Gromov-Witten invariants of X define
the big quantum cohomology of X, which is a quantum deformation of the cohomology
ring. If the mirror symmetry is established for X, then the information of big quantum
cohomology of X is supposed to be encoded in holomorphic geometry of a mirror dual space
Y . Gromov-Witten invariants are generalized to all values of (g, n) with 2g−2 +n > 0, g ≥
0, n > 0. The question is:

Question 8.1. What should be the holomorphic geometry on Y that captures all genera
Gromov-Witten invariants of X through mirror symmetry?

Since the transition from g = 0 to all values of g ≥ 0 is indeed a quantization, the
holomorphic object on Y that should capture higher genera Gromov-Witten invariants of
X is a quantum geometry of Y . A näıve guess may be that it should be a D-module that
represents Y as its classical limit. Hence the D-module is not defined on Y . Then where
does it live?

The idea of quantum curves concerns a rather restricted situation, when the mirror
geometry Y is captured by an algebraic, or an analytic, curve. Typical examples are the
mirror of toric Calabi-Yau orbifolds of three dimensions. Geometry of the mirror Y of a
toric Calabi-Yau 3-fold is encoded in a complex curve known as the mirror curve. Another
situation is enumeration problems of various Hurwitz-type coverings of P1, and also many
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decorated graphs on surfaces. For these examples, although there are no “spaces” X, the
mirror geometry exists, and is indeed a curve. These mirror curves are special cases of
more general notion of spectral curves. Besides mirror symmetry, spectral curves appear
in theory of integrable systems, random matrix theory, topological recursion, and Hitchin
theory of Higgs bundles. A spectral curve Σ has two common features. The first one is
that it is a Lagrangian subvariety of a holomorphic symplectic surface. The other is the
existence of a projection π : Σ −→ C to another curve C, called a base curve. The quantum
curve is a D-module on the base curve C such that its semi-classical limit is the spectral
curve realized in the cotangent bundle Σ ⊂ T ∗C.

From the analogy of 2D TQFT and CohFT, we note that a spectral curve is already a
quantized object, since it corresponds to quantum cohomology. The even part Heven(X,C),
which is a commutative Frobenius algebra, is not the one that corresponds to a spectral
curve. In this sense, CohFT is a result of two quantizations: the first one from classical
cohomology to a big quantum cohomology through n-point Gromov-Witten invariants of
genus 0; and the second quantization is the passage from genus 0 to all genera.

Remark 8.2. We note that quantum cohomology itself is a Frobenius algebra, though it
is not finite dimensional, because it requires the introduction of Novikov ring. The even
degree part forms a commutative Frobenius algebra, yet it does not correspond to a 2D
TQFT in the way we presented in Part 1.

Now let us turn to the topic of Part 2. The prototype of quantization is a Schrödinger
equation. Consider a harmonic oscillator of mass 1, energy E, and the spring constant
1/4 in one dimension. It has a geometric description as an elliptical motion of a constant
angular momentum in the phase space, or the cotangent bundle of the real axis. Here, the
spectral curve is an ellipse

1

4
x2 + y2 = E

in a real symplectic plane. The quantization of this spectral curve is the quantization of
the harmonic oscillator, which is a second order stationary Schrödinger equation in one
variable:

(8.1)

(
−~2 d

2

dx2
+

1

4
x2 − E

)
ψ(x, ~) = 0.

The quantization we discuss in Part 2 is in complete parallelism to quantization of har-
monic oscillator. As a holomorphic symplectic surface, we use (C2, dx ∧ dy). A plane
quadric

(8.2)
1

4
x2 − y2 = 1

is an example of a spectral curve. In complex coordinates, we identify y = d/dx, ignoring
the imaginary unit. An example of quantization of (8.2) is a Schrödinger equation

(8.3)

((
~
d

dx

)2

+ 1− 1

2
~− 1

4
x2

)
ψ(x, ~) = 0,

which is essentially the same as quantum harmonic oscillator equation (8.1), and is known
as the Hermite-Weber equation. Its solutions are all well studied.

Question 8.3. Why do we care this well-known classical differential equation?
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A surprising answer [29, 31, 35, 85] to this question is that we find the intersection numbers
of Mg,n through the asymptotic expansion! First we apply a gauge transformation

(8.4)

e−
1
4~x

2

((
~
d

dx

)2

+ 1− 1

2
~− 1

4
x2

)
e

1
4~x

2
Z(x, ~)

=

(
~
d2

dx2
+ ~x

d

dx
+ 1

)
Z(x, ~) = 0,

where Z(x, ~) = e−
1
4~x

2
ψ(x, ~). Recall the integer valued function Cg,n(µ1, . . . , µn) of (7.3),

and define their generating functions by

(8.5) Fg,n(x1, . . . , xn) :=
∑

µ1,...,µn>0

Cg,n(µ1, . . . , µn)

µ1 · · ·µn
x−µ1

1 · · ·x−µnn .

It is discovered in [35] that the derivatives Wg,n = d1 · · · dnFg,n satisfy the topological
recursion based on the spectral curve (0.1), which is the semi-classical limit of (8.4). With
an appropriate adjustment for (g, n) = (0, 1) and (0, 2), we have the following all-order
WKB expansion formula [31, 35, 85]:

(8.6) Z(x, ~) = exp

(∑
g,n

1

n!
~2g−2+nFg,n(x, . . . , x)

)
.

We find ([35]) that if we change the coordinate from x to t by

(8.7) x = x(t) =
t+ 1

t− 1
+
t− 1

t+ 1
,

then Fg,n
(
x(t1), x(t2), . . . , x(tn)

)
is a Laurent polynomial for each (g, n) with 2g−2+n > 0.

The coordinate change (8.7) is identified in [29] as a normalization of the singular curve
(0.1) in the Hirzebruch surface P

(
KP1⊕OP1

)
by a sequence of blow-ups. The highest degree

part of this Laurent polynomial is a homogeneous polynomial of degree 6g − 6 + 3n

(8.8) F highest
g,n (t1, . . . , tn) =

(−1)n

22g−2+n

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏
i=1

(
|2di − 1|!!

(
ti
2

)2di+1
)
,

where the coefficients

(8.9) 〈τd1 · · · τdn〉g,n =

∫
Mg,n

ψd1
1 · · ·ψ

dn
n

are cotangent class intersection numbers on the moduli spaceMg,n. Topological recursion is
a mechanism to calculate all Fg,n(x1, . . . , xn) from the single equation (8.3), or equivalently,
(8.4). Thus the quantum curve (8.3) has the information of all intersection numbers (8.9).
These are the topics discussed in our previous lectures [31].

