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Abstract. It has been noticed since around 2007 that certain enumeration problems can be
solved when an analytic or algebraic curve is identified. This curve is the key to the problem. In

these lectures, a few such examples are presented. One is a detailed account on counting simple

Hurwitz numbers, explaining how the problem was solved by discovering this key curve. The
formula for the curve allows us to write the generating functions of Hurwitz numbers in terms

of polynomials. This unexpected polynomiality produces, as a byproduct, straightforward and
short proofs of the Witten-Kontsevich theorem and the λg-theorem of Faber-Pandharipande. An

analogous enumeration problem associated with Catalan numbers is also presented, which has a

simpler feature in terms of analysis. The asymptotic behavior of counting leads this time to the
Euler characteristic of the moduli spaces of smooth curves. We then discuss another enumeration

problem, the Apéry sequences. The quest of identifying the hidden curve for this case remains

open.
These curves, also known as spectral curves, are discovered via solving ordinary differential

equations. The counting problem of geometric origin associated with the genus 0, one marked

point case is encoded in the spectral curve. It is explained that going from the (g, n) = (0, 1)-case
to arbitrary (g, n) is a process of quantization of the spectral curve.

This perspective of quantization is discussed in a geometric setting, when the differential equa-

tions are linear with holomorphic coefficients, in terms of Higgs bundles, opers, and Gaiotto’s
conformal limit construction. In this context, however, there are no counting problems behind the

scene.
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0. Introduction

0.1. The story begins with Catalan numbers and their Laplace transform. Let
us start with two differential equations(

(x2 − 4)
d2

dx2
+ x

d

dx
− 1

)
z(x) = 0,(0.1) (

~2 d
2

dx2
+ ~x

d

dx
+ 1

)
Ψ(x, ~) = 0.(0.2)

Question 0.1. What is the common algebraic curve hidden behind these two equations?

The first equation is easy to solve. Obviously x itself is a solution, and
√
x2 − 4 also

solves it. We can thus choose

z(x) =
x±
√
x2 − 4

2

as a basis for all solutions. It then reminds us of the quadratic formula for z2−xz+1 = 0, and

its possible relation to the second equation through the Weyl quantization

{
z 7−→ −~ d

dx ,

x 7−→ x.

Equivalently, we can find the same polynomial from the semi-classical limit of (0.2):

lim
~→0

e−
S0(x)

~

(
~2 d

2

dx2
+ ~x

d

dx
+ 1

)
e

S0(x)
~ =

(
S0(x)′

)2
+ xS0(x)′ + 1, z = −S0(x)′.
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Figure 0.1. The mirror dual spectral curve Σ of the Catalan numbers.
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The curve in common appears to be x = z+ 1
z . Is there anything significant here? We will

see that this curve tells us a rich story of geometry that is not obvious from the shape of
these differential equations. As explained in the main text (1.2), z(x) is an unconventional
generating function of Catalan numbers Cm : 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796 . . .
One interpretation of these numbers is the count of cell-decompositions of a two-dimensional
sphere S2 with one 0-cell and m 1-cells, while not allowing rotation symmetry to avoid
complication coming from automorphism count (see Remark 2.29).

Figure 0.2. A cell-decomposition of a curve of genus 0 with one 0-cell. The arrow
on a half-edge indicates no rotation symmetry is allowed.

From this point of view, the counting can be generalized to cell-decompositions on an
arbitrary compact oriented surface of genus g with n 0-cells. This is the story of Section 1.1,
based on [18, 32, 34]. An unexpected fact is that the generating functions Fg,n(t1, . . . , tn) of
the numbers of these cell-decompositions are Laurent polynomials of degree 6g− 6 + 3n,
when 2g − 2 + n > 0. This polynomiality is surprising, and happens only in the right
choice of variables defined by the above z(x) as in Theorem 1.4. It gives a key to relate the
story with many different subjects of the geometry of moduli spaces. We will show that
these Laurent polynomials know, as their special values, the Euler characteristic χ(Mg,n)
of the moduli spaces of smooth pointed curves first calculated by Harer-Zagier [51], and the
Witten-Kontsevich formula for intersections of the tautological cotangent classes on Mg,n

[24, 57, 98] through their asymptotic behavior.
What do these geometric quantities of moduli spaces have anything to do with the differ-

ential equation (0.2) above? We will see that its solution ψ(x, ~) is the generating function
of these generating functions Fg,n for all g ≥ 0 and n > 0. In this context, since the curve
x = z + 1/z is the semi-classical limit of (0.2), the differential equation is called the
quantum curve [1, 23, 53] associated with the classical curve x = z + 1/z. The Catalan
numbers are the count of cell-decompositions of the (g, n) = (0, 1) geometry. Hence going
from z(x) to Fg,n(t1, . . . , tn) for arbitrary (g, n) is the process of quantization, in analogy of
counting graphs of higher genera as Feynman diagrams representing interactions.

At the same time, the fact that generating functions Fg,n(t1, . . . , tn) know the ψ-class in-

tersection numbers ofMg,n indicates that they give the Gromov-Witten invariantsGWg,n(•)
of a point. Therefore, from the point of view of Mariño [69] and Bouchard-Klemm-Mariño-
Pasquetti [14], we understand that the spectral curve x = z + 1/z is the mirror B-model,
corresponding to the A-model on a trivial symplectic manifold, i.e., a point. From the
Catalan numbers to this point of view of mirror symmetry is the theme of Section 1.1.

The polynomiality of some quantities appearing in enumerative problems associated with
the moduli spaces Mg,n was discovered in an earlier paper [80], which was the key to
the solution [37] of the Hurwitz number conjecture of Bouchard and Mariño [15]. The
polynomiality of the generating functions of simple Hurwitz numbers established in [80]
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presented another surprise: it gives simple few-line proofs of Witten’s conjecture [98] and
the λg-conjecture of Faber-Pandharipande [39, 40].

The stories coming out of Hurwitz numbers are weaved in Section 2. The hidden curve
in this context is the Lambert curve (2.15), whose role in discovering the polynomiality
is explained in detail. Bouchard and Mariño [15] identified the Lambert curve through the
limiting process of the mirror curves of toric Calabi-Yau 3-folds [14], and using Lagrange’s
Inversion Formula [97]. Appendix gives an elementary analysis that leads to this identifica-
tion of the Lambert curve. In Section 2.6, we will show that the Lambert curve is a simple
consequence of tree counting, and the formula for the curve, i.e., the Lambert function,
directly follows from a combinatorial identity of trees.

Our point is that all these known results are obtained by finding the hidden curve behind
the scene, the spectral curve of the counting problem. And the spectral curve is always
the generating function of the type (0, 1)-invariants of the problem. The quantum curve
is a family of ~-deformations of a differential operator whose semi-classical limit is the
spectral curve. We will explain this relation for the case of Catalan numbers and Hurwitz
numbers in detail in the main text.

Remark 0.2. We will use the terminology Laplace Transform in a slightly more general
context.

• The process from the sequence {Cm}∞m=0 of Catalan numbers to their generating
function and its inverse function

z(x) =

∞∑
m=0

Cm
x2m+1

, x = z +
1

z

is considered as the Laplace transform in these lectures. This is an idea developed
over the years (see for example, [18, 34, 76, 77, 79, 80]). The rationale behind it
is that when a sequence satisfies a combinatorial relation, we can take the Laplace
transform of the relation. Often the result becomes a system of differential equations.
Therefore, the Laplace transform changes combinatorics to geometry.
• This effect is explained in Section 2 using Hurwitz numbers. The starting sequence

is the number of rooted trees on k nodes and their generating function,

y(x) =
∞∑
k=1

kk−1

k!
xk.

We will show that a simple combinatorial identity of tree counting allows us to
identify its inverse function, the Lambert curve, x = ye−y, in Section 2.6.
• Both y(x) and z(x) above land on P1, so we use an automorphism of P1 to bring

these variables to the “right” coordinate, which we write as t ∈ P1. The key of
Section 1.1 is that the Laplace transform of the genus g, n marked point version of
the Catalan numbers Cg,n(µ1, . . . , µn) for 2g − 2 + n > 0 is a Laurent polynomial
in the t-variables. The special values of these Laurent polynomials are identified
as the Euler characteristic χ(Mg,n) of the moduli space of smooth pointed curves
[76], and the asymptotic behavior of these Laurent polynomials recovers the ψ-class
intersection numbers on the moduli space of stable curves Mg,n [18].
• In Section 2.3 it is explained that the Laplace transform of the (g, n)-Hurwitz number

in the stable region 2g − 2 + n > 0 is a polynomial in the t-variables. We will
prove that the Laplace transform of the combinatorial formula, the cut-and-join
equation of [48, 94], is a differential equation, and that it automatically proves
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the Witten-Kontsevich theorem on the ψ-class intersection numbers and the Faber-
Pandharipande theorem on the λg-conjecture [80], through the ELSV formula [36].
• So what is the Laplace transform, after all? Our thesis in Section 2.1 is that the

Laplace transform is the mirror symmetry.

0.2. A miraculous integer sequence. In the final Section 4, we explore stories from
uncharted territories. Let Hm = 1 + 1

2 + 1
3 + · · · + 1

m be the m-th harmonic number. We
use the convention H0 = 0. For every n ≥ 0, define

G̃W 0,1(n) := (−1)n(n!)2
∑

`+m=n
`,m≥0

(2`+m)!(`+ 2m)!

(`!)5(m!)5

(
1 + (m− `)

(
H2`+m + 2H`+2m− 5Hm

))

and

An :=

n∑
`=0

(
n

`

)2(n+ `

`

)2

.

Then we have (see [19, 47, 99]):

(0.3) An = G̃W 0,1(n) for all n.

The first few terms are: 1, 5, 73, 1445, 33001, 819005, 21460825, 584307365, 16367912425, . . . .

What is unbelievable about this equality is that G̃W 0,1(n) as defined is a positive integer,
and has a simple expression as in the second line. What we know about (0.3) so far includes
the following:

• The formula comes from the mirror symmetry, a geometric relation between the
Gromov-Witten invariants of a complex 3-dimensional variety and the Gauss-Manin
connection associated with its mirror partner. In this particular context, we refer to
Golyshev-Zagier [47] and Zagier [99] for an inspiring account of this interplay.

• The quantity G̃W 0,1(n), the quantum period, was obtained by Coates, Corti,
Galkin, and Kasprzyk [19], which is essentially the same as the genus 0, 1-marked
point case of the degree n Gromov-Witten invariant of a Fano 3-fold known as V12.
The generating function of these numbers, after appropriate modifications including
the Borel-Laplace transform, satisfies a Quantum Differential Equation. A brief
background will be explained in Section 4.
• The sequence {An}∞n=0 was discovered by Apéry in 1978 [4] in his proof of the

irrationality of a special value ζ(3) of the Riemann zeta function. A quick review
of his proof, including the significance of the integer sequence {An}∞n=0, is presented
in Section 4.2.
• The differential equation that determines the generating function of {An}∞n=0 was

discovered to be the Picard-Fuchs equation of a particular 1-parameter family of
K3 surfaces by Beukers and Peters [10].

What we can hope to see happens, yet still not established, is the following:

• There should be a spectral curve hidden behind the scene, determined by the type
(0, 1) Gromov-Witten invariants of V12. This should essentially be the same object
as the Picard-Fuchs equation mentioned above, being on the B-model side.
• There should be an extension of the quantization procedure, explained in Sec-

tion 3.3 for differential equations with holomorphic coefficients, to differential equa-
tions with irregular singular points. This is the story of quantum curves.
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0.3. The unique quantization for the holomorphic cases. The correspondence be-
tween classical systems and quantum systems is never one-to-one. If we imagine the classical
system to be the limit of a quantum system as the Planck constant ~→ 0, then we can add
anything multiplied with ~ to the quantum equation. This addition vanishes in this limit.

It is therefore rather counter intuitive that there is a bijective, and even biholomorphic,
correspondence between spectral curves as classical systems and quantum curves as quantum
systems, discovered in [28, 33], prompted by the idea of Gaiotto [42]. Suppose we have a
holomorphic n-th order (n ≥ 1) linear ordinary differential operator P globally defined on
a smooth complete complex algebraic curve C of genus g(C) > 1, whose leading coefficient
does not vanish anywhere on C. One interpretation of the above result proves that it
determines a unique algebraic curve π : Σ −→ C, known as a spectral curve of a Higgs
bundle, that recovers P through the conformal limit construction of Gaiotto [42]. The
passage from P to Σ includes:

• Identification of the canonical (i.e., unique) ~-deformation family P ~ of P such that
P appears in this family at ~ = 1; and
• Calculating its semi-classical limit as ~→ 0 that selects Σ as the classical geometric

object corresponding to this family of deformations.

This is counter intuitive because a family P ~ can determine P at ~ = 1, but not in the
other way around. Also, from classical Σ to a quantum P ~ is usually never unique.

In terms of a local coordinate z of a local neighborhood U ⊂ C, P is a noncommutative
polynomial in d/dz of degree n with coefficients in holomorphic functions in OC(U). The
~-deformation changes it to a 1-dimensional Schrödinger operator on U , which patches
together to a globally defined operator P ~ on C. The process of semi-classical limit is
equivalent to taking the “total symbol” of this differential operator. After a suitable choice
of a local coordinate and a conjugation action of the operator with a locally non-vanishing
function, we can write

(0.4) P =

(
d

dz

)n
+

n∑
k=2

ak(z)

(
d

dz

)n−k
, ak ∈ OC(U)

on U . Then the equation Pψ = 0 is equivalent to ∇zΨ = 0, where

(0.5) ∇z :=
d

dz
+


0 a2 · · · an−1 an
−1

−1
...

. . .