Although the following topic is not what we deal with in this article, for the moment
let us consider a symplectic surface (C∗ × C∗, d log x ∧ d log y). As a spectral curve, we use
the zero locus of the A-polynomial AK(x, y) of a knot defined in [14]. For a given knot
K ⊂ S3, the SL2(C)-character variety

(8.10) Hom
(
π1(S3 \K), SL2(C)

)//
SL2(C)

of the fundamental group of the knot complement determines an algebraic curve in (C∗)2

defined by AK(x, y) ∈ Z[x, y]. Here, (C∗)2, or to be more precise, (C∗)2/(Z/2Z), is the
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SL2(C)-character variety of the fundamental group of the torus T 2 = S1×S1, which is the
boundary of the knot complement.

Now consider a function f(q, n) in 2 variables (q, n) ∈ C∗ × Z+, and define operators

(8.11)

{
(x̂f)(q, n) := qnf(q, n)

(ŷf)(q, n) := f(q, n+ 1),

following [42, 45]. These operators satisfy the commutation relation

x̂ · ŷ = qŷ · x̂.
The procedure of changing x 7−→ x̂ and y 7−→ ŷ is the Weyl quantization. Garoufalidis
[45] conjectures that there exists a quantization of the A-polynomial such that

(8.12) ÂK(x̂, ŷ; q)JK(q, n) = 0,

where JK(q, n) is the colored Jones polynomial of the knot K indexed by the dimension n
of the irreducible representation of SL2(C). Here, the quantization means that the operator

ÂK(x̂, ŷ; q) recovers the A-polynomial by the restriction

ÂK(x, y; 1) = AK(x, y).

This relations is the semi-classical limit, which provides the initial condition of the WKB
analysis.

A geometric definition of a quantum curve that arises as the quantization of a Hitchin
spectral curve is developed in [32], based on the work of [27] that solves a conjecture of
Gaiotto [43, 44]. The WKB analysis of the quantum curve [28, 29, 31, 60, 61] is performed
by applying the topological recursion of [39]. The Hermite-Weber differential equation is
an example of this geometric theory. Although there have been many speculations [52] of
the applicability of the topological recursion to low-dimensional topology, still there is no
counterpart of the Hitchin type geometric theory for the case of the quantization of A-
polynomials. The appearance of the modularity in this context [23, 63, 106] is a tantalizing
phenomenon, on which there has been a great advancement.

In the following sections, we unfold a different story of quantum curves. In geometry,
there is a process parallel to the passage from a spectral curve (0.1) to a quantum curve
(8.4). This process is a journey from the moduli space of Hitchin spectral curves to the
moduli space of opers [26, 32]. The quantization parameter, the Planck constant ~ of (8.4),
acquires a geometric meaning in this process. We begin the story with finding a coordinate
independent description of global differential equations of order 2 on a compact Riemann
surface.

9. Projective structures, opers, and Higgs bundles

In [28], the authors have given a definition of partial differential equation version of
topological recursion for Hitchin spectral curves. When the spectral curve is a double
sheeted covering of the base curve, we have shown that this PDE topological recursion
produces a quantum curve of the Hitchin spectral curve through WKB analysis. The
mechanism is explained in detail in [29, 31].

WKB analysis is certainly one way to describe quantization. Yet the passage from spec-
tral curves to their quantization is purely geometric. This point of view is adopted in [32],
based on our work [27] on a conjecture of Gaiotto [43]. Our statement is that the quan-
tization process is a biholomorphic map from the moduli space of Hitchin spectral curves
to the moduli space of opers [6]. In this section, we introduce the notion of opers, and
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construct the biholomorphic map mentioned above. In this passage, we give a geometric
interpretation of the Planck constant ~ (9.29) as a deformation parameter of vector bundles
and connections. For simplicity of presentation, we restrict our attention to SL2(C)-opers.
We refer to [27, 32] for more general cases.

To deal with linear differential equation of order higher then or equal to 2 globally on
a compact Riemann surface C, we need a projective coordinate system. If ω is a global
holomorphic or meromorphic 1-form on C, then

(9.1) (d+ ω)f = 0

is a first order linear differential equation that makes sense globally on C. This is because
d+ ω is a homomorphism from OC to KC , allowing singularities if necessary. Here, KC is
the sheaf of holomorphic 1-forms on C. Of course existence of a non-trivial global solution
of (9.1) is a different matter, because it is equivalent to ω = −d log f .

Suppose we have a second order differential equation

(9.2)

(
d2

dz2
− q(z)

)
f(z) = 0

locally on C with a local coordinate z. Clearly d2

dz2 is not globally defined, in contrast to
the exterior differentiation d in (9.1). What is the requirement for (9.2) to make sense
coordinate free, then? Let us find an answer by imposing

(9.3) dz2

[(
d

dz

)2

− q(z)

]
f(z) = 0⇐⇒ dw2

[(
d

dw

)2

− q(w)

]
f(w) = 0.

We wish the shape of the equation to be analogous to (9.1). Since ω is a 1-form, we impose
that q ∈ H0(C,K⊗2

C ) is a global quadratic differential on C. Under a coordinate change
w = w(z), q satisfies q(z)dz2 = q(w)dw2.

How should we think about a solution f? For (9.2) to have a coordinate free meeting,

we need to identify the line bundle L on C to which f belongs. Let us denote by e−g(w(z))

the transition function of L with respect to the coordinate patch w = w(z). A function
g(w) = g

(
w(z)

)
will be determined later. A solution f satisfies the coordinate condition

(9.4) e−g
(
w(z)
)
f
(
w(z)

)
= f(z).

Then

0 = dz2 · eg
(
w(z)
) [(

d

dz

)2

− q(z)

]
f(z)

= dz2 · eg
(
w(z)
) [(

d

dz

)2

− q(z)

]
e−g
(
w(z)
)
f
(
w(z)

)
= dz2 ·

(
eg
(
w(z)
)
d

dz
e−g
(
w(z)
))2

f
(
w(z)

)
− dw2q(w)f(w)

= dz2 ·
(
d

dz
− gw(w)w′

)2

f
(
w(z)

)
− dw2q(w)f(w)

= dz2 ·

[(
d

dz

)2

− 2gw(w)w′
d

dz
−
((
gw(w)w′

)′ − (gw(w)w′
)2)]

f
(
w(z)

)
− dw2q(w)f(w)

= dz2 ·
[(
fw(w)w′

)′ − 2gw(w)w′fw(w)w′ −
((
gw(w)w′

)′ − (gw(w)w′
)2)

f(w)
]
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− dw2q(w)f(w)

= fww(w)

(
dw

dz

)2

dz2 + fw(w)w′′dz2 − 2gw(w)fw(w)dw2

−
((
gw(w)w′

)′ − (gw(w)w′
)2)

f(w)dz2 − dw2q(w)f(w)

= dw2 ·

[(
d

dw

)2

− q(w)

]
f(w) + fw(w)

(
w′′ − 2gw(w)(w′)2

)
dz2

−
((
gw(w)w′

)′ − (gw(w)w′
)2)

f(w)dz2,

where w′ = dw/dz. Therefore, for (9.3) to hold, we need

w′′ − 2gw(w)(w′)2 = 0(9.5) (
gw(w)w′

)′ − (gw(w)w′
)2

= 0.(9.6)

From (9.5) we find

(9.7) gw(w)w′ =
1

2

w′′

w′
.

Substitution of (9.7) in (9.6) yields

(9.8) sz(w) :=

(
w′′(z)

w′(z)

)′
− 1

2

(
w′′(z)

w′(z)

)2

= 0.

We thus encounter the Schwarzian derivative sz(w). Since (9.7) is equivalent to

g(w)′ =
1

2

(
log(w′)

)′
,

we obtain g(w) = 1
2 logw′. Here, the constant of integration is 0 because g(z) = 0 when

w = z. Then (9.4) becomes

f(z) = e−
1
2

logw′f(w)⇐⇒ f(z) =

√
dz

dw
f(w),

which identifies the line bundle to which f belongs: f(z) ∈ K
− 1

2
C . We conclude that the

coordinate change w = w(z) should satisfy the vanishing of the Schwarzian derivative
sz(w) ≡ 0, and the solution f(z) should be considered as a (multivalued) section of the

inverse half-canonical K
− 1

2
C . The vanishing of the Schwarzian derivative dictates us to use

a complex projective coordinate system of C.
A holomorphic connection in a vector bundle E on C is a C-linear map ∇ : E −→ KC⊗E

satisfying the Leibniz condition ∇(fs) = f∇(s) + df ⊗ s for f ∈ OC and s ∈ E. Since C is
a complex curve, every connection on C is automatically flat. Therefore, ∇ gives rise to a
holonomy representation

(9.9) ρ : π1(C) −→ G

of the fundamental group π1(C) of the curve C into the structure group G of the vector
bundle E. A flat connection ∇ is irreducible if the image of the holonomy representation
(9.9) is Zariski dense in the complex algebraic group G. In our case, since G = SL2(C),
this requirement is equivalent to that Im(ρ) contains two non-commuting elements of G.
The moduli space MdeR of irreducible holomorphic connections (E,∇) in a G-bundle E
has been constructed (see [100]).
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Definition 9.1 (SL2(C)-opers). Consider a point (E,∇) ∈ MdeR consisting of an irre-
ducible holomorphic SL2(C)-connection ∇ : E −→ E ⊗KC acting on a vector bundle E.
It is an SL2(C)-oper if there is a line subbundle F ⊂ E such that the connection induces
an OC-module isomorphism

(9.10) ∇ : F
∼−→ (E/F )⊗KC .

The notion of oper is a generalization of projective structures on a Riemann surface.
Every compact Riemann surface C admits a projective structure subordinating the given
complex structure (see [53]). For our purpose of quantization of Hitchin spectral curves
associated with holomorphic Higgs bundles, let us assume that g(C) ≥ 2 in what follows.
When we allow singularities, we can relax this condition and deal with genus 0 and 1 cases.
A complex projective coordinate system is a coordinate neighborhood covering

C =
⋃
α

Uα

with a local coordinate zα of Uα such that for every Uα ∩ Uβ, we have a fractional linear
transformation

(9.11) zα =
aαβzβ + bαβ
cαβzβ + dαβ

, fαβ :=

[
aαβ bαβ
cαβ dαβ

]
∈ SL2(C),

satisfying a cocycle condition [fαβ][fβγ ] = [fαγ ]. Here, [fαβ] is the class of fαβ in the
projection

(9.12) 0 −→ Z/2Z −→ SL2(C) −→ PSL2(C) −→ 0,

which determines the fractional linear transformation. A choice of ± on each Uα ∩ Uβ is
an element of H1(C,Z/2Z) = (Z/2Z)2g, indicating that there are 22g choices of a lift. We
make this choice once and for all, and consider fαβ an SL2(C)-valued 1-cocycle. Since

dzα =
1

(cαβzβ + dαβ)2
dzβ,

a transition function for KC is given by the cocycle
{

(cαβzβ + dαβ)2
}

on each Uα ∩ Uβ. A

theta characteristic (or a spin structure) K
1
2
C is the line bundle defined by the 1-cocycle

(9.13) ξαβ = cαβzβ + dαβ.

Here again, we have 22g choices ±ξαβ for a transition function of K
1
2
C . Since we have already

made a choice of the sign for fαβ, we have a consistent choice in (9.13), as explained below.

Thus we see that the choice of the lift (9.12) is determined by K
1
2
C . From (9.13), we obtain

(9.14) ∂2
βξαβ = 0.

This property plays an essential role in our construction of global connections on C. First
we show that actually (9.14) implies (9.11).

Proposition 9.2 (A condition for projective coordinate). A coordinate system of C with

which the second derivative of the transition function of K
1
2
C vanishes is a projective coordi-

nate system.
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Proof. The condition (9.14) means that the transition function of K
1
2
C is a linear polynomial

cαβzβ + dαβ satisfying the cocycle condition. Therefore,

dzα
dzβ

=
1

(cαβzβ + dαβ)2
.