−1 0

 and Ψ =


ψ(n−1)

ψ(n−2)

...
ψ′

ψ

 .
Therefore, locally an n-th order differential equation Pψ = 0 is always equivalent to the
flatness equation ∇zΨ = 0 with respect to a holomorphic connection ∇z. In Section 3,
we will translate the condition that P is globally defined on C into a set of properties of

this connection. The requirements include that P acts on the line bundle K
−n−1

2
C , and

that the connection ∇ acts on a vector bundle that has a full-flag filtration with Griffiths
transversality. Such a connection is known as an oper [7, 8].

The statement we mentioned above is thus equivalent to the assertion that every oper on
C corresponds in a one-to-one manner to a spectral curve Σ covering C. The ~-deformation
of ∇ is the ~-connection ∇~ of Deligne, and the parameter ~ is identified as an element
~ ∈ H1(C,KC) (see [33]), which determines the extension classes of line bundles associated
with the full-flag filtration. In [28], a globally defined linear differential operator on a curve
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C, or an oper, is constructed from an arbitrary spectral curve of a G-Hitchin system on a
base curve C, where G is a simple Lie group of adjoint type. This gives a biholomorphic
map from the moduli space of spectral curves to the moduli space of opers. Bijection means
that the original spectral curve is uniquely determined by the corresponding oper. And
the construction also implies that a higher order differential operator uniquely identifies a
quantization of the spectral curve, i.e., the ~-family of deformations of the starting operator,
or equivalently, a Deligne’s ~-connection.

There is an important difference between holomorphic differential operators P on a curve
C of genus g(C) > 1, and the examples coming from enumeration problems mentioned
above. When P , and its corresponding oper ∇, is holomorphic, any solution to the equation
Pψ = 0 is everywhere holomorphic. So we do not expect it to contain any new geometric
information of something that goes beyond the given context, such as topology of Mg,n as
in the examples. We expect that when we consider P with irregular singularities, a whole
new story begins. This is an active area of research in geometry. We refer to [2, 20, 21, 43].

Question 0.3. Is there an analogous correspondence between differential operators with
irregular singular points and singular spectral curves, both defined over C?

Even for C = P1, if such a correspondence is established, then it should tell us a lot of
stories behind some deep mysteries, such as the geometry behind the irrationality of ζ(3).

0.4. A quick guide of the contents.

• The story given in Section 1.1 illustrates the model of the theory: The expansion of
a solution of a differential equation (= quantum curve) around its irregular singular
point contains a profound amount of geometric information not obvious from the
given setting.
• A story of Hurwitz numbers is presented in Section 2 with some details. In this case

the quantum curve corresponding to the spectral curve is a difference-differential
operator, or a differential operator of an infinite-order. This is due to the fact
that the spectral curve, the Lambert curve in this case, is an analytic curve, not an
algebraic curve. So far we do not have any counterpart generalization of the theorem
of [28] for difference operators.
• What we mean by a globally defined high order linear differential operator on a

curve C of genus g(C) > 1 is explained in Section 3.2. There and in the following
Section 3.3, we will encounter the geometric meaning of the parameter ~, how it
determines the unique quantization from the starting classical spectral curve, and
how the projective coordinate system [49] appears in the global construction.
• An analogy of two differential equations described in (0.1), a Picard-Fuchs equation,

and an Hermite-Weber equation (0.2), appears in a context of Gromov-Witten in-
variants of a Fano 3-fold. This is also deeply and mysteriously related to the integer
sequence playing a key role in the irrationality proof of ζ(3). This open-ended story
is presented at the end of these lectures in Section 4.

These are the notes based on the author’s series of talks delivered in Köln, Hamburg,
Osaka, Oxford, Zürich, Riverside, Kyoto, Hiroshima, Kobe, Les Diablerets, Madrid, and
Seattle in the last two years or so. They are designed to tell a story of the exploration: “In
Search of a Hidden Curve.”
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1. Prelude

1.1. Theme 1: Mirror symmetry of Catalan numbers. Mathematics thrives on mys-
teries. Mirror symmetry has been a great mystery for a long time, and has served as a
driving force in many areas of mathematics. Even after three and a half decades since
its conception in physics, it still produces new challenges to mathematicians. One of the
starting points of this forever expanding universe of research frontier is the 1991 discovery
of Candelas, De La Ossa, Green and Parkes [16]. From this paper’s scope, we learn that
the following four subjects of mathematics,

• combinatorial counting problems,
• algebraic geometry over C, and more lately over Fq and p-adic fields,
• Picard-Fuchs differential equations, and
• nonlinear integrable systems

are deeply intertwined in a manner beyond the realm of classical mathematics, and that an
interplay of these different subjects leads us to new insight and further understanding of
mathematics. Some of the developments of mathematics stemming out of mirror symmetry
are compactly characterized as quantum mathematics.

To illustrate how these items listed above appear and interact together, let us begin with
a näıve question:

Question 1.1. What is the mirror symmetric dual of the Catalan numbers?

Here our usage of the terminology mirror symmetry is not conventional. At least at this
moment, our question is not directly interpreted from the point of veiw of the homological

mirror symmetry of [58]. Catalan numbers Cm = 1
(m+1)

(
2m
m

)
, a sequence of positive

integers, exhibit solutions to many different combinatorial problems.
The first aim of these lectures is to present a few problems that have been solved when

a hidden curve behind the scenes is identified. These curves are commonly called spectral
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curves. As we see below, as soon as the spectral curve is identified, it acts as a catalyst to
let the subject in question weave the whole story in front of us. And the important common
feature of these curves is that they are complex Lagrangians in a complex symplectic surface.

Spectral curves have appeared in many different contexts in the past, including integrable
systems of nonlinear PDEs such as the KdV equations, Hitchin’s work on Higgs bundles, and
analysis of random matrices. In each situation, there is a concrete definition of what people
call a spectral curve. In these lectures, however, we do not attempt to give a universally
valid definition of spectral curves, except that we say, a spectral curve is a collection
of eigenvalues of an operator that takes the shape of a curve. The fact that we
have a spectral curve for our counting problem suggests that it has a hidden connection to
integrable systems, algebraic geometry, random matrix theory, and beyond.

In [34], we proposed that a spectral curve

(1.1) Σ =

{
(x, z)

∣∣∣∣ x = z +
1

z

}
is the mirror dual to the Catalan numbers. It is not hard to see why this curve has something
to do with Catalan numbers: The inverse function z = z(x) of the equation x = z + 1/z
that satisfies limx→∞ z(x) = 0 is an unconventional generating function of Catalan numbers

(1.2) z(x) =
∞∑
m=0

Cm
1

x2m+1
.

This is an absolutely convergent series for |x| > 2. First, we observe that this curve
immediately defines a differential equation. Since x and z(x) satisfy a polynomial relation
z2−xz+1 = 0, the x-derivatives z′(x), z′′(x), z′′′(x), . . . are all in the extension field C(x, z)
of degree 2 over the field of rational functions C(x). Therefore, z, z′, and z′′ are linearly
dependent over the polynomial ring C[x]. The simplest linear relation is

(1.3)

(
(x2 − 4)

d2

dx2
+ x

d

dx
− 1

)
z(x) = 0.

This differential equation is equivalent to the recursion formula

Cm =
2(2m− 1)

m+ 1
Cm−1, C0 = 1,

with respect to the generating function z(x). The differential equation (1.3) has three
regular singular points at x = −2, 2,∞. (The definition of this terminology is given below
in Definition 1.2.) The analytic continuations of z(x) from the neighborhood of∞ ∈ P1 are

z(x)± =
x±
√
x2 − 4

2
=

(
x+
√
x2 − 4

2

)±1

,

which produce obvious solutions x = z(x)+ + z(x)− and
√
x2 − 4 to (1.3). Thus the mon-

odromy property of the differential equation (1.3) is very simple at each singular point,
which is the consequence of the regular singularity at these points.

Even though this example is trivial in many sense, the point here is that (1.3) is a Picard-
Fuchs equation associated with the projection π : Σ −→ P1 defined by the algebraic equation
x = z + 1/z. This is a trivial Landau-Ginzburg model. A coordinate transformation x =
4t− 2 brings this differential equation to one of the Euler-Gauß hypergeometric differential
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equations,

(1.4)

(
t(1− t) d

2

dt2
+ (−1

2
+ t)

d

dt
− 1

)
y(t) = 0

with regular singular points at 0, 1,∞. The cohomology H0(π−1(x),Z) defines a Gauss-
Manin connection in a local system over P1.

Another differential equation that is determined by the spectral curve (1.1) is a Schrödinger
equation (cf. the quantum curve of [29, 30])

(1.5)

(
~2 d

2

dx2
+ ~x

d

dx
+ 1

)
Ψ(x, ~) = 0.

This equation has only one irregular singular point at ∞, and no regular singular points.
Hence a solution is an entire function on C with an essential singularity at ∞.

Let us briefly review the mechanism of semi-classical limit here. The WKB method allows
us to find an asymptotic solution of (1.5) in terms of the exponential of a Laurent series
expansion in ~. We impose that

ψ(x, ~) = exp

(
s0(x)

~

)
exp

( ∞∑
m=1

~m−1sm(x)

)
is a solution to (1.5) and derive differential equations for each sm(x). The idea here is that
as ~→ 0, the function s0(x) has a dominant importance, which should recover the classical
behavior of the quantized equation (1.5). Since the above expression has no meaning as a
series in ~ because each term ~n is an infinite sum. So we rewrite the equation as[

exp

(
−s0(x)

~

)(
~2 d

2

dx2
+ ~x

d

dx
+ 1

)
exp

(
s0(x)

~

)]
exp

( ∞∑
m=1

~m−1sm(x)

)
= 0.

Then the operator acting on exp
(∑∞

m=1 ~m−1sm(x)
)

is(
~2 d

2

dx2
+ ~x

d

dx
+ 1

)
+ 2~s′0(x)

d

dx
+ ~s′′0(x) +

(
s′0(x)

)2
+ xs0(x)′,

hence the equation produces only non-negative powers of ~. The semi-classical limit is the

limit of ~→ 0 at this stage. Clearly, the operator converges to
(
s′0(x)

)2
+xs0(x)′+1, which

is multiplied to es1(x). Therefore, the equation becomes an algebraic equation
(
s′0(x)

)2
+

xs0(x)′ + 1 = 0, which is the same as z2 − xz + 1 = 0 by substituting s0(x)′ = −z.
What we find is that the semi-classical limit in this context is equivalent to replacing{
~ d
dx −→ −z,
x −→ x

in (1.5). Hence the spectral curve (1.1) is recovered from the quantum

curve (1.5). In other words, the quantum curve (1.5) is the result of Weyl quantization of
the spectral curve z2 − xz + 1 = 0.

Since we are already using the terminology of regular singular and irregular singular
points of differential equations, let us explain what they are.

Definition 1.2. Let

(1.6)

(
d2

dx2
+ a1(x)

d

dx
+ a2(x)

)
Ψ(x) = 0

be a second order differential equation defined around a neighborhood of x = 0 on a small
disc |x| < ε with meromorphic coefficients a1(x) and a2(x) with poles at x = 0. Denote by
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k (reps. `) the order of the pole of a1(x) (resp. a2(x)) at x = 0. If k ≤ 1 and ` ≤ 2, then
(1.6) has a regular singular point at x = 0. Otherwise, consider the Newton polygon of
the order of poles of the coefficients of (1.6). It is the upper part of the convex hull of three
points (0, 0), (1, k), (2, `). As a convention, if aj(x) is identically 0, then we assign −∞ as
its pole order. Let (1, r) be the intersection point of the Newton polygon and the line x = 1,

r =

{
k 2k ≥ `,
`
2 2k ≤ `.

If r > 1, (1.6) has an irregular singular point of class r − 1.

Remark 1.3. Jacob [56] recently discovered a 2-parameter family of (1.1) associated with
different combinatorial objects. How the story of this section changes with this new family
is a subject of future investigation.

The significance of (1.5) is in the expression of its solution, asymptotically expanded at
its essential singularity:

(1.7) Ψ(x, ~) = exp

 ∑
g≥0,n>0

1

n!
~2g−2+nFg,n(x, . . . , x)

 ,

where Fg,n(x, . . . , x) is the principal specialization of the symmetric functions

F0,1(x) = −1

2
z(x)2 + log z(x),(1.8)

F0,2(x1, x2) = − log
(
1− z(x1)z(x2)

)
,(1.9)

Fg,n(x1, . . . , xn) =
∑

µ1,...,µn>0

Cg,n(µ1, . . . , µn)

µ1 · · ·µn

n∏
i=1

x−µii , 2g − 2 + n > 0.(1.10)

Figure 1.1. 1-Skeleton of a Cell Decomposition and a Cell Graph

Here comes the relation to enumeration. The coefficients of the expansion Cg,n(µ1, . . . , µn)
of (1.10) are the generalized Catalan numbers of type (g, n) that count the numbers of cell
graphs of genus g and n labeled vertices of degrees (µ1, . . . , µn) [31, 32, 34, 75, 76]. A cell
graph is the 1-skeleton of a cell decomposition of a connected oriented surface of genus g
with n labeled 0-cells. Its dual graph is commonly called a ribbon graph on which faces are
labeled. To avoid the difficulties of counting automorphisms of graphs, we impose that no
cyclic rotations of incident edges at any vertex are allowed, as in Figure 0.1. This explains
the denominator µ1 · · ·µn of (1.10) (see Remark 2.29). For (g, n) = (0, 1), the unique ver-
tex has to have an even degree, and C0,1(2m) = Cm is the m-th Catalan number. The
surprising properties of the functions Fg,n are the following (see for example, [32, Theorem
2.7]).
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Theorem 1.4 ([18, 32, 33, 34, 76]). For the case of 2g = 2 + n > 0, substitute each xi

in (1.10) with

{
xi = zi + 1

zi
,

zi = ti+1
ti−1 ,

and write the result as Fg,n(t1, . . . , tn) incorporating these

substitutions. Then for every (g, n) in the range of 2g − 2 + n > 0, the following holds:

• Fg,n(t1, . . . , tn) is a Laurent polynomial in the t-variables of degree 6g − 6 + 3n.
• Fg,n(t1, . . . , tn) = Fg,n(1/t1, . . . , 1/tn).
• Fg,n(1, . . . , 1) = (−1)nχ(Mg,n).
• The restriction to the highest degree terms of Fg,n(t1, . . . , tn) is a homogeneous poly-

nomial

(1.11) F top
g,n (t1, . . . , tn) =

(−1)n

22g−2+n

∑
d1+···+dn
=3g−3+n

〈τd1 · · · τdn〉g,n
n∏
i=1

(2di − 1)!!

(
ti
2

)2di+1

.

Here, Mg,n is the moduli space of smooth n-pointed algebraic curves of genus g, Mg,n

its compactification, i.e., the Deligne-Mumford stack of stable curves of finite type (g, n),
and

〈τd1 · · · τdn〉g,n =

∫
Mg,n

c1(L1)d1 · · · c1(Ln)dn

is the intersection number of the first Chern classes of the tautological line bundles Li −→
Mg,n that is determined by the i-th marked point on stable curves (see (2.8) below).

The contrast between the Picard-Fuchs equation (1.3) and the irregular singular equation
(1.5) is the quantization effect: the former only determines the original Catalan numbers,
while the latter has the information of all (g, n)-Catalan numbers Cg,n(µ1, . . . , µn). This
effect is often observed in the Borel-Laplace transform of differential equations. The passage
from the spectral curve Σ of (1.1) to the quantum curve (1.5) is the inverse operation of
taking the semi-classical limit. As noted in [30], the conic Σ, a nonsingular plane curve
in P2, should be placed in the cotangent bundle T ∗P1 to consider its quantum curve. The
irregular singularity at∞ ∈ P1 of (1.5) comes from the fact that the embedding of Σ into the

compactified cotangent bundle T ∗P1 of P1, or the Hirzebruch surface F2, has a singularity
at ∞ ∈ P1.

(1.12) Σ

π
!!

i // T ∗P1

π
��

∼= // F2

P1

While the Picard-Fuchs equation (1.3) is associated with the the conic Σ ⊂ P2 and the
ramified double-sheeted covering π : Σ −→ P1, the irregular singular equation (1.5) repre-
sents the symplectic geometry of T ∗P1 and the singularity of Σ in the compactified fiber
of π : T ∗P1 = F2 −→ P1 at ∞ ∈ P1. Precisely this geometric difference is reflected in the
quantization process, from the (0, 1) invariants in z(x) of (1.1) to a function Ψ(x, ~) of (1.7)
that has the information of invariants for all values of (g, n).

Although we do not touch in these lectures, there is yet another coordinate change from
(t1, t2, t3, . . . ) appearing in the Catalan case to the time evolution parameters (t1, t2, t3, . . . )
in the Lax equations (1.17) defined below. Our use of the same notations is due to the
(confusing) conventions of different previous publications. In reality, these are not the same
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variables. After the choice of the right coordinate transformation,

(1.13) Ψ(t, ~) = exp

 ∑
g≥0,n>0

1

n!
~2g−2+nFg,n(t1, t2, t3, . . . )


becomes a τ -function for the KP equations. When we restrict Fg,n to the highest degree
terms and apply the same coordinate change, this τ -function then becomes that of the KdV
equations of Witten [98] and Kontsevich [57].

1.2. Theme 2: When is a space a moduli space? A space, or a manifold is a demo-
cratic space. Every point of a manifold is treated equal. No matter where you go on a
manifold, no matter which point you choose, its neighborhood is isomorphic to that of any
other point. There are no special points, or singular points. No point dominates other
points, and no point shows its individuality. Everywhere is the same and things work
smoothly on a manifold.

A moduli space is different. On this space, every point has its unique name. Each
point is distinguished by its individuality. No points on a moduli space are the same. A
neighborhood of each point is different from place to place. There may also be singularities
on a moduli space. Each point has its own characteristic importance, yet it is a member of
a family. Since every point is different, the moduli space itself presents its miracle: it can
exist, as a harmonious space!

We are not asking when a moduli space is a manifold. Our purpose is different. We are
wondering when a given space is actually a moduli space.

A simplest example we can consider is a vector space Cn. Can Cn be a moduli space?
Hitchin [52] told us: Yes! But for some special values of the dimension n. He starts with a
smooth algebraic curve C of genus g > 1, and defines a vector space

(1.14) B :=
r⊕
i=2

H0
(
C,K⊗iC

) ∼= C(r2−1)(g−1)

consisting of multi differentials on C. Here, KC = Ω1
C is the canonical sheaf of C consisting

of holomorphic 1-forms. This vector space is the moduli space of spectral curves for SLr(C)-
Higgs bundles. This example also explains the title of these lecture notes: In search of a
hidden curve. The vector space B becomes a moduli space as soon as we find a curve C,
and the dimension n factors as n = (r2− 1)(g− 1) for some r > 1, which is associated with
the group SLr(C).

As another simple example, let us start, again, with the complex vector space Cn of
dimension n > 0, but this time n is arbitrary, and we choose a set of 2n vectors in it
linearly independent over R. These vectors generate a Z-submodule Γ ⊂ Cn of rank 2n, a
full-rank Z-lattice. The quotient space T := Cn/Γ is a compact complex manifold whose
underlying space is the real 2n-dimensional torus (S1)2n. Now the question: When is this
quotient space a moduli space?

We give a linear coordinate system on Cn and represent the 2n generators of Γ by a set
of 2n column vectors w1, . . . , w2n of size n. They form a complex matrix Π of size n× 2n.
GLn(C) acts on Π from the left, representing the coordinate change. Since the column
vectors of the matrix Π generate the Z-module Γ, SL2n(Z) acts on Π from the right,
representing change of generators of the same lattice Γ. Since {w1, . . . , w2n} is linearly
independent over R, there is a C-linearly independent subset consisting of n vectors. Thus
we can use a left multiplication of GLn(C) and a right multiplication of SL2n(Z) on Π to
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bring it to the special shape [I |Ω]. The geometry of the quotient space Cn/Γ is encoded in
this n× n matrix Ω, which we call the period matrix of the torus T = Cn/Γ.

A classical result shows that if the period matrix satisfies the Riemann period condition
tΩ = Ω and Im(Ω) > 0, i.e., Ω is symmetric and its imaginary part is positive definite, then
the torus admits a holomorphic embedding Cn/Γ ⊂ PN into a complex projective space
of a large dimension N . When it happens, the quotient Cn/Γ can be defined by a set of
homogeneous polynomial equations in N + 1 variables, and it becomes an Abelian variety.
The choice of the shape Π = [I |Ω] brings to the quotient a principal polarization. For those
complex tori with periods satisfying the Riemann period condition, let us use the notation
A = Cn/Γ.

The space of all period matrices satisfying the Riemann period condition is therefore a
moduli space, known as the moduli space of Abelian varieties. But our question is at a
different level: we are still asking, when is an Abelian variety A a moduli space by itself?

An immediate answer comes, again, from the geometry of smooth algebraic curves over
C. On such a curve C of genus g > 0, we have g linearly independent holomorphic 1-forms.
Thus H0(C,KC) = Cg, which is the space of holomorphic 1-forms. The first homology
group of C is H1(C,Z) = Z2g. Let us choose a C-basis {ω1, . . . , ωg} for H0(C,KC) and
homology generators {γ1, . . . , γ2g}. We arrange it so that the homology basis satisfies the
symplectic intersection property

(1.15) 〈γi, γj〉 =

{
1 j = i+ g, i = 1, . . . , g

0 otherwise.

Now define a complex g × 2g matrix

Π =


∮
γ1
ω1 · · ·

∮
γ2g

ω1

...
. . .

...∮
γ1
ωg · · ·

∮
γ2g

ωg

 .
Using the actions of GLg(C) from the left and Sp2g(Z) from the right, we can rearrange Π
in the shape Π = [I |Ω] again. Riemann discovered that Ω satisfies tΩ = Ω and Im(Ω) > 0.
We can thus construct an Abelian variety

Jac(C) := H0(C,KC)
/
H1(C,Z),

for which Ω is the period matrix.
Therefore, a complex torus T = Cg/Γ is a moduli space if its period matrix Ω comes

from the integration periods of holomorphic 1-forms on a smooth algebraic curve C along
its homology basis, because

Jac(C) ∼= H1(C,OC)
/
H1(C,Z) =: Pic0(C)

is the moduli space of holomorphic line bundles on C of degree 0. For each fixed g > 1, there
are 3g− 3 dimensional family of Jacobian varieties, while Abelian varieties form a family of
g(g + 1)/2 dimensions. Therefore, Jacobians are very special among Abelian varieties.

So one can ask a question, which Riemann himself did: When is a principally polarized
Abelian variety a Jacobian variety? And this question leads us again to: In search of a
hidden curve.

1.3. Theme 3: Finding a curve from a period matrix. The holomorphic embedding
of the Abelian variety A = Cg/Γ into a projective space is constructed by the Riemann
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theta function

(1.16) ϑ(z,Ω) =
∑
n∈Zn

exp (2πi〈n, z〉+ πi〈n,Ωn〉) , z ∈ Cn,

where 〈 , 〉 is the standard symmetric form on Cn. The Riemann period condition makes
the above infinite series absolutely convergent on Cn and satisfy quasi-periodic conditions.

Over a four decade-old work [71] shows the following:

Theorem 1.5 ([71]). A principally polarized Abelian variety of period Ω is a Jacobian
variety if and only if the Riemann theta function (1.16) satisfies the nonlinear completely
integrable system of Kadomtsev-Petviashvili (KP) equations.

The nonlinear integrable system of KP equations is compactly formulated using the
formalism of Peter Lax as follows:

(1.17)
∂L

∂tn
= [Bn, L], Bn = (Ln)+, n = 1, 2, 3, . . . ,

where the Lax operator

(1.18) L = ∂ +

∞∑
i=1

ui+1(x; t)∂−i, ∂ =
∂

∂x
, t = (t1, t2, t3, . . . )

is a normalized (i.e., there is no constant term in L) first order pseudodifferential operator in
x depending on an infinitely many parameters (t1, t2, t3, . . . ). The notation (Ln)+ indicates
the differential operator part of Ln, i.e., suppressing all negative powers of ∂. If we write
u = u2, y = t2 and t = t3, then the first equation from the system (1.17) is of the form

3uyy =
(
4ut − uxxx − 12uux

)
x
,

where the subscript indicates partial differentiation. This equation is discovered by Kadomt-
sev and Petviashlivi in plasma physics. In particular, a solution to the KdV equation

(1.19) ut =
1

4
uxxx + 3uux

which does not depend on y gives a solution to the KP equation. A relation between the
KdV equation (1.19) and algebraic curves is easily seen by considering a traveling wave
solution with speed −c constructed from the Weierstraß elliptic function ℘(z):

(1.20) u(x, t) = −℘(x+ ct) +
1

3
c.

The starting point of the work [71] is Issai Schur’s 1905 theorem which says that if two
differential operators P and Q in x satisfy the commutativity relation [P,L] = [Q,L] = 0
with a given pseudodifferential operator L, then P and Q automatically commute: [P,Q] =
0. Now, suppose a solution L of the KP system depends only on finitely many time variables
so that L deforms only along a g-dimensional direction of the parameter space t ∈ C∞. Then
for all other directions, the KP system (1.17) produces infinitely many differential operators
P , which are linear combinations of Bn’s, that commute with L. Denote by AL the algebra
generated by all these P ’s over C. Schur’s argument shows that AL is a commutative ring,
and by Euclidean algorithm, we can show that the transcendence degree of AL over C is 1.
Give a natural grading in AL by the order of differential operators, and define

(1.21) C = Proj(gr(AL)) = Spec(AL) = Spec(AL) t {∞}.
It is an algebraic curve! It is called the spectral curve associated with the solution
L = L(x; t). Moreover, it is proved in [71] that C is of (arithmetic) genus g, the ring of
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differential operators D in x is an AL-module determining a line bundle L over C, and that
the KP equations define a linear flow on the cohomology H1(C,OC) ∼= Cg. A geometric
interpretation of the KP equations in this context is that they form a compatible linear
deformation family of the line bundle L on C along H1(C,OC) (cf. [63, 71, 74]).

A generalization of the formula (1.20) gives the Lax operator L from a Riemann theta
function ϑ(z,Ω). If is solves the KP system, then it deforms only along a finite dimensional
direction. Therefore, the argument above shows that the period matrix Ω must come
from an algebraic curve, based on the unique solvability of the initial value problem of
the evolution equation (1.17) established in [72, 73]. The analysis of KP equations in
these earlier papers were done in the formal power series level, which was sufficient for the
purpose of identifying the finite-dimensional solutions (a precise argument can be found in
[63]). Recently, a powerful theorem is established by Magnot and Reyes [67] that deals with
differentiable (non-formal) solutions of KP equations.

This is a success story of finding a hidden curve in the jungle.

1.4. Theme 4: The τ-functions. In the mid 1970s, Ryogo Hirota was developing a novel
mechanism to calculate exact soliton solutions to nonlinear PDEs such as the KdV equation,
introducing the Hirota bilinear differentiation

Dx f(x) • g(x) :=
∂

∂s

(
f(x+ s)g(x− s)

)∣∣∣∣
s=0

and a new dependent variable τ . For a polynomial P (D) in D, the Hirota bilinear differen-
tiation is defined to be

P (Dx) f(x) • g(x) := P

(
∂

∂s

)(
f(x+ s)g(x− s)

)∣∣∣∣
s=0

.