Solving this differential equation, we obtain

(9.15) za =
mαβ(cαβzβ + dαβ)− 1/cαβ

cαβzβ + dαβ

with a constant of integration mαβ. In this way we find an element of SL2(C) on each
Uα ∩ Uβ. The cocycle condition makes (9.15) exactly (9.11). �

The transition function fαβ defines a rank 2 vector bundle E on C whose structure
group is SL2(C). Since fαβ is a constant element of SL2(C), the notion of locally constant
sections of E makes sense independent of the coordinate chart. Thus defining ∇α = d
on Uα for each Uα determines a global connection ∇ in E. Suppose we have a projective
coordinate system on C. Let E be the vector bundle we have just constructed, and P(E) its
projectivization, i.e., the P1 bundle associated with E. Noticing that Aut(P1) = PSL2(C),
the local coordinate system {zα} of (9.11) is a global section of P(E). Indeed, this section
defines a map

(9.16) zα : Uα −→ P1,

which induces the projective structure of P1 into Uα via pull back. The map (9.16) is not
a constant, because its derivative dzα never vanishes on the intersection Uα ∩ Uβ. A global
section of P(E) corresponds to a line subbundle F of E, such that E is realized as an
extension 0 −→ F −→ E −→ E/F −→ 0. The equality[

za
1

]
=

1

cαβzβ + dαβ

[
aαβ bαβ
cαβ dαβ

] [
zβ
1

]

shows that

[
za
1

]
defines a global section of the vector bundle K

− 1
2

C ⊗ E, and that the

projectivization image of this section is the global section {zα} of P(E) corresponding to F .
Here, the choice of the theta characteristic is consistently made so that the ± ambiguity of
(9.13) and the one in the lift of the fractional linear transformation to fαβ ∈ SL2(C) cancel.
Since this section is nowhere vanishing, it generates a trivial subbundle

OC = K
− 1

2
C ⊗ F ⊂ K−

1
2

C ⊗ E.

Therefore, F = K
1
2
C . Note that detE = OC , hence E/F = K

− 1
2

C , and E is an extension

(9.17) 0 −→ K
1
2
C −→ E −→ K

− 1
2

C −→ 0,

determining an element of Ext1
(
K
− 1

2
C ,K

1
2
C

) ∼= H1(C,KC) ∼= C.
There is a more straightforward way to obtain (9.17).

Theorem 9.3 (Projective coordinate systems and opers). Every projective coordinate sys-

tem (9.11) determines an oper (E,∇) of Definition 9.1 with F = K
1
2
C .
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Proof. Let σαβ = −(d/dzβ)ξαβ = −cαβ, where ξαβ is defined by (9.13). Since

(9.18)

gαβ : =

[
ξαβ σαβ

ξ−1
αβ

]
=

[
cαβzβ + dαβ −cαβ

(cαβzβ + dαβ)−1

]
=

[
1

−1 zα

] [
aαβ bαβ
cαβ dαβ

] [
zβ −1
1

]
,

which follows from

aαβ − cαβzα =
aαβ(cαβzβ + dαβ)− cαβ(aαβzβ + bαβ)

(cαβzβ + dαβ)
=

1

(cαβzβ + dαβ)
,

we find that fαβ and gαβ define the same SL2(C)-bundle E. The shape of the matrix gαβ
immediately shows (9.17). Since the connection ∇ in E is simply d on each Uα with respect
to fαβ, the differential operator on Uα with respect to the transition function gαβ is given
by

(9.19) ∇α :=

[
1

−1 zα

]
d

[
zα −1
1

]
= d−

[
0 0
1 0

]
dzα.

Since the (2, 1)-component of the connection matrix is dzα which is nowhere vanishing,

(9.20) F = K
1
2
C
∇−→ E ⊗KC −→ (E/F )⊗KC

∼= K
1
2
C

given by this component is an isomorphism. This proves that (E,∇) is an SL2(C)-oper. �

In the final step of the proof to show (E,∇) is an oper, we need that (9.20) is an OC-
linear homomorphism. This is because we are considering the difference of connections ∇
and ∇|F in E. More generally, suppose we have two connections ∇1 and ∇2 in the same
vector bundle E. Then the Leibniz condition tells us that

∇1(fs)−∇2(fs) = f∇1(s)− f∇2(s)

for f ∈ OC and s ∈ E. Therefore, ∇1−∇2 : E −→ E⊗KC is anOC-module homomorphism.
Although the extension class of (9.17) is parameterized by H1(C,KC) = C, the complex
structure of E depends only if σαβ = 0 or not. This is because

(9.21)

[
λ

λ−1

] [
ξαβ σαβ

ξ−1
αβ

] [
λ−1

λ

]
=

[
ξαβ λ2σαβ

ξ−1
αβ

]
,

hence we can normalize σαβ = 0 or σαβ = 1. The former case gives the trivial extension of

two line bundles E = K
1
2
C ⊕K

− 1
2

C . Since σαβ = cαβ = 0, the projective coordinate system
(9.11) is actually an affine coordinate system. Since we are assuming g(C) > 1, there is no
affine structure in C. Therefore, only the latter case can happen. And the latter case gives
a non-trivial extension, as we will show later.

Suppose we have another projective structure in C subordinating the same complex
structure of C. Then we can adjust the ± signs of the lift of (9.12) and the square root of
(9.13) so that we obtain the exact same holomorphic vector bundle E of (9.17). Since we
are dealing with a different coordinate system, the only change we have is reflected in the
connection ∇. Thus two different projective structures give rise to two connections in the
same vector bundle E. Hence this difference is an OC-linear homomorphism E −→ E⊗KC

as noted above. This consideration motivates the following.
A Higgs bundle of rank r [55, 56] defined on C is a pair (E, φ) consisting of a holomor-

phic vector bundle E of rank r on C and an OC-module homomorphism

φ : E −→ E ⊗KC .
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An SL2(C)-Higgs bundle is a pair (E, φ) of rank 2 with a fixed isomorphism detE = OC
and trφ = 0. It is stable if every line subbundle F ⊂ E that is invariant with respect to
φ, i.e., φ : F −→ F ⊗ KC , has a negative degree degF < 0. The moduli spaces of stable
Higgs bundles are constructed in [100]. We denote by MDol the moduli space of stable
holomorphic SL2(C)-Higgs bundles on C. It is diffeomorphic to the moduli space MdeR of
pairs (E,∇) consisting of an irreducible holomorphic connection in an SL2(C)-bundle (see
[24, 55, 100]). A particular diffeomorphism

(9.22) ν :MDol
∼−→MdeR

is the non-Abelian Hodge correspondence, which is explained in Section 11.
The total space of the line bundle KC is the cotangent bundle π : T ∗C −→ C of the

curve C. We denote by η ∈ H0(T ∗C, π∗KC) the tautological section

π∗KC

��

KC

��
T ∗C

η
;;

= // T ∗C
π // C,

which is a holomorphic 1-form on T ∗C. Since φ is an End(E)-valued holomorphic 1-form
on C, its eigenvalues are 1-forms. The set of eigenvalues is thus a multivalued section of
KC , and hence a multivalued section of π : T ∗C −→ C. The image Σ ⊂ T ∗C of this
multivalued section is the Hitchin spectral curve, which defines a ramified covering of
C. The formal definition of Hitchin spectral curve Σ is that it is the divisor of zeros in T ∗C
of the characteristic polynomial

det(η − π∗φ) ∈ π∗K⊗2
C .