Then the KdV equation (1.19) becomes(
D4
x − 4DxDt

)
τ • τ

with the substitution

(1.22) u(x, t) =
∂2

∂x2
log τ(x, t).

One can easily check the effectiveness of Hirota’s method by calculating examples, such as

τ(x, t) = 1 + c e2(λx+λ3t) ,

which gives a 2-parameter family of 1-soliton solutions to the KdV equation via (1.22).
In the late 1970s, Mikio Sato noticed the algebraic mechanism behind Hirota’s method,

and discovered the Sato Grassmannian. He then identified the Hirota’s dependent variable
τ , now known as Sato’s τ -function, as the canonical section of the determinant line bundle
of the Sato Grassmannian. As a set, the Sato Grassmannian of index µ is modeled over

Gr(µ) =
{
W ⊂ C((z))

∣∣ γ : W −→ C[z−1] ∼= C((z))
/(

C[[z]] · z
)

is Fredholm of index µ
}
.

The time evolution determined by the Lax formalism (1.17) becomes, in this language, the
action on the unipotent element

exp

( ∞∑
n=1

tnΛn

)
∈ GL(V )

on the Sato Grassmannian, where V = C((z)) and Λ ∈ gl∞ is the maximal nilpotent element
corresponding to the multiplication of z−1 on V (see for example, [74, Chapter 7]). The
τ -function records this action through the vantage point of the determinant line bundle.
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This also explains why so many soliton equations are exactly solved in terms of determinant.
Since the initial value problem of the KP equations is uniquely solvable ([72, 73]), the space
of solutions to the KP equations is identified with Gr(µ = 0).

We can immediately appreciate the similarity of (1.22) and the differential relation be-
tween elliptic functions and theta functions. Indeed, the Riemann theta functions are
τ -functions when the period matrix comes from a Jacobian. Of course these τ -functions are
very special ones. They correspond to points W ∈ Gr(0) determined by

W = H0
(
C,L(∗p)

)
⊂ C((z)),

the space of meromorphic sections of L with arbitrary poles at p, where p ∈ C is a non-
singular point of C, z is a local parameter of C around p, and L is a line bundle on C of
degree g(C)− 1. We then have (see [72, Lemma 3.7]){

H0(C,L) ∼= Ker γ

H1(C,L) ∼= Coker γ.

Generically a solution to (1.17) produces an infinite-dimensional orbit. Among infinite-
dimensional orbits, there are many solutions identified in geometry. One is associated with
the Catalan numbers mentioned earlier. We review another example, coming from Hurwitz
theory, in the subsequent section.

2. The spectral curve for Hurwitz numbers

2.1. The Laplace transform. The concept of spectral curves as the B-model mirror to
an A-model counting problem appeared in the remodeling conjecture for Gromov-Witten
invariants of toric Calabi-Yau threefolds. This idea has been developed by Mariño [69],
Bouchard-Klemm-Mariño-Pasquetti [14], and Bouchard-Mariño [15], based on the theory of
topological recursion formulas of Eynard and Orantin [38]. The remodeling conjecture states
that the open and closed Gromov-Witten invariants of a toric Calabi-Yau threefold can be
captured by the Eynard-Orantin topological recursion as a B-model that is constructed on
the mirror curve. This conjecture has been completely solved, even beyond the original
scope of the conjectures, by Fang-Liu-Zong [41].

Let us now examine the idea that mirror symmetry is the Laplace transform in
some cases, by going through the concrete example of simple Hurwitz numbers [54]. Thus
our question is the following:

Question 2.1. What is the mirror dual of simple Hurwitz numbers?

This is the same question we asked for the Catalan numbers. Indeed, around 2010, and
before the author started to work on the Catalan number case, Boris Dubrovin and he had
the following conversation.

Dubrovin: Good to see you, Motohico!
M: Hi Boris, good to see you, too! At last I think I am coming close to understanding what
mirror symmetry is.
Dubrovin: Oh, yes? All right, what do you think about mirror symmetry?
M: It is the Laplace transform!
Dubrovin: Do you think so, too? But I have been saying so for the last 15 years! (He was
referring to [26, 27].)
M: Oh, have you? But I’m not talking about the Fourier-Mukai transform or the T -duality.
It’s the Laplace transform in the classical complex analysis sense.
Dubrovin: Of course I mean the same way.
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M: All right, then let’s check if we have the same understanding. Question: What is the
mirror symmetric dual of a point?
Dubrovin: It is the Lax operator of the KdV equations that was identified by Kontsevich.
M: The Lax operator is the mirror symmetric dual of a point!? Hmm. Ah! I think you
mean x = y2, don’t you?
Dubrovin: What? Wait a second. Oh, yes, indeed! Now it is my turn to ask you a
question. What is the mirror symmetric dual of the Weil-Petersson volume of the moduli
space of bordered hyperbolic surfaces discovered by Mirzakhani?
M: The sine function x = sin y.
Dubrovin: Exactly!
M: How about simple Hurwitz numbers?
Dubrovin: Oh, this one you know well: The Lambert curve!
M: Yes, it is. And in all these cases, the mirror symmetry is the Laplace transform.
Dubrovin: Of course it is.
M: A, ha! Then we seem to have the same understanding of the mirror symmetry.
Dubrovin: Apparently we do!

This conversation took place in the lobby of MSRI, Berkeley, after the end of the day. We
shook hands tightly and happily, as we started to depart. We then noticed that there was
a young mathematician listening to our conversation. At the end, he shouted:

Bystander: What, what, what? With this exchange, are you saying that you understood one
another? Unbelievable!

In the spirit of the above dialogue, the answer to our question should be:

Theorem 2.2 ([15, 37, 80]). The mirror dual to the simple Hurwitz numbers is the Lambert
curve x = ye−y.

A mathematical picture has emerged in the last two decades since the discoveries of
Eynard-Orantin [38], Mariño [69], Bouchard-Klemm-Mariño-Pasquetti [14] and Bouchard-
Mariño [15] in physics, and many mathematical efforts including [13, 18, 34, 35, 37, 41, 65,
76, 77, 79, 80, 83, 84, 85, 86, 87, 93]. As a working hypothesis, we phrase it in the form of
a principle.

Principle 2.3. For a number of interesting cases, we have the following general structure.

• On the A-model side of topological string theory, we have a class of mathematical
problems arising from combinatorics, geometry, and topology. The common feature
of these problems is that they are somehow related to a lattice point counting of a
collection of polytopes.
• On the B-model side, we have a universal theory due to Eynard and Orantin [38].

It is a framework of the recursion formula of a particular kind that is based on
a spectral curve and two analytic functions (often with singularities) on it that
immerse the curve into a complex symplectic surface as a complex Lagrangian.
• The passage from A-model to B-model, i.e., the mirror symmetry operation of the

class of problems that we are concerned, is given by the Laplace transform. The
spectral curve on the B-model side is defined as the Riemann surface of the Laplace
transform, which means that it is the domain of holomorphy of the Laplace trans-
formed function.

There are many examples of mathematical problems that fall in to this principle. Among
them is the theory of simple Hurwitz numbers [37, 80] that we are going to present now.
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Besides Hurwitz numbers, numerous mathematical results have been established. They
include counting of Grothendieck’s dessins d’enfants [18, 76, 83, 86], higher genus Catalan
numbers [32, 34], orbifold Hurwitz numbers [13], double Hurwitz numbers and higher spin
structures [78], and the stationary Gromov-Witten invariants of P1 [35, 87]. One of the most
important results in the Gromov-Witten setting is the remodeling conjecture [14] and its
solution [41] mentioned above. A new direction was suggested in Kontsevich-Soibelman [59].
It is now impossible to list all research in this direction, simply called topological recursion,
so we refer to recent papers by many authors and the papers they cite: Andersen, Borot,
Bouchard, Chidambaram, Do, Dunin-Barkowski, Eynard, Garcia-Failde, Iwaki, Lewański,
Norbury, Orantin, Osuga, Shadrin, ... A comprehensive and the most recent introduction
is given by Bouchard [12], in which one can see how the focus of the topological recursion
community has changed into new developments in the last decade.

The study of simple Hurwitz numbers is one of the earliest results in this direction and
exhibits all important ingredients found in the later papers.

2.2. Simple Hurwitz numbers. In this subsection, we define simple Hurwitz numbers,
and a combinatorial equation that they satisfy, the cut-and-join equation [48, 94], is proved.
In the next subsection, the Laplace transform of the Hurwitz numbers is presented. The
Laplace transformed holomorphic functions live on the mirror B-side of the model, according
to Princeple 2.3. The Lambert curve is defined as the domain of holomorphy of these
holomorphic functions. Then in the following subsections, we give the Laplace transform
of the cut-and-join equation. The result is a simple polynomial recursion formula and
is equivalent to the Eynard-Orantin topological recursion for the Lambert curve. We also
give a straightforward and simple derivation [80] of the Witten-Kontsevich theorem on the
ψ-class intersection numbers [24, 57, 98], and the λg-formula of Faber and Pandharipande
[39, 40], using the recursion formula we establish in [80].

In all examples of Principle 2.3 we know so far, the A-model side always has a series of
combinatorial equations that should uniquely determine the quantities in question, at least
theoretically. But in practice solving these equations is quite complicated. As we develop
in these lectures, the Laplace transform changes these equations to a topological recursion
in the B-model side, which is an inductive formula based on the absolute value of the Euler
characteristic of punctured surfaces.

Remark 2.4. Recently there have been totally unexpected spectacular developments in
the topology of moduli spacesMg,Mg,n, andMg,n (see for example, [17]). From the point
of view of In Search of a Hidden Curve, and from the perspective of Norbury discovering
the Norbury classes in H∗(Mg,n,Q) using topological recursion [85], which were later iden-
tified as the Euler classes associated with a supersymmetric generalization of the work of
Mirzakhani by Stanford-Witten [93], we wonder if there could be a spectral curve behind
the recent developments.

A simple Hurwitz number represents the number of a particular type of meromorphic
functions defined on an algebraic curve C of genus g. Let µ = (µ1, . . . , µ`) ∈ Z`+ be a

partition of a positive integer d of length `. This means that |µ| def
= µ1 + · · ·+µ` = d. Instead

of ordering parts of µ in the decreasing order, we consider them as a vector consisting of
` positive integers. By a Hurwitz covering of type (g, µ) we mean a meromorphic function
h : C → C that has ` labelled poles {xi, . . . , x`}, such that the pole order of h at xi is µi for
every i = 1, . . . , `, and that except for these poles, the holomorphic 1-form dh has simple
zeros on C \ {xi, . . . , x`} with distinct critical values of h. A meromorphic function of C is
a holomorphic map of C onto P1. In algebraic geometry, the situation described above is
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summarized as follows: h : C → P1 is a ramified covering of P1, simply ramified except for
∞ ∈ P1. We identify two Hurwitz coverings h1 : C1 → P1 with poles at {x1, . . . , x`} and

h2 : C2 → P1 with poles at {y1, . . . , y`} if there is a biholomorphic map φ : C1
∼→ C2 such

that φ(xi) = yi, i = 1, . . . , `, and

C1

h1   

φ

∼
// C2

h2~~
P1 .

When C1 = C2, xi = yi, and h1 = h2 = h, such a biholomorphic map φ is called an
automorphism of a Hurwitz covering h. Since biholomorphic Hurwitz coverings are iden-
tified, following the stack theoretic principle, we count the number of Hurwitz coverings
with the automorphism factor 1/|Aut(h)|. And when the above φ : C1→C2 is merely a
homeomorphism, we say h1 and h2 have the same topological type.

We are calling a meromorphic function a covering. This is because if we remove the
critical values of h (including ∞) from P1, then on this open set h becomes a topological
covering. More precisely, let B = {z1, . . . , zr,∞} denote the set of distinct critical values of
h. Then

h : C \ h−1(B) −→ P1 \B
is a topological covering of degree d. Each zk ∈ B is a branched point of h, and a critical
point (i.e., a zero of dh) on C is called a ramification point of h. Since dh has only simple
zeros with distinct critical values of h, the number of ramification points of h, except for the
poles, is equal to the number of branched points, which we denote by r. Therefore, h−1(zk)
consists of d− 1 points. Then by comparing the Euler characteristic of the covering space
and its base space, we obtain

d(2− r − 1) = d · χ(P1 \B) = χ(C \ h−1(B)) = 2− 2g − r(d− 1)− `.
Thus we establish the Riemann-Hurwitz formula

(2.1) r = 2g − 2 + |µ|+ `.

What we wish to enumerate is:

Definition 2.5. The simple Hurwitz number of type (g, µ) for g ≥ 0 and µ ∈ Z`+ that we
consider in these lectures is

(2.2) Hg(µ) =
1

r(g, µ)!

∑
[h] type (g,µ)

1

|Aut(h)|
,

where the sum runs all topological equivalence classes [h] of Hurwitz coverings h of type
(g, µ). Here,

r = r(g, µ) = 2g − 2 + (µ1 + · · ·+ µ`) + `

is the number of simple ramification points of h.

Remark 2.6. Our definition of simple Hurwitz numbers differs from the standard definition
by two automorphism factors. The quantity hg,µ of [36] and Hg(µ) are related by

Hg(µ) =
|Aut(µ)|

r!
hg,µ,

where Aut(µ) is the group of permutations that permutes equal parts of µ considered as a
partition. This is due to the convention that we label the poles of h and consider µ ∈ Z`+
as a vector, while we do not label simple ramification points.
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Remark 2.7. Note that interchanging the entries of µ means permutation of the label of
the poles {x1, . . . , x`} of h. Thus it does not affect the count of simple Hurwitz numbers.
Therefore, as a function in µ ∈ Z`+, Hg(µ) is a symmetric function.

Simple Hurwitz numbers satisfy a simple equation, known as the cut-and-join equation
[48, 94]. Here we give it in the format used in [80].

Proposition 2.8 (Cut-and-join equation [80]). Simple Hurwitz numbers satisfy

(2.3) r(g, µ)Hg(µ) =
∑
i<j

(µi + µj)Hg(µ(̂i, ĵ), µi + µj)

+
1

2

∑̀
i=1

∑
α+β=µi

αβ

Hg−1(µ(̂i), α, β) +
∑

g1+g2=g

ItJ=µ(̂i)

Hg1(I, α)Hg2(J, β)

 .
Here we use the following notations.

• µ(̂i) is the vector of `− 1 entries obtained by deleting the i-th entry µi.

• (µ(̂i), α, β) is the vector of ` + 1 entries obtained by appending two new entries α

and β to µ(̂i).

• µ(̂i, ĵ) is the vector of `− 2 entries obtained by deleting the i-th and the j-th entries
µi and µj.

• (µ(̂i, ĵ), µi + µj) is the vector of ` − 1 entries obtained by appending a new entry

µi + µj to µ(̂i, ĵ).

The final sum is over all partitions of g into non-negative integers g1 and g2, and a disjoint
union decomposition (or a set partition) of entries of µ(̂i) as a set, allowing the empty set.

Remark 2.9. Since Hg(µ) is a symmetric function, the way we append a new entry to a
vector does not affect the function value.

The idea to prove the formula is reducing the number r of simple ramification points.
Note that

h : C \ h−1(B) −→ P1 \B
is a topological covering of degree d. Therefore, it is obtained by a representation

ρ : π1(P1 \B) −→ Sd,

where Sd is the permutation group of d letters. The covering space Xρ of P1 \B is obtained
by the quotient construction

Xρ = X̃ ×π1(P1\B) [d],

where X̃ is the universal covering space of P1 \B, and [d] = {1, 2, . . . , d} is the index set on
which π1(P1 \B) acts via the representation ρ.

To make Xρ a Hurwitz covering, we need to specify the monodromy of the representation
at each branch point of B. Let {γ1, . . . , γr, γ∞} denote the collection of non-intersecting
loops on P1, starting from 0 ∈ P1, rotating around zk counter-clockwise, and coming back
to 0, for each k = 1, . . . , r. The last loop γ∞ does the same for ∞ ∈ P1. Since P1 is simply
connected, we have

π1(P1 \B) = 〈γ1, . . . , γr, γ∞|γ1 · · · γr · γ∞ = 1〉.
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Since Xρ must have r simple ramification points over {z1, . . . , zr}, the monodromy at zk is
given by a transposition

ρ(γk) = (akbk) ∈ Sd,
where ak, bk ∈ [d] and all other indices are fixed by ρ(γk). To impose the condition on poles
{x1, . . . , x`} of h, we need

ρ(γ∞) = c1c2 · · · c`,
where c1, . . . , c` are disjoint cycles of Sd of length µ1, . . . , µ`, respectively.

We want to reduce the number r by one. To do so, we simply merge zr with ∞. The
monodromy at ∞ then changes from c1c2 · · · c` to (ab) · c1c2 · · · c`, where (ab) = (arbr) is
the transposition corresponding to γr. There are two cases we have now:

(1) Join case: a and b belong to two disjoint cycles, say a ∈ ci and b ∈ cj ;
(2) Cut case: both a and b belong to the same cycle, say ci.

An elementary computation shows that for Case (1), the product (ab)cicj is a single cycle
of length µi + µj . For the second case, the result depends on how far a and b are apart in
cycle ci. If b appears α slots after a with respect to the cyclic ordering, then

(2.4) (ab)ci = cαcβ,

where α + β = µi. The cycles cα and cβ are disjoint of length α and β, respectively, and
a ∈ cα, and b ∈ cβ. Note that everything is symmetric with respect to interchanging a and
b. A couple of simple examples makes sense here.

Join Case: (12)(3517)(46829) = (468173529)

Cut Case: (12)(351746829) = (3529)(17468).

With this preparation, we can now give the proof of (2.3). The right-hand side of (2.3)
represents the set of all monodromy representations obtained by merging one of the branch
points zk with ∞. The factor r on the left-hand side represents the choice of zk.

Proof. Since we are reducing r = 2g − 2 + d+ ` by one without changing d, there are three
different ways of reduction:

(g, `) 7−→ (g, `− 1)(2.5)

(g, `) 7−→ (g − 1, `+ 1)(2.6)

(g, `) 7−→ (g1, `1 + 1) + (g2, `2 + 1), where

{
g1 + g2 = g

`1 + `2 = `− 1.
(2.7)

• The first reduction (2.5) is exactly the first line of the right-hand side of (2.3),
which corresponds to the join case. Two cycles of length µi and µj are joined to
form a longer cycle of length µi + µj . Note that the number a has to be recorded
somewhere in this long cycle. This explains the factor µi + µj . Then the number b
is automatically recorded, because it is the entry appearing exactly µi slots after a
in this long cycle.
• The second line of the right-hand side of (2.3) represents the cut cases. In (2.4), we

have α choices for a and β choices for b. The symmetry of interchanging a and b
explains the factor 1

2 . The first term of the second line of (2.3) corresponds to (2.6).
• The second term of the second line corresponde to (2.7). Note that in this situation,

merging a branched point with ∞ breaks the connectivity of the Hurwitz covering.
We have two ramified coverings h1 : C1 → P1 of degree d1 and genus g1 with `1 + 1
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poles, and h2 : C2 → P1 of degree d2 and genus g2 with `2 + 1 poles. If we denote
by ri the number of simple ramifications points of hi for i = 1, 2, then we have

r1 = 2g1 − 2 + d1 + `1 + 1
+) r2 = 2g2 − 2 + d2 + `2 + 1

r − 1 = 2 g − 2 + d + ` − 1.

This completes the proof of (2.3). �

Remark 2.10. The reduction of the number r of simple ramification points by one is exactly
reflecting the reduction of the Euler characteristic of the punctured surface Xρ = C\h−1(B)
appearing in our consideration by one. Since we do not change the degree d of the covering,
the reduction of r is simply reducing 2g − 2 + ` by one.

2.3. The Laplace transform of the simple Hurwitz numbers. Let us now compute
the Laplace transform of the simple Hurwitz number Hg(µ), considered as a function in

µ ∈ Z`+. According to Principle 2.3, the result should give us the mirror dual of simple
Hurwitz numbers. We explain where the Lambert curve x = ye1−y comes from, and its
essential role in computing the Laplace transform. The most surprising feature is that the
result of the Laplace transform of Hg(µ) is a polynomial if 2g − 2 + ` > 0. This
polynomiality produces powerful consequences, which is the main subject of the following
subsections.

The most important reason for our interest in Hurwitz numbers in this summer school on
complex Lagrangians lies in the theorem due to Ekedahl, Lando, Shapiro and Vainshtein [36]
that relates the simple Hurwitz numbers with the intersection numbers of tautological classes
on the moduli spaces of curves. From analyzing their formula, we see the emergence of the
spectral curve, which we consider as a complex Lagrangian in the holomorphic symplectic
surface.

Let us recall the necessary notations here. Our main object is the moduli stack Mg,`

consisting of stable algebraic curves of genus g ≥ 0 with ` ≥ 1 distinct smooth labeled
points. Forgetting the last labeled point on a curve gives a canonical projection

π :Mg,`+1 −→Mg,`.

Since the last labeled point moves on the curve, the projection π can be considered as a
universal family of `-pointed curves. This is because for each point [C, (x1, . . . , x`)] ∈
Mg,`, the fiber of π is indeed C itself.

If x`+1 ∈ C is a smooth point of C other than {x1, . . . , x`}, then this point represents
an element [C, (x1, . . . , x`+1)] ∈ Mg,`+1. If x`+1 = xi for some i = 1, . . . , `, then this point
represents a stable curve obtained by attaching a rational curve P1 to C at the original
location of xi, while carrying three special points on it. One is the singular point at which
C and P1 intersects. The other two points are labeled as xi and x`+1. And if x`+1 ∈ C
coincides with one of the nodal points of C, say x ∈ C, then this point represents another

stable curve. This time, consider the local normalization C̃ → C about the singular point
x ∈ C, and let x+ and x− be the two points in the fiber. The stable curve we have is the

curve C̃∪P1, where the two curves intersect at x+ and x−. The labeled point x`+1 is placed
on the attached P1 different from these two singular points. Because P1 with three distinct
labeled points form a moduli space consisting of a single point, the processes above (called
stabilization) leave no ambiguity.

A universal family produces what we call the tautological bundles on the moduli space.
The cotangent sheaf T ∗C = ωC of each fiber of π is glued together to form a relative
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Figure 2.1. A new point x`+1 is attached on top of x3 (left), and at nodal point x (right).

dualizing sheaf ω on Mg,`+1. The push-forward

E = π∗ω

is such a tautological vector bundle on Mg,` of fiber dimension

dimH0(C,ωC) = g,

and is called the Hodge bundle on Mg,`. By assigning x`+1 = xi to each [C, (x1, . . . , x`)] ∈
Mg,`, we construct a section

σi :Mg,` −→Mg,`+1.

It defines another tautological bundle

(2.8) Li = σ∗(ω)

on Mg,`. The fiber of Li at [C, (x1, . . . , x`)] is identified with the cotangent line T ∗xiC.

The tautological classes of Mg,` are rational cohomology classes including

ψi = c1(Li) ∈ H2(Mg,`,Q) and λj = cj(E) ∈ H2j(Mg,`,Q).

In these lectures we do not consider the other classes, such as the κ-classes.
With these notational preparations, we can now state an amazing theorem.

Theorem 2.11 (The ELSV formula [36]). The simple Hurwitz numbers are expressible as
the intersection numbers of tautological classes on the moduli space Mg,` as follows. Let

µ ∈ Z`+ be a positive integer vector. Then we have

(2.9)

Hg(µ) =
∏̀
i=1

µµii
µi!

∫
Mg,`

∑g
j=0(−1)jλj∏`
i=1(1− µiψi)

=
∑

n1,...,n`≥0

g∑
j=0

(−1)j〈τn1 · · · τn`
λj〉g,`

∏̀
i=1

µµi+ni
i

µi!
.

Here we use Witten’s symbol

〈τn1 · · · τn`
λj〉g,` =

∫
Mg,`

c1(L1)n1 · · · c1(L`)n` · cj(E).

It is 0 unless n1 + · · ·+ n` + j = 3g − 3 + `.

Remark 2.12. It is not our purpose to give a proof of the ELSV formula in these lectures.
There are excellent articles about this remarkable formula. We refer to [64, 88].
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To explore the mirror partner to simple Hurwitz numbers, we wish to compute the Laplace
transform of the ELSV formula. Let us recall Stirling’s formula

(2.10)
kk+n

k!
e−k ∼ 1√

2π
kn−

1
2 , k � 0

for a fixed n.

Definition 2.13. For a complex parameter w with Re(w) > 0, we define

(2.11) ξn(w) =

∞∑
k=1

kk+n

k!
e−ke−kw.

Because of Stirling’s formula (2.10), we expect that asymptotically near w ∼ 0,

ξn(w) ∼
∫ ∞

0

1√
2π
xn−

1
2 e−xwdx.

To illustrate our strategy of computing the Laplace transform, let us first compute

fn(w) =

∫ ∞
0

xne−xwdx.

We notice that

(2.12) − d

dw
fn(w) = fn+1(w).

Therefore, if we know f0(w), then we can calculate all fn(w) for n > 0. Of course we have

f0(w) =
1

w
.

Therefore, we immediately conclude that

(2.13) fn(w) =
Γ(n+ 1)

wn+1
,

which satisfies the initial condition and the differential recursion formula (2.12). The im-
portant fact in complex analysis is that when we derive a formula like (2.13), it holds for
an arbitrary n, not necessarily a positive integer. In particular, we have

ξn(w) ∼
∫ ∞

0

1√
2π
xn−

1
2 e−xwdx =

Γ(n+ 1
2)

√
2π wn+ 1

2

.

From this asymptotic expression, we learn that ξn has an expansion in w−
1
2 . Thus to

identify the domain of holomorphy, we wish to find a natural coordinate that behaves like

w−
1
2 .

Note that for every n > 0, the summation in the definition of ξn(w) in (2.11) can be
taken from k = 0 to ∞. For n = 0, the k = 0 term contributes 00 = 1 in the summation.
So let us define

(2.14) t− 1 = ξ0(w) =
∞∑
k=1

kk

k!
e−ke−kw.

Then the computation of the Laplace transform ξn(w) is reduced to finding the inverse func-
tion w = w(t) of (2.14), because all we need after identifying the inverse is to differentiate
ξ0(w) n-times.

Here we utilize the Lagrange Inversion Formula.
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Theorem 2.14 (The Lagrange Inversion Formula). Let f(y) be a holomorphic function
defined near y = 0 such that f(0) 6= 0. Then the inverse of the function

x =
y

f(y)

is given by

y =

∞∑
k=1

[
dk−1

dyk−1
(f(y))k

]
y=0

xk

k!
.

We give a proof of this formula in Appendix. For our purpose, let us consider the case
f(y) = ey−1. The function

(2.15) x = ye1−y

is called the Lambert function.
This is our spectral curve, the hidden curve for Hurwitz numbers! The difficulty

is in the calculation of (2.11). Since we do not know how to calculate it, we just introduce
the symbol y for (2.16) below, pretending that we know what it is. Then we can calculate
everything in terms of what we do not know, i.e., (2.16). Indeed, the Lagrange Inversion
Formula immediately tells us that its inverse function is given by

(2.16) y =
∞∑
k=1

kk−1

k!
e−kxk.