Hitchin fibration [55] is a holomorphic fibration

(9.23) µH :MDol 3 (E, φ) 7−→ det(η − π∗φ) ∈ B, B := H0
(
C,K⊗2

C

)
,

that defines an algebraically completely integrable Hamiltonian system in MDol. Hitchin

notices in [55] that the choice of a spin structure K
1
2
C that we have made allows us to

construct a natural section κ : B ↪→MDol. Define

(9.24) X− :=

[
0 0
1 0

]
, X+ := Xt

− =

[
0 1
0 0

]
, H := [X+, X−] =

[
1 0
0 −1

]
.

These elements generate the Lie algebra 〈X+, X−, H〉 ∼= sl2(C).

Lemma 9.4. Let q ∈ B = H0(C,K⊗2
C ) be an arbitrary point of the Hitchin base B, and

define a Higgs bundle (E0, φ(q)) consisting of a vector bundle

(9.25) E0 :=

(
K

1
2
C

)⊗H
= K

1
2
C ⊕K

− 1
2

C

and a Higgs field

(9.26) φ(q) := X− + qX+ =

[
0 q
1 0

]
.

Then it is a stable SL2(C)-Higgs bundle. The Hitchin section is defined by

(9.27) κ : B 3 q 7−→ (E0, φ(q)) ∈MDol,

which gives a biholomorphic map between B and κ(B) ⊂MDol.
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Proof. We first note that X− : E0 −→ E0 ⊗ KC is a globally defined End0(E0)-valued
1-form, since it is essentially the constant map

(9.28) 1 : K
1
2
C

=−→ K
− 1

2
C ⊗KC .

Similarly, multiplication by a quadratic differential gives

q : K
− 1

2
C −→K

3
2
C = K

1
2
C ⊗KC .

Thus φ(q) : E0 −→ E0 ⊗KC is globally defined as a Higgs field in E0. The Higgs pair is
stable because no line subbundle of E0 is invariant under φ(q), unless q = 0. And when

q = 0, the invariant line subbundle K
1
2
C has degree g − 1, which is positive since g ≥ 2. �

Remark 9.5. Hitchin sections exist for the moduli space of stable G-Higgs bundles for an
arbitrary simple complex algebraic group G. The construction utilizes Kostant’s principal
three-dimensional subgroup (TDS) [70]. The use of TDS is crucial in our quantization, as
noted in [27, 32].

The image κ(B) is a holomorphic Lagrangian submanifold of a holomorphic symplectic
spaceMDol. The holomorphic symplectic structure ofMDol is induced from its open dense
subspace T ∗SU(2, C), where SU(2, C) is the moduli space of rank 2 stable bundles of degree
0 on C. Since the codimension of the complement of T ∗SU(2, C) in MDol is 2, the natural
holomorphic symplectic form on the cotangent bundle automatically extends to MDol.

Our first step of constructing the quantization of the Hitchin spectral curve Σ is to define
~-connections on C that are holomorphically depending on ~. We use a one-parameter
family E of deformations of vector bundles

E~

��

// E

��
C × {~} // C ×H1(C,KC),

and a C-linear first-order differential operator ~∇~ : E~ −→ E~ ⊗KC depending holomor-
phically on ~ ∈ H1(C,KC) ∼= C for ~ 6= 0. Here, we identify the Planck constant ~ of the
quantization as a geometric parameter

(9.29) ~ ∈ H1(C,KC) = Ext1

(
K
− 1

2
C ,K

1
2
C

)
∼= C,

which determines a unique extension

(9.30) 0 −→ K
1
2
C −→ E~ −→ K

− 1
2

C −→ 0.

This is exactly the same as (9.17). The extension E~ is given by a system of transition
functions

(9.31) E~ ←→
{[
ξαβ ~σαβ
0 ξ−1

αβ

]}
on each Uα∩Uβ. The cocycle condition for the transition functions translates into a condition

(9.32) σαγ = ξαβσβγ + σαβξ
−1
βγ .
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The application of the exterior differentiation d to the cocycle condition ξαγ = ξαβξβγ for

K
1
2
C yields

dξαγ
dzγ

dzγ =
dξαβ
dzβ

dzβξβγ + ξαβ
dξβγ
dzγ

dzγ .

Noticing ξ2
αβ =

dzβ
dzα

, we find that

(9.33) σαβ := −
dξαβ
dzβ

= −∂βξαβ

solves (9.32). The negative sign is chosen to relate (9.31) and (9.11). By the same reason
as before, the complex structure of the vector bundle E~ is isomorphic to E1 if ~ 6= 0, and
to E0 of (9.25) if ~ = 0. The transition function can also be written as

(9.34)

[
ξαβ ~σαβ

ξ−1
αβ

]
= exp

(
log ξαβ

[
1 0
0 −1

])
exp

(
−~∂β log ξαβ

[
0 1
0 0

])
.

Therefore, in the multiplicative sense, the extension class is determined by ∂β log ξαβ.

Lemma 9.6. The extension class σαβ of (9.33) defines a non-trivial extension (9.30).

Proof. The long exact sequences of cohomologies

H1(C,C) //

��

H1(C,OC) //

��

H1(C,KC)
∼ //

‖
��

H2(C,C)

H1(C,C∗) //

0
��

H1(C,O∗C)
d log //

c1
��

H1(C,KC)

H2(C,Z)
= // H2(C,Z)

associated with exact sequences of sheaves

0

��

0

��
0 // Z

��

= // Z

��

// 0

��
0 // C

��

// OC

��

d // KC

��

// 0

0 // C∗

��

// O∗C

��

d log // KC

��

// 0

0 0 0

show that the class {σαβ} corresponds to the image of {ξab} via the map

H1(C,O∗C)
d log−−−−→ H1(C,KC).

If d log{ξαβ} = 0 ∈ H1(C,KC), then it comes from a class in H1(C,C∗), which is the
moduli space of line bundles with holomorphic connections, as explained in [8]. It leads to
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a contradiction

0 = c1

(
K

1
2
C

)
= g − 1 > 0,

because g(C) ≥ 2. �

Remark 9.7. Gukov and Su lkowski [52] defines an intriguing quantizability condition for a
spectral curve in terms of the algebraic K-group K2

(
C(Σ)

)
of the function field of spectral

curve Σ. They relate the quantizability and Bloch regulators of [8].

The class {σαβ} of (9.33) gives a natural isomorphism H1 (C,KC) ∼= C. We identify the
deformation parameter ~ ∈ C with the cohomology class {~σαβ} ∈ H1 (C,KC) = C. We

trivialize the line bundle K⊗2
C with respect to a coordinate chart C =

⋃
α Uα, and write

q ∈ H0(C,K⊗C 2) as {(q)α} that satisfies the transition relation

(9.35) (q)α = (q)βξ
4
αβ.

The transition function of the trivial extension E0 is given by

(9.36) ξHαβ = exp(H log ξαβ).

Since X− : E0 −→ E0 ⊗KC is a globally defined Higgs filed, its local expressions {X−dzα}
with respect to a coordinate system satisfies the transition relation

(9.37) X−dzα = exp(H log ξαβ)X−dzβ exp(−H log ξαβ)

on every Uα ∩ Uβ. The same relation holds for the Higgs field φ(q) as well:

(9.38) φα(q)dzα = exp(H log ξαβ)φβ(q)dzβ exp(−H log ξαβ).

Theorem 9.8 (Construction of SL2(C)-opers). On each Uα∩Uβ define a transition function

(9.39) g~αβ := exp(H log ξαβ) exp
(
− ~∂β log ξαβX+

)
=

[
ξαβ

ξ−1
αβ

]
·
[
1 −~∂β log ξαβ

1

]
,

where ∂β = d
dzβ

, and ~∂β log ξαβ ∈ H1(C,KC). Then

• The collection {g~αβ} satisfies the cocycle condition

(9.40) g~αβg
~
βγ = g~αγ ,

which defines the holomorphic vector bundle bundle E~ of (9.30).
• The local expression

(9.41) ∇~
α(0) := d− 1

~
X−dza

on Uα for ~ 6= 0 defines a global holomorphic connection in E~, i.e.,

(9.42) d− 1

~
X−dzα = g~αβ

(
d− 1

~
X−dzβ

)(
g~αβ

)−1
,

if and only if the coordinate is a projective coordinate system. We choose one.
• With this particular projective coordinate system, every point (E0, φ(q)) ∈ κ(B) ⊂
MDol of the Hitchin section (9.27) gives rise to a one-parameter family of SL2(C)-
opers

(
E~,∇~(q)

)
∈MdeR. In other words, the local expression

(9.43) ∇~
α(q) := d− 1

~
φα(q)dzα

on every Uα for ~ 6= 0 determines a global holomorphic connection

(9.44) ∇~
α(q) = g~αβ∇~

β(q)
(
g~αβ

)−1
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in E~ satisfying the oper condition.
• Deligne’s ~-connection

(9.45) ~∇~(q) : E~ −→ E~ ⊗KC

interpolates the Higgs pair and the oper, i.e., at ~ = 0, the family (9.45) gives the
Higgs pair (E,−φ(q)) ∈ MDol, and at ~ = 1 it gives an SL2(C)-oper

(
E1,∇1(q)

)
∈

MdeR.
• After a suitable gauge transformation depending on ~, the ~ → ∞ limit of the oper
∇~(q) exists and is equal to ∇~=1(0). This point corresponds to the C∗-fixed point
on the Hitchin section.

Proof. The cocycle condition of gαβ has been established in (9.33) and (9.34). Proof of (9.42)
is a straightforward calculation, using the power series expansion of the adjoint action

(9.46) e~ABe−~A =

∞∑
n=0

1

n!
~n(adA)n(B) :=

∞∑
n=0

1

n!
~n

n︷ ︸︸ ︷
[A, [A, [· · · , [A,B] · · · ]]].

It follows that

g~αβX−

(
g~αβ

)−1

= exp(H log ξαβ) exp (−~∂β log ξαβX+)X− exp (~∂β log ξαβX+) exp(−H log ξαβ)

= exp(H log ξαβ)X− exp(−H log ξαβ)− ~∂β log ξαβH

− ~2(∂β log ξαβ)2 exp(H log ξαβ)X+ exp(−H log ξαβ).

Note that (9.14) is equivalent to

∂β∂β log ξαβ = ∂β

(
ξ−1
αβ∂βξαβ

)
= −ξ−2

αβ (∂βξαβ)2 = −(∂β log ξαβ)2,

hence to

∂βg
~
αβ

(
g~αβ

)−1
= ∂β log ξαβH + ~(∂β log ξαβ)2 exp(H log ξαβ)X+ exp(−H log ξαβ).

Therefore, noticing (9.37), (9.14) is equivalent to(
1

~
g~αβX−

(
g~αβ

)−1
+ ∂βg

~
αβ

(
g~αβ

)−1
)
dzβ =

1

~
exp(H log ξαβ)X−dzβ exp(−H log ξαβ)

=
1

~
X−dzα.

The statement follows from Proposition 9.2.
To prove (9.44), we need, in addition to (9.42), the following relation:

(9.47) (q)αX+dzα = g~αβ(q)βX+dzβ

(
g~αβ

)−1
.

But (9.47) is obvious from (9.38) and (9.39).

The line bundle F required in the definition of SL2(C)-oper is simply K
1
2
C . The isomor-

phism (9.10) is a consequence of (9.28). Finally, the gauge transformation of ∇~(q) by a
bundle automorphism

(9.48) ~−
H
2 =

[
~−

1
2

~
1
2

]
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on each coordinate neighborhood Uα gives

(9.49) d− 1

~
φ(q) 7−→ ~−

H
2

(
d− 1

~
φ(q)

)
~
H
2 = d−

(
X− +

q

~2
X+

)
.

This is because

~−
H
2 X−~

H
2 = ~X− and ~−

H
2 X2

+~
H
2 = ~−2X2

+,

which follows from the adjoint formula (9.46). Therefore,

lim
~→∞

∇~(q) ∼ d−X− = ∇~=1(0),

where the symbol ∼ means gauge equivalence. This completes the proof of the theorem. �

The construction theorem yields the following.

Theorem 9.9 (Biholomorphic quantization of Hitchin spectral curves). Let C be a compact
Riemann surface of genus g ≥ 2 with a chosen projective coordinate system subordinating
its complex structure. We denote by MDol the moduli space of stable holomorphic SL2(C)-
Higgs bundles over C, and by MdeR the moduli space of irreducible holomorphic SL2(C)-

connections on C. For a fixed theta characteristic K
1
2
C , we have a Hitchin section κ(B) ⊂

MDol of (9.27). We denote by Op ⊂ MdeR the moduli space of SL2(C)-opers with the

condition that the required line bundle is given by F = K
1
2
C . Then the map

(9.50) MDol ⊃ κ(B) 3 (E0, φ(q))
γ7−→
(
E~,∇~(q)

)
∈ Op ⊂MdeR

evaluated at ~ = 1 is a biholomorphic map with respect to the natural complex structures
induced from the ambient spaces.