So if we substitute

(2.17) x = e−w,

then we have

(2.18) y =
∞∑
k=1

kk−1

k!
e−ke−kw = ξ−1(w).

The differential of the Lambert function gives

dx = (1− y)e1−ydy.

Therefore, we have

(2.19) − d

dw
= x

d

dx
=

y

1− y
d

dy
.

Since

t− 1 = ξ0(w) = − d

dw
ξ−1(w) =

y

1− y
,

we conclude that

(2.20) y =
t− 1

t
.

As a consequence, we complete the calculation:

(2.21) − d

dw
= x

d

dx
=

y

1− y
d

dy
= t2(t− 1)

d

dt
.

We also obtain a formula for w in terms of t, since e−w = ye1−y.

(2.22) w = −1

t
− log

(
1− 1

t

)
=
∞∑
m=2

1

m

1

tm
.
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Notice that near w = 0, we have t ∼
√

2w, as we wished! Now we can calculate ξn(w) in
terms of t for every n ≥ 0.

Definition 2.15. As a function in t, we denote

(2.23) ξ̂n(t) = ξn(w(t)).

Theorem 2.16 (Polynomiality). For every n ≥ 0, ξ̂n(t) is a polynomial in t of degree
2n+ 1. For n > 0 it has an expansion

(2.24) ξ̂n(t) = (2n− 1)!!t2n+1 − (2n+ 1)!!

3
t2n + · · ·+ ant

n+2 + (−1)nn! tn+1,

where an is defined by
an = −

[
(n+ 1)an−1 + (−1)nn!

]
and is identified as the sequence A001705 or A081047 of the On-Line Encyclopedia of
Integer Sequences.

Proof. It is a straightforward calculation of

ξ̂n(t) = t2(t− 1)
d

dt
ξ̂n−1(t) =

(
t2(t− 1)

d

dt

)n
(t− 1).

�

Remark 2.17. J. Zhow informed the author that all other coefficients of ξ̂n(t) had been
identified.

Theorem 2.18 (Laplace transform of simple Hurwitz numbers). The Laplace transform of
simple Hurwitz numbers is given by

(2.25)

Hg,`(t) = Hg,`(t1, t2, . . . , t`) =
∑
µ∈Z`

+

Hg(µ)e−|µ|e−(µ1w1+···+µ`w`)

=
∑

n1,...,n`≥0

g∑
j=0

(−1)j〈τn1 · · · τn`
λj〉g,`

∏̀
i=1

ξ̂ni(ti).

This is a polynomial of degree 3(2g − 2 + `). Its highest degree terms form a homogeneous
polynomial

(2.26) Htop
g,` (t) =

∑
n1+···+n`=3g−3+`

〈τn1 · · · τn`
〉g,`
∏̀
i=1

(2ni − 1)!! t2ni+1
i ,

and the lowest degree terms also form a homogeneous polynomial

(2.27) Hlowest
g,` (t) =

∑
n1+···+n`=2g−3+`

(−1)3g−3+`〈τn1 · · · τn`
λg〉g,`

∏̀
i=1

ni! t
ni+1
i .

Remark 2.19. We note that there is no a priori reason for the Laplace transform of Hg(µ)
to be a polynomial. Because it is a polynomial, we obtain a polynomial generating function
of linear Hodge integrals 〈τn1 · · · τn`

λj〉g,`. We utilize this polynomiality in the concluding
subsection below.

Remark 2.20. The motivation for the author to work on Catalan numbers [34, 32] was to
find an analytically simpler example of enumeration problem for which a similar polynomi-
ality holds. The coordinate change for the Catalan case was obtained from looking for an
analogy of (2.20).
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Remark 2.21. The existence of the polynomials ξ̂n(t) in (2.25) is significant, because it
reflects the ELSV formula (2.9). Indeed, Eynard predicts that this is the general structure
of the Eynard-Orantin formalism.

2.4. Two quantum curves for the Lambert curve. How about the quantum curve
associated with the Lambert curve? Since x = ye1−y does not give an algebraic curve, the
argument we used for the case of Catalan generating function, (1.1) and (1.3), does not apply
here. Yet the counterpart of the quantum curve (1.5) exists for Hurwitz numbers. Indeed,
we discover two differential equations that recover the Lambert curve via the semi-classical
limit.

Our particular choice of the Lambert function (2.15) is for the purpose to make the
subsequent calculations less cumbersome, by reducing the appearance of powers of e. More
traditional choice is

(2.28) x = ye−y.

The difference is only in the constant multiplication x 7−→ ex. For the calculation of
quantum curves, we use the classical one. This works better for quantum curves, because
the differential operator we need is D := x d

dx , which is invariant under the C∗-action.

Theorem 2.22 ([13, 78, 79]). As a straightforeward analogy of the formula (1.7) for Catalan
numbers, let us define

(2.29) Z(t, ~) := exp

 ∑
g≥0,n>0

1

n!
~2g−2+n Hg,n(t, t, . . . , t)

 .

Then it satisfies the following two equations, one is a partial differential equation, and the
other a difference-differential equation:(

~
2
D2 −

(
1 +

~
2

)
D − ~

∂

∂~

)
Z
(
t(x), ~

)
= 0,(2.30) (

~D − xe~D
)
Z
(
t(x), ~

)
= 0.(2.31)

Here, D = x d
dx , and the variable t in (2.29) is considered to be a function in x by the

relations

y =
t− 1

t
and x = ye−y.

The semi-classical limit calculations can be applied to these partial differential and

difference-differential equations. The result is the same as replacing

{
~D 7−→ y

x 7−→ x
for (2.31),

which recovers the Lambert curve. For the first equation (2.30), we need to perform the
actual WKB analysis to obtain the semi-classical limit, as done in [79]. The quantum curve
(2.31) was also independently obtained in [100].

An important aspect arising from (2.29) is the emergence of the KP τ -function right in
this formula. Indeed, Z(t, ~) is a principal specialization of the KP τ -function. We refer to
[79] for more detail.

We are now ready to compute the Laplace transform of the cut-and-join equation itself.
The result turns out to be a simple polynomial recursion formula. Here again there is no a
priori reason for the result to be a polynomial relation, because the cut-and-join equation
(2.3) contains unstable geometries, and they contribute non-polynomial terms after the
Laplace transform.
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Remark 2.23. We remark here that the Laplace transform of the cut-and-join equation is
equivalent to the Eynard-Orantin topological recursion formula [38] based on the Lambert
curve (2.15) as the spectral curve of the theory. This fact solves the Bouchard-Mariño
conjecture [15] of Hurwitz numbers [37, 80], and establishes the Lambert curve as the
remodeled B-model corresponding to simple Hurwitz numbers through mirror symmetry.

The unexpected power [80] of the topological recursion type formula appearing in our
context is the following.

(1) It restricts to the top degree terms, and recovers the Dijkgraaf-Verlinde-Verlinde
formula, or the Virasoro constraint condition, for the ψ-class intersection numbers
on Mg,` [98].

(2) It also restricts to the lowest degree terms, and recovers the λg-conjecture of Faber
that was proved in [39, 40] in a totally different method. Our proof is straightforward.

In other words, we obtain a straightforward, simple proofs of the Witten conjecture and
Faber’s λg-conjecture from the Laplace transform of the cut-and-join equation. We note
that the Laplace transform contains the information of the large µ asymptotics. Therefore,
our proof [80] of the Witten conjecture uses the same idea of Okounkov and Pandharipande
[88], yet it is much simpler because we do not have to use any of the asymptotic analyses
of matrix integrals, Hurwitz numbers, and graph enumeration.

The proof of the λg-conjecture using the topological recursion is still somewhat myste-
rious. Here again the complicated combinatorics is wiped out and we have a transparent
proof.

Let us now state the Laplace transform of the cut-and-join equation.

Theorem 2.24 ([80]). The polynomial generating functions of the linear Hodge integrals
Hg,`(t) satisfy the following topological recursion type formula

(2.32)

(
2g − 2 + `+

∑̀
i=1

1

ti
Di

)
Hg,`(t1, t2, . . . , t`)

=
∑
i<j

t2i (tj − 1)DiHg,`−1

(
t[`;ĵ]

)
− t2j (ti − 1)DjHg,`−1

(
t[`;̂i]

)
ti − tj

+
∑̀
i=1

[
Du1Du2Hg−1,`+1

(
u1, u2, t[`;̂i]

)]
u1=u2=ti

+
1

2

∑̀
i=1

stable∑
g1+g2=g

JtK=[`;̂i]

DiHg1,|J |+1(ti, tJ) ·DiHg2,|K|+1(ti, tK),

where Di = t2i (ti − 1) ∂
∂ti

. As before, [`] = {1, . . . , `} is the index set, and [`; î] is the

index set obtained by deleting i from [`]. The last summation is taken over all partitions

g = g1 + g2 of the genus g and disjoint union decompositions J tK = [`; î] satisfying the
stability conditions 2g1 − 1 + |J | > 0 and 2g2 − 1 + |K| > 0. For a subset I ⊂ [`] we write
tI = (ti)i∈I .

The biggest difference between the cut-and-join equation (2.3) and the Laplace trans-
formed formula (2.32) is the restriction to stable geometries in the latter. In the case of the
cut-and-join equation, the cut case contains g1 = 0 and I = ∅. Then Hg2(J, β) has the same
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complexity of Hg(µ). Thus the cut-and-join equation is simply a relation among Hurwitz
numbers, not a recursive formula.

The new feature of our (2.32) is that it is a genuine recursion formula about linear Hodge
integrals. Indeed, we can re-write the formula as follows.

(2.33)
∑
n[`]

〈τn[`]
Λ∨g (1)〉g,`

(
(2g − 2 + `)ξ̂n[`]

(t[`]) +
∑̀
i=1

1

ti
ξ̂ni+1(ti)ξ̂[`;̂i](t[`;̂i])

)

=
∑
i<j

∑
m,n[`;̂iĵ]

〈τmτn[`;̂iĵ]
Λ∨g (1)〉g,`−1ξ̂n[`;̂iĵ]

(t[`;̂iĵ])
ξ̂m+1(ti)ξ̂0(tj)t

2
i − ξ̂m+1(tj)ξ̂0(ti)t

2
j

ti − tj

+
1

2

∑̀
i=1

∑
n[`;̂i]

∑
a,b

(
〈τaτbτn[`;̂i]

Λ∨g−1(1)〉g−1,`+1

+
stable∑

g1+g2=g

I
∐
J=[`;̂i]

〈τaτnIΛ∨g1(1)〉g1,|I|+1〈τbτnJ Λ∨g2(1)〉g2,|J |+1

)
ξ̂a+1(ti)ξ̂b+1(ti)ξ̂n[`;̂i]

(t[`;̂i]),

where [`] = {1, 2 . . . , `} is the index set, and for a subset I ⊂ [`], we denote

tI = (ti)i∈I , nI = {ni | i ∈ I }, τnI =
∏
i∈I

τni , ξ̂nI (tI) =
∏
i∈I

ξ̂ni(ti).

We also use a convenient notation

Λ∨g (1) = 1− λ1 + λ2 − · · ·+ (−1)gλg.

It is now obvious that in (2.33), the complexity 2g − 2 + ` is reduced exactly by 1 on the
right-hand side. Thus we can compute linear Hodge integrals one by one using this formula.

The Deligne-Mumford stackMg,` is defined as the moduli space of stable curves satisfying
the stability condition 2−2g−` < 0. However, Hurwitz numbers are well defined for unstable
geometries (g, `) = (0, 1) and (0, 2). It is an elementary exercise (of tree counting, see [66])
to show that

(2.34) H0

(
(d)
)

=
dd−1

d!
.

We note that this is the type (0, 1)-Hurwitz number of degree d, and the new
variable y = y(x) of (2.16), or the spectral curve, is its generating function.

The ELSV formula remains true for unstable cases by defining∫
M0,1

1

1− kψ
=

1

k2
,(2.35) ∫

M0,2

1

(1− µ1ψ1)(1− µ2ψ2)
=

1

µ1 + µ2
.(2.36)

In terms of simple Hurwitz numbers, we have

H0

(
(µ1, µ2)

)
=
µµ11

µ1!
· µ

µ2
2

µ2!
· 1

µ1 + µ2
.

From these expressions we can actually compute H0,1(t) and H0,2(t1, t2). Since these
computations are quite involved, we refer to [37, 80]. What happens often in mathematics
is what we call a miraculous cancellation. In our situation, when we honestly compute
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all terms appearing in the Laplace transform in the cut-and-join equation (2.3), somewhat
miraculously, all non-polynomial terms cancel out, and the rest becomes an effective recur-
sion formula (2.33).

2.5. New proofs of Witten-Kontsevich and the λg formulas. Now let us move to
proving the Witten conjecture and the λg-formula using our recursion (2.33). Although
these important formulas have been proved a long time ago, we present simpler proofs here
just to illustrate the power of the topological recursion type formula.

The DVV formula for the Virasoro constraint condition on the ψ-class intersections reads

(2.37) 〈τn[`]
〉g,` =

∑
j≥2

(2n1 + 2nj − 1)!!

(2n1 + 1)!!(2nj − 1)!!
〈τn1+nj−1τn[`;1̂ĵ]

〉g,`−1

+
1

2

∑
a+b=n1−2

〈τaτbτn[`;1̂]
〉g−1,`+1 +

stable∑
g1+g2=g
JtK=[`;1̂]

〈τaτnJ 〉g1,|J |+1 · 〈τbτnK 〉g2,|K|+1


× (2a+ 1)!!(2b+ 1)!!

(2n1 + 1)!!
.

Here [`; 1̂ĵ] = {2, 3, . . . , ĵ, . . . , `}, and for a subset I ⊂ [`] we write

nI = (ni)i∈I and τnI =
∏
i∈I

τni .

Proposition 2.25. The DVV formula (2.37) is exactly the relation among the top degree
coefficients of the recursion (2.32).

Proof. Choose n[`] so that |n[`]| = n1 +n2 + · · ·+n` = 3g−3+`. The degree of the left-hand

side of (2.32) is 3(2g − 2 + `) + 1. So we compare the coefficients of t2n1+2
1

∏
j≥2 t

2nj+1
j in

the recursion formula. The contribution from the left-hand side of (2.32) is

〈τn[`]
〉g,`(2n1 + 1)!!

∏
j≥2

(2nj − 1)!!.

The contribution from the first line of the right-hand side comes from∑
j≥2

〈τmτn[`;1̂ĵ]
〉g,`−1(2m+ 1)!!

t21tjt
2m+3
1 − t2j t1t

2m+3
j

t1 − tj

=
∑
j≥2

〈τmτn[`;1̂ĵ]
〉g,`−1(2m+ 1)!!t1tj

t2m+4
1 − t2m+4

j

t1 − tj

=
∑
j≥2

〈τmτn[`;1̂ĵ]
〉g,`−1(2m+ 1)!!

∑
a+b=2m+3

ta+1
1 tb+1

j ,

where m = n1 + nj − 1. The matching term in this formula is a = 2n1 + 1 and b = 2nj .

Thus we extract as the coefficient of t2n1+2
1

∏
j≥2 t

2nj+1
j∑

j≥2

〈τn1+nj−1τn[`;1̂ĵ]
〉g,`−1(2n1 + 2nj − 1)!!

∏
k 6=1,j

(2nk − 1)!!.

The contributions of the second and the third lines of the right-hand side of (2.32) are
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1

2

∑
a+b=n1−2

〈τaτbτL\{1}〉g−1,`+1 +
1

2

stable∑
g1+g2=g
JtK=[`;1̂]

〈τaτnJ 〉g1,|J |+1 · 〈τbτnK 〉g2,|K|+1


× (2a+ 1)!!(2b+ 1)!!

∏
j≥2

(2nj − 1)!!.

We have thus recovered the Witten-Kontsevich theorem [24, 57, 98]. �

The λg formula [39, 40] is

(2.38) 〈τn[`]
λg〉g,` =

(
2g − 3 + `

n[`]

)
bg,

where

(2.39)

(
2g − 3 + `

n[`]

)
=

(
2g − 3 + `

n1, . . . , n`

)
is the multinomial coefficient, and

bg =
22g−1 − 1

22g−1

|B2g|
(2g)!

is a coefficient of the series
∞∑
j=0

bjs
2j =

s/2

sin(s/2)
.

Proposition 2.26. The lowest degree terms of the topological recursion (2.32) proves the
combinatorial factor of the λg formula

(2.40) 〈τn[`]
λg〉g,` =

(
2g − 3 + `

n[`]

)
〈τ2g−1λg〉g,1.

Proof. Choose n[`] subject to |n[`]| = 2g− 3 + `. We compare the coefficient of the terms of∏
i≥1 t

ni+1
i in (2.32), which has degree |n[`]|+` = 2g−3+2`. The left-hand side contributes

(−1)2g−3+`(−1)g〈τn[`]
λg〉g,`

∏
i≥1

ni!

(
2g − 2 + `−

∑̀
i=1

(ni + 1)

)
= (−1)`(−1)g〈τn[`]

λg〉g,`(`− 1)
∏
i≥1

ni!.

The lowest degree terms of the first line of the right-hand side are

(−1)g
∑
i<j

∑
m

〈τmτn[`;̂iĵ]
λg〉g,`−1(−1)m(m+ 1)!

tm+4
i − tm+4

j

ti − tj
(−1)2g−3+`−ni−nj

∏
k 6=i,j

nk!t
nk+1
k .

Since m = ni + nj − 1, the coefficient of
∏
i≥1 t

ni+1
i is

−(−1)g(−1)2g−3+`
∑
i<j

〈τni+nj−1τn[`;̂iĵ]
λg〉g,`−1

(
ni + nj
ni

)∏
i≥1

ni!.
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Note that the lowest degree coming from the second and the third lines of the right-hand
side of (2.32) is |n[`]| + ` + 2, which is higher than the lowest degree of the left-hand side.
Therefore, we have obtained a recursion equation with respect to `

(2.41) (`− 1)〈τn[`]
λg〉g,` =

∑
i<j

〈τni+nj−1τn[`;̂iĵ]
λg〉g,`−1

(
ni + nj
ni

)
.

The solution of the recursion equation (2.41) is the multinomial coefficient (2.39). �

Remark 2.27. Although the polynomial recursion (2.32) determines all linear Hodge in-
tegrals, the closed formula

bg = 〈τ2g−2λg〉g,1 g ≥ 1

does not directly follow from it.

2.6. From a tree counting to the Lambert curve. As in Section 2.4, but different from
(2.16), let us use the classical convention

(2.42) y(x) =

∞∑
k=1

kk−1

k!
xk

for the function y = y(x). Then the Lagrange Inversion Theorem gives us the classical
Lambert curve x = ye−y, as pointed out in (2.28). We take the exterior derivative of this
expression dx = (1− y)e−ydy. Then we obtain a differential equation for y(x):

(2.43) Dy =
y

1− y
, D = x

d

dx
.

Since it is a nonlinear differential equation, it is not a Picard-Fuchs type equation such as
the one (1.3) for the Catalan case. However, as the Picard-Fuchs equation (1.3) leads to the
spectral curve x = z+1/z, the differential equation (2.43) actually determines the Lambert
curve, as we see below.

In this Subsection, we deduce Differential Equation 2.43 from a purely combinatorial
nature of the tree counting, and solve it to identify the Lambert curve, without appealing
to the analysis of the Lagrange theorem.

We learn from the excellent textbook of Lovász et al. [66] that the (0, 1) Hurwitz number

of degree d, H0

(
(d)
)

= dd−1

d! of (2.34), is the number of rooted trees on d nodes, counted in
the stack sense. It means the reciprocal of the order of the automorphism group of each tree
is used as a weight in counting. Cayley’s Theorem says that the number of all node-labeled
trees on d nodes is dd−2, which is of course a positive integer. Since d nodes are labeled

in d! different ways, the ratio dd−2

d! is the “number” of unlabeled trees. Since it is not an
integer for d ≥ 2, this “counting” is not the count of elements of a set. We are counting
objects in a category, and automorphisms are taken into account.

Question 2.28. If you have two isomorphic objects, then you count it as one. For example,
there are two groups of order 6, the cyclic group C6 and the permutation group S3. The
dihedral group of a triangle D3 is not counted because it is isomorphic to S3. Now a question:
Suppose we have an object that has a non-trivial automorphism group of order 2. Do we
count it as one, or a half?

Remark 2.29 (On categorical counting). • The textbook [66] mentioned above also
talks about the set-theoretical count of the number of trees. There is no exact
formula for that number. What becomes an important question in set-theoretical
count is the asymptotic behavior of the number.
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• When we count, it is always the best practice to count labeled objects first, because
then we have a clear definition of the objects we are counting. For example, in (1.10),
Cg,n(µ1, . . . , µn) is the number of cell graphs with labeled vertices and no local ro-
tation symmetries around each vertex are allowed. We then obtain Cg,n(µ1, . . . , µn)
as an integer. But in (1.10), we have the denominator µ1 · · ·µn, which is exactly
the order of the product group of the rotation group at each vertex. This ratio is
therefore not equal to the “number” of actual isomorphism classes of a cell graph.
• Identifying the automorphism group of a large cell graph, even a tree, is a computa-

tionally complex task. Often the categorical count leads to a beautiful formula. We
employ this point of view everywhere in these lectures.
• But if your interest is really the actual set-theoretical count, then what do you

do? Since there is no exact formula expected, the question is how you obtain the
asymptotic analysis of the formula.
• Bingo! Yes, you got it. This is why we are calculating the Laplace trans-

form! In both Catalan and Hurwitz cases, the Laplace transform leads to the
topology of the moduli spaces Mg,n and Mg,n. The idea here is similar to the
Ehrhart polynomials and the Weil conjecture.

So we have dd−2

d! unlabeled trees on d nodes in our categorical count. To make a tree a
rooted tree, we need to pick a node and declare that it is the root. We have d such choices.
Therefore, the number of rooted trees on d nodes is

d
dd−2

d!
=
dd−1

d!
.

Suppose now we have two rooted trees. We can join these two roots with a new edge. The
result is a new tree, where there is no root any more. But we have a particular edge, which
did not exist in any of the two original trees. Thus we obtain a based tree, i.e., a tree in
which a particular edge is chosen and declared it to be the base of the tree.

rooted tree
with b nodes

rooted tree
with a nodes

based tree with
a+b nodes

Figure 2.2. Construction of a based tree from two rooted trees.

The process if reversible. When you have a tree, and an edge has a name “base” on it,
then we can simply remove it. Being a tree, the process produces two disjoint trees. The
two ends of the removed edge will become the roots of the two trees. A tree on n nodes has
n− 1 edges. So we obtain a bijective counting formula

(2.44)
1

2

∑
a+b=n
a≥1,b≥1

aa−1

a!
· b

b−1

b!
= (n− 1)

nn−2

n!
, n ≥ 2.
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The half on the left hand side compensates the double count of interchanging the two
parts. In terms of the generating function, or the Laplace transform y(x) of (2.42), the tree
counting formula (2.44), after multiplying nxn, produces the following differential equation
with D = x(d/dx):

D

(
1

2
y2

)
= xD

(y
x

)
⇐⇒ yy′ =

xy′ − y
x

⇐⇒ Dy =
y

1− y
.

Thus we recover (2.43), and this is exactly what we need throughout Section 2. We can
also directly solve this differential equation and find the classical Lambert curve, avoiding
Lagrange’s Inversion Formula all together:

(1− y)
y′

y
=

1

x
=⇒ x = ye−y.

Here, we use the initial values y(0) = 0 and y′(0) = 1 from (2.42).

3. Spectral curves in Higgs bundles and opers

The goal of this section is to review the biholomorphic correspondence between the moduli
space of spectral curves and that of opers for any given smooth projective algebraic curve
C of genus g(C) > 1, mentioned in Introduction. Since the passage goes through ~-family
of deformations of a differential operator, it has a counter intuitive feature.

3.1. Moduli spaces of Higgs bundles and character varieties. Hitchin’s introduction
[52] of spectral curves in the study of the cotangent bundle of the moduli spaces of vector
bundles on a smooth base curve has considerably expanded the world of spectral curves.
Spectral curves have appeared independently in integrable systems and random matrix
theory. With Hitchin’s work, they appear at the heart of algebraic geometry [6].

Looking at the formalism of Lax (1.17), we immediately see the following: deformations
that the system of PDEs are making preserve eigenvalues of the Lax operator. This is due
to the right-hand side of the equation, which is a commutator. Because of this feature, the
soliton equation type integrable systems are studied through the unified idea of isospectral
deformation theory. The spectral curve Spec(AL) of (1.21) is therefore the fundamental
invariant of the evolution equation.

Hitchin’s perspective is to deform these spectral curves. For a pair of a vector bundle
and a curve (E,C), one can construct a pair of a spectral curve and a line bundle on it,
(π : Σ → C,L), such that E ∼= π∗L. When we move the line bundle on the Jacobian,
the construction “covers” the moduli space of vector bundles on C of a fixed topology, by
“recovering” the vector bundle as π∗L. But there is no canonical choice of Σ. Then, why
don’t we consider all possibilities?

From the point of view of (1.12) and the goal of constructing differential operators, we
now place our spectral curve in the cotangent bundle T ∗C of C as

(3.1) Σ

π !!

i // T ∗C

π
��
C.

Such a curve arrises as the spectrum of a matrix φ : E −→ E⊗KC , which Hitchin named a
Higgs field. It is a matrix of 1-forms, φ ∈ H0(C,End(E)⊗KC). The spectral curve is the
set of eigenvalues of φ, i.e.,

Σ =
{

(z, λ) ∈ T ∗C
∣∣ z ∈ C, λ ∈ T ∗zC, det

(
λI − φ(z)

)
= 0
}
.
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Notice that the infinitesimal deformation space of E is H1(C,End(E)), which is dual to the
space of Higgs fields:

(3.2) H1(C,End(E)) ∼= H0(C,End(E)⊗KC)∗.

Hitchin was naturally led to considering the moduli space of pairs (E, φ), or the Higgs
bundles, to simultaneously deal with all possible deformations of E,Σ, and L over a fixed
base curve C.

Since vector bundles on curves of genus 0 and 1 behave differently from the curves of
general type g = g(C) > 1, let us restrict ourselves to the latter case for now. We also
restrict our attention to vector bundles E of rank n with the fixed trivial determinant
det(E) ∼= OC . It is natural to restrict the endomorphism sheaf for such a bundle to be
traceless, because of the same reason of exp : sln(C) −→ SLn(C). We denote the sheaf of
traceless endomorphism by End0(E), which is a rank n2 − 1 locally free module over OC .

The Riemann-Roch formula

(3.3) dimH0(C,End0(E))− dimH1(C,End0(E)) = −(g − 1)(n2 − 1)

tells us that the expected dimension of the moduli space of vector bundles of the trivial
determinant is (g − 1)(n2 − 1). Although the identity map of E into itself is a non-trivial
endomorphism, it has a non-zero trace, hence it is not a section of End0(E). When do we
have a vector bundle with non-trivial endomorphisms? For example, E = OC(m)⊕OC(−m)
for a large m > 0 has endomorphisms because

dimH0(C,End0(E)) = dim Hom(OC(−m),OC(m)) + 1 = 2m− g + 2.