The biholomorphic quantization (9.50) is also C∗-equivariant. The λ ∈ C∗ action on the
Hitchin section is defined by φ 7−→ λφ. The oper corresponding to (E0, λφ(q)) ∈ κ(B) is
d− λ

~φ(q).

Proof. The C∗-equivariance follows from the same argument of the gauge transformation
(9.48), (9.49). The action φ 7−→ λφ on the Hitchin section induces a weighted action

B 3 q 7−→ λ2q ∈ B

through µH . Then we have the gauge equivalence via the gauge transformation
(
λ
~
)H

2 :

d− λ

~
φ(q) ∼

(
λ

~

)H
2
(
d− λ

~
φ(q)

)(
λ

~

)−H
2

= d−
(
X− +

λ2q

~2
X+

)
.

�

Remark 9.10. In the construction theorem, our use of a projective coordinate system is
essential, through (9.13). Only in such a coordinate, our particular definition (9.43) makes
sense. This is due to the vanishing of the second derivative of ξαβ. And as we have seen
above, the projective coordinate system determines the origin ∇1(0) of the space Op of
opers. Other opers are simply translation ∇1(q) from the origin by q ∈ H0(C,K⊗2

C ).
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10. Semi-classical limit of SL2(C)-opers

A holomorphic connection on a compact Riemann surface C is automatically flat. There-
fore, it defines a D-module over C. Continuing the last section’s conventions, let us fix
a projective coordinate system on C, and let (E0, φ(q)) = κ(q) be a point on the Hitchin
section of (9.27). It uniquely defines an ~-family of opers

(
E~,∇~(q)

)
.

In this section, we establish that the ~-connection ~∇~(q) defines a family of D-modules
on C parametrized by B such that the semi-classical limit of the family agrees with the
family of spectral curves over B.

To calculate the semi-classical limit, let us trivialize the vector bundle E~ on each simply
connected coordinate neighborhood Uα with coordinate zα of the chosen projective coordi-
nate system. A flat section Ψα of E~ over Uα is a solution of

(10.1) ~∇~
α(q)Ψα := (~d− φα(q))

[
~ψ
ψ

]
α

= 0,

with an appropriate unknown function ψ. Since Ψα = g~αβΨβ, the function ψ on Uα satisfies

the transition relation (ψ)α = ξ−1
αβ (ψ)β. It means that ψ is actually a local section of the

line bundle K
− 1

2
C . There are two linearly independent solutions of (10.1), because q is a

holomorphic function on Uα. Since φ(q) is independent of ~ and takes the form

(10.2) φ(q) =

[
0 q
1 0

]
,

we see that (10.1) is equivalent to the second order equation

(10.3) ~2ψ′′ − qψ = 0

for ψ ∈ K−
1
2

C . Since we are using a fixed projective coordinate system, the connection ∇~(q)
takes the same form on each coordinate neighborhood Uα. Therefore, the shape of the
differential equation of (10.3) as an equation for ψ is again the same on every coordinate
neighborhood, as we wished to achieve in (9.2). This is exactly what we refer to as the
quantum curve of the spectral curve det(η−φ(q)) = 0. It is now obvious to calculate the
semi-classical limit of the D-module corresponding to ~∇~(q).

Theorem 10.1 (Semi-classical limit of an oper). Under the same setting of Theorem 9.9, let
E(q) denote the D-module

(
E~, ~∇~(q)

)
associated with the oper of (9.50). Then the semi-

classical limit of E(q) is the spectral curve Σ ⊂ T ∗C of φ(q) defined by the characteristic
equation det(η − φ(q)) = 0.

The semi-classical limit of (10.3) is the limit

(10.4) lim
~→0

e−
1
~S0(zα)

[
~2

(
d

dzα

)2

− q

]
e

1
~S0(za) = y2 − q,

where S0(zα) is a holomorphic function on Uα so that dS0 = ydzα gives a local trivialization
of T ∗C over Uα. The computation of semi-classical limit is the same as the calculation of
the determinant of the connection ~∇~(q), after taking conjugation by the scalar diagonal

matrix e−
1
~S0(zα)I2×2, and then take the limit as ~ goes to 0.

For every ~ ∈ H1(C,KC), the ~-connection
(
E~, ~∇~(q)

)
of (9.45) defines a global DC-

module structure in E~. Thus we have constructed a universal family EC of DC-modules on
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a given C with a fixed spin structure and a projective structure:

(10.5) EC

��

(
E~,∇~(q)

)
��

⊃oo

C ×B ×H1(C,KC) C × {q} × {~}oo

The universal family SC of spectral curves is defined over C ×B.

(10.6) P (KC ⊕OC)×B

��

SC

��

oo
(
det
(
η − φ(q)

))
0

��

oo

C ×B C ×B=oo C × {q}.⊃oo

The semi-classical limit is thus a map of families

(10.7) EC

��

// SC

��
C ×B ×H1(C,KC) // C ×B.

11. Non-Abelian Hodge correspondence between Hitchin moduli spaces

The biholomorphic map (9.50) is defined by fixing a projective structure of the base curve
C. Gaiotto [43] conjectured that such a correspondence would be canonically constructed
through a scaling limit of non-Abelian Hodge correspondence. The conjecture has been
solved in [27] for holomorphic Hitchin moduli spaces MDol and MdeR constructed over an
arbitrary complex simple and simply connected Lie group G. In this section, we review the
main result of [27] for G = SL2(C) and compare it with our quantization.

We denote by Etop the topologically trivial complex vector bundle of rank 2 on a com-
pact Riemann surface C of genus g ≥ 2. The correspondence between stability conditions
of holomorphic vector bundles on C and PDEs on differential geometric data is used in
Narasimhan-Seshadri [90] to obtain topological structures of the moduli space of stable
bundles (see also [5, 88]). Extending this classical case, the stability condition for an
SL2(C)-Higgs bundle (E, φ) translates into a system of PDEs, known as Hitchin’s equa-
tions, imposed on a set of geometric data [24, 55, 100]. The data we need are a Hermitian
fiber metric h on Etop, a unitary connection D in Etop with respect to h, and a differen-
tiable sl2(C)-valued 1-form φ on C. In this section we use D for unitary connections to
avoid confusion with holomorphic connections we have been using until the last section.
Hitchin’s equations are the following system of nonlinear PDEs.

(11.1)

{
FD + [φ, φ†] = 0

D0.1φ = 0.

Here, FD denotes the curvature 2-form of D, φ† is the Hermitian conjugate of φ with
respect to the metric h, and D0,1 is the Cauchy-Riemann part of D defined by the complex
structure of the base curve C. D0,1 determines a complex structure in Etop, which we
simply denote by E. Then φ becomes a holomorphic Higgs field in E because it satisfies the
Cauchy-Riemann equation (11.1). The pair (E, φ) constructed in this way from a solution
of Hitchin’s equations is a stable Higgs bundle. Conversely [100], a stable Higgs bundle
(E, φ) gives rise to a unique harmonic Hermitian metric h and the Chern connection D
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with respect to h so that the data satisfy Hitchin’s equations. The stability condition for
the holomorphic Higgs pair (E, φ) is thus translated into (11.1).

Define a one-parameter family of connections

(11.2) D(ζ) :=
1

ζ
· φ+D + ζ · φ†, ζ ∈ C∗.

Then the flatness of D(ζ) for all ζ is equivalent to (11.1). The non-Abelian Hodge corre-
spondence [24, 55, 78, 100] is a diffeomorphic correspondence

ν :MDol 3 (E, φ) 7−→ (Ẽ, ∇̃) ∈MdeR.

Proving the diffeomorphism of these moduli spaces is far beyond the scope of this article.
Here, we only give the definition of the map ν. We start with the solution (D,φ, h) of
Hitchin’s equations corresponding to a stable Higgs bundle (E, φ). It induces a family of

flat connections D(ζ). Define a complex structure Ẽ in Etop by D(ζ = 1)0,1. Since D(ζ) is

flat, ∇̃ := D(ζ = 1)1,0 is automatically a holomorphic connection in Ẽ. Stability of (E, φ)

implies that the resulting holomorphic connection is irreducible, hence (Ẽ, ∇̃) ∈ MdeR.
Since this correspondence goes through the real unitary connection D, the change of the

complex structure of E to that of Ẽ is not a holomorphic deformation.
Extending the idea of one-parameter family (11.2), Gaiotto conjectures:

Conjecture 11.1 (Gaiotto [43]). Let (D,φ, h) be the solution of (11.1) corresponding to a
sable Higgs bundle (E0, φ(q)) on the SL2(C)-Hitchin section (9.27). Consider the following
two-parameter family of connections

(11.3) D(ζ,R) :=
1

ζ
·Rφ+D + ζ ·Rφ†, ζ ∈ C∗, R ∈ R+.

Then the scaling limit

(11.4) lim
R→0,ζ→0
ζ/R=~

D(ζ,R)

exists for every ~ ∈ C∗, and forms an ~-family of SL2(C)-opers.

Remark 11.2. (1) The existence of the limit is non-trivial, because the Hermitian met-
ric h blows up as R→ 0.

(2) Unlike the case of non-Abelian Hodge correspondence, the Gaiotto limit works only
for a point in the Hitchin section.

Theorem 11.3 ([27]). Gaiotto’s conjecture holds for an arbitrary simple and simply con-
nected complex algebraic group G.

Recall that the representation (3.2) gives a realization of C from its universal covering
space H as

C ∼= H
/
ρ
(
π1(C)

)
.

The representation ρ lifts to SL2(R) ⊂ SL2(C), and defines a projective structure in C
subordinating its complex structure coming from H. This projective structure is what we
call the Fuchsian projective structure.

Corollary 11.4 (Gaiotto correspondence and quantization [27]). Under the same setting
of Conjecture 11.1, the limit oper of (11.4) is given by

(11.5) lim
R→0,ζ→0
ζ/R=~

D(ζ,R) = d− 1

~
φ(q) = ∇~(q), ~ 6= 0,
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with respect to the Fuchsian projective coordinate system. The correspondence

(E0, φ(q))
γ7−→
(
E~,∇~(q)

)
is biholomorphic, unlike the non-Abelian Hodge correspondence.

Proof. The key point is that since E0 is made out of KC , the fiber metric h naturally comes
from the metric of C itself. Hitchin’s equations (11.1) for q = 0 then become a harmonic
equation for the metric of C, and its solution is given by the constant curvature hyperbolic
metric within the conformal class of the initial metric. This metric in turn defines the
Fuchsian projective structure in C. For more detail, we reefer to [26, 27]. �

Remark 11.5. The case of an arbitrary simple algebraic group G of the conjecture, and
the whole story of Part 2 for G, have been worked out in [27, 32]. The key point is to use
Kostant’s TDS of [70] and transcribe the SL2(C) situation into G.
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by the topological recursion, arXiv:1601.02517 (2016).

[61] K. Iwaki and A. Saens-Rodriguez, Quantum Curve and the First Painlevé Equation, arXiv:1507.06557 (2015).
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[101] C. Teleman, The structure of 2D semi-simple field theories, Inventiones Mathematicae 188, 525–588 (2012).

[102] T.R.S. Walsh and A.B. Lehman, Counting rooted maps by genus. I, Journal of Combinatorial Theory B-13,
192–218 (1972).

[103] , Topological quantum field theory, Communications in Mathematical Physics 117, 353–386 (1988).

[104] E. Witten, Two dimensional gravity and intersection theory on moduli space, Surveys in Differential Geometry
1, 243–310 (1991).

[105] E. Witten, Mirror symmetry, Hitchin’s equations, and Langlands duality, arXiv:0802.0999 (2008).

[106] D. Zagier, Quantum modular forms, in “Quanta of maths,” Clay Math. Proc., vol. 11, Amer. Math. Soc.,
Providence, RI, pp. 659–675 (2010).

[107] J. Zhou, Quantum Mirror Curves for C3 and the Resolved Conifold, arXiv:1207.0598v1 [math.AG] (2012).

Olivia Dumitrescu: Department of Mathematics, Central Michigan University, Mount Pleasant, MI
48859, U.S.A., and Simion Stoilow Institute of Mathematics, Romanian Academy, 21 Calea Grivitei Street,

010702 Bucharest, Romania

E-mail address: dumit1om@cmich.edu

Motohico Mulase: Department of Mathematics, University of California, Davis, CA 95616–8633, U.S.A.,

and Kavli Institute for Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa,
Japan

E-mail address: mulase@math.ucdavis.edu