It then contributes to the dimension of the space of infinitesimal deformations of E. Al-
though these vector bundles appear as objects of the moduli stack of vector bundles with
trivial determinants, they need to be excluded from the moduli space. The slope stability
condition

(3.4)
deg(E)

rank(E)
>

deg(F )

rank(F )

for every proper vector subbundle F ⊂ E is imposed for the construction of moduli spaces
to avoid such appearances of large endomorphisms. For our case, since E has deg(E) = 0,
it cannot have any subbundles of non-negative degrees. And the moduli space SU(C, n) is
smooth at a stable vector bundle E with the tangent and cotangent spaces given by{

TESU(C, n) = H1(C,End0(E))

T ∗ESU(C, n) = H0(C,End0(E)⊗KC).

The Higgs field φ ∈ H0(C,End0(E) ⊗KC) functions as a marking of the vector bundle
E. We define an automorphism of (E, φ) to be an automorphism of E that fixes φ. Thus a
Higgs field makes the pair (E, φ) more stable. So the slope stability of E is modified for a
Higgs bundle (E, φ), requiring that (3.4) holds only for φ-invariant subbundles F , meaning
that φ maps F to F ⊗KC .

A concrete example better explains this effect. Since deg(KC) = 2g − 2, the canonical

bundle has a square root K
1
2
C . Actually, the ± sign choice redundancy exists here, so there

are
∣∣H0

(
C,Z

/
2Z
)∣∣ = 22g different choices of the square root. Any one of them is called a

spin structure of C, and it appears in Riemann’s work as a θ-characteristic. Choose a spin

structure K
1
2
C on C and define E = K

1
2
C ⊕ K

− 1
2

C . Clearly E is not a stable vector bundle.
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Since End(E) = KC ⊕OC ⊕OC ⊕K−1
C , a non-zero quadratic differential

q ∈ H0(C,K⊗2
C ) = Hom

(
K
− 1

2
C ,K

1
2
C ⊗KC

)
defines a non-trivial traceless Higgs field of E. Similarly, the identity map

1 ∈ H0(C,K−1
C ⊗KC) = Hom

(
K

1
2
C ,K

− 1
2

C ⊗KC

)
is also a traceless Higgs field of E. Adding together, we have a non-trivial traceless Higgs
field of E constructed by

(3.5) φ =

0 q

1 0

 :

 K
1
2
C
⊕

K
− 1

2
C

 −→
 K

1
2
C
⊕

K
− 1

2
C

⊗KC .

None of the subbundles K
± 1

2
C of E are invariant under this φ. Hence (E, φ) is stable. Being

a split bundle, E has a non-trivial automorphism for every choice of 1-form ω ∈ H0(C,KC),

u =
√
−1

1 ω

0 −1

 :

 K
1
2
C
⊕

K
− 1

2
C

 −→
 K

1
2
C
⊕

K
− 1

2
C

 , detu = 1.

But u does not fix φ, because u∗(φ) := u−1 ◦ φ ◦ u =

[
ω ω2 − q
−1 −ω

]
6= φ. This means u is

not an automorphism of the Higgs bundle (E, φ). We rather consider (E, φ) and (E, u∗(φ))
are isomorphic as Higgs bundles.

Let us denote by M(C,G) the moduli space of isomorphism classes of stable SLn(C)-
Higgs bundles we have been discussing. Here, G is meant to be G = SLn(C), which can be
generalized to other Lie groups. If E is itself a stable vector bundle, then (E, φ) is stable
as a Higgs bundle for any Higgs field φ. So we see that the cotangent bundle of the moduli
of stable bundles is included, as an open dense subset, in the moduli space of stable Higgs
bundles:

T ∗SU(C, n) ⊂M(C,G).

The complex symplectic structure on M(C,G) is constructed from this embedding by ana-
lyzing the codimension of the complement of T ∗SU(C, n).

Here, we note the dimension, dimCM
(
C, SLn(C)

)
= 2(g − 1)(n2 − 1). There is another

complex symplectic manifold of the same dimension, which appears to be very different
from the context of Higgs bundles. Let

Hom
(
π1(C), SLn(C)

)
denote the space of representations of the fundamental group of C into SLn(C). Slightly
modifying the homology bases (1.15), we can choose a homotopy basis for π1(C) and give
a presentation

(3.6) π1(C) =
〈
α1, α2, . . . , αg, β1, β2, . . . , βg

∣∣ [α1, β1] · [α2, β2] · · · [αg, βg] = 1
〉
,

where [α, β] = αβα−1β−1 is the multiplicative commutator.
Since every representation of the fundamental group ρ : π1(C) −→ SLn(C) is determined

by its values ai = ρ(αi) ∈ SLn(C) and bi = ρ(βi) ∈ SLn(C), and since the commutator
relation

(3.7) [a1, b1] · [a2, b2] · · · [ag, bg] = 1



38 M. MULASE

α1

β1α2

β2

starten
d

Figure 3.1. A homotopy basis for π1(C) of a curve of genus 2. [α1, β1] · [α2, β2] = 1.

is a polynomial equation with respect to the entries of the standard n× n matrix represen-
tation of SLn(C), the representation space is realized as an affine algebraic variety

Hom
(
π1(C), SLn(C)

)
=
{

(a1, b1), . . . , (ag, bg) ∈ SLn(C)2g
∣∣ [a1, b1] · · · [ag, bg] = 1

}
.

For many purposes, we identify two representations when they have the same character.
In our geometric situation, two representations ρ1 and ρ2 are identified if there is a group
element h ∈ SLn(C) so that ρ1 = h−1ρ2h. This identification induces a conjugation action
of SLn(C) on the space of representations. Thus we define the character variety of the
fundamental group of π1(C) into a complex algebraic group G as the categorical quotient

(3.8) χ
(
π1(C), G

)
= Hom

(
π1(C), G

)//
G,

understanding that the G-action on the representation space is by conjugation. The Geo-
metric Invariant Theory construction [81] of this quotient makes the character variety a
scheme of dimension 2(g − 1) dimCG, where dimCG is subtracted twice because of the
commutator relation (3.7) and the quotient of the conjugation action. This quotient is
also identified as the symplectic quotient (see the added chapter in the 3rd edition of
[81] by Kirwan), which makes the character variety a symplectic variety. For our case of
G = SLn(C), we have

dimC χ
(
π1(C), SLn(C)

)
= 2(g − 1)(n2 − 1).

It was Narasimhan and Seshadri [82] who noticed the homeomorphism

(3.9) χ
(
π1(C), SU(n)

) ∼−→ SU(C, n),

where the character variety is a real variety of dimension 2(g − 1)(n2 − 1), and SU(C, n) is
a complex variety of dimension (g − 1)(n2 − 1). Yet another space of this dimension is the
base, whose dimension is calculated via Riemann-Roch again:

(3.10) B :=

n⊕
`=2

H0
(
V,K⊗`C

)
, dimC

(
n∑
`=2

(
`(2g − 2)− (g − 1)

))
= (g − 1)(n2 − 1).

This is the space we mentioned in Section 1.2, (1.14). Now our numerology is complete:

dimR χ
(
π1(C), SU(n)

)
= 2 dimC SU(C, n) = 2 dimCB

= dimCM
(
C, SLn(C)

)
= dimC χ

(
π1(C), SLn(C)

)
= 2(g − 1)(n2 − 1).

The complexification of Narasimhan-Seshadri (3.9) has been established in its vast gener-
ality ([22, 25, 52, 89, 90, 91, 92], see also [70]). In our context, it is a curve case of the
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homeomorphism of Simpson, or non-Abelian Hodge correspondence

(3.11) χ
(
π1(C), G

)
≈M(C,G)

for a complex Lie group G. These are hyperkähler manifolds and their complex structures
differ by a hyperkähler rotation. The complex structure of the character variety has nothing
to do with the complex structure of the curve C.

Hitchin’s discovery [52] includes the algebraically completely integrable system on the
moduli space M

(
C, SLn(C)

)
of Higgs bundles through the characteristic polynomial map

to the base space B,

(3.12) µH :M
(
C, SLn(C)

)
3 (E, φ) 7−→ det(λI − φ) ∈ B.

It is a generically Abelian variety fibration, and each fiber is a complex Lagrangian of the
complex symplectic manifold M

(
C, SLn(C)

)
. Since T ∗SU(C, n) ⊂ M

(
C, SLn(C)

)
, each

cotangent space T ∗ESU(C, n) at a stable vector bundle E is also a complex Lagrangian of
M
(
C, SLn(C)

)
.

There is another complex Lagrangian, which plays a critically important role in our
current investigation. It is obtained by a particular section κ : B ↪→M

(
C, SLn(C)

)
of the

map µH . Let us review the construction of this section, called the Hitchin section, utilizing
Kostant’s principal three-dimensional subgroup (TDS) [61]. We first choose a spin structure

K
1
2
C , and take an arbitrary point q = (q2, q3, . . . , qn) ∈ B of the base B. Define three n× n

matrices in sl(n,C) by

(3.13)
X− :=

[√
si−1δi−1,j

]
ij

=


0 0 · · · 0 0√
s1 0
0

√
s2 0

...
. . .

...
0 0 · · · √sn−1 0

 , X+ := Xt
−,

H := [X+, X−],

where si := i(n− i). H is a diagonal matrix whose (i, i)-entry is si− si−1 = n− 2i+ 1, with
s0 = sr = 0. The Lie subalgebra generated by X+, X−, H is isomorphic to sl(2,C), and is
called a principal TDS of SL(r,C).

Definition 3.1. The Hitchin section is defined as the set
{(
E0, φ(q)

) ∣∣ q ∈ B
}

consisting
of Higgs bundles, with the fixed vector bundle

(3.14) E0 :=

(
K

1
2
C

)⊗H
=

n⊕
i=1

(
K

1
2
C

)⊗(n−2i+1)

=

n−1⊕
`=0

K
−n−1

2
C ⊗K⊗`C , (` = n− i)

and varying Higgs fields with parameter q:

(3.15) φ(q) := X− +
n∑
`=2

q`X
`−1
+ .

Each Higgs bundle
(
E0, φ(q)

)
as constructed is stable. The Hitchin section

κ : B 3 q 7−→
(
E0, φ(q)

)
∈M

(
C, SLn(C)

)
is a biholomorphic map from B to κ(B) ⊂M

(
C, SLn(C)

)
. The example

(
K

1
2
C ⊕K

− 1
2

C , φ

)
of (3.5) is the rank 2 case of the Hitchin section.
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3.2. Higher order linear differential operators on a curve C.

Question 3.2. What is a linear differential operator of order n ≥ 2 globally defined on a
compact smooth algebraic curve C?

If ω is a global holomorphic 1-form on C, then (d + ω)ψ = 0 is a first order linear
differential equation globally defined on C. But we have no globally defined second order
differential operator, since d2 = 0. Once again let us go back to (0.4), and consider the
second order case first:

(3.16)

(
d2

dz2
− q(z)

)
ψ(z) = 0.

We need the following:

• To find a coordinate system on the curve C that allows the expression (3.16) stays
globally the same; and
• To show that every complex structure of C admits such a coordinate system.

We consider ψ(z) of (3.16) to be a section of some unknown line bundle L with a transition

function eg(w) such that e−g(w)ψ(w) = ψ(z). The second order differential operator acts on
L and change its section into a section of K⊗2

C ⊗L. Therefore, we wish to solve the equation

(3.17)

((
d

dz

)2

− q(z)

)
ψ(z) =

(
dw

dz

)2

e−g(w)

((
d

dw

)2

− q(w)

)
ψ(w).

Here, the unknowns are the coordinate change w = w(z) as a function in z, and the function
g(w). It is natural to assume that the 0-th order term q of the differential operator satisfies
q(z)dz2 = q(w)dw2, i.e., it is a quadratic differential q ∈ K⊗2

C . With these considerations,
we can simplify (3.17) and obtain

(3.18)

(
d

dz

)2

=

(
dw

dz

)2

e−g(w)

(
d

dw

)2

eg(w)

⇐⇒ d

dz

(
dw

dz

d

dw

)
=

(
dw

dz

)2
((

d

dw

)2

+ 2gw(w)
d

dw
+ gww(w) + gw(w)2

)

⇐⇒ w′′
d

dw
= 2(w′)2gw

d

dw
+ gww + g2

w

⇐⇒

{
2gww

′ = w′′

w′

gww + g2
w = 0

⇐⇒

{
g(w)′ = 1

2(logw′)′

gww + g2
w = 0 ,

where w′ = dw
dz and gw = dg

dw . The first line of the final equations implies

e−g(w) =

√
dz

dw

because g(w) = 0 when w(z) = z. Therefore, the line bundle is L ∼= K
− 1

2
C . And the second

line, gww + g2
w = 0, after substituting gw = 1

2
w′′

(w′)2 into it, gives us exactly sz(w) = 0, where

(3.19) sz(w) :=

(
w′′(z)

w′(z)

)′
− 1

2

(
w′′(z)

w′(z)

)2

is the Schwarzian derivative. We learn from Gunning [49] that every complex structure of
C admits a projective coordinate system, and that the transition function of this coordinate
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system

(3.20) w(z) =
az + b

cz + d
,

(
a b
c d

)
∈ SL(2,C),

satisfies the equation sz(w) = 0.
The calculation of (3.18) can be extended to an operator P of order n. The comparison

of the (n− 1)-order terms in

(3.21)

(
d

dz

)n
=

(
dw

dz

)n
e−g(w)

(
d

dw

)n
eg(w)

gives (
n

2

)
(w′)n−2w′′

(
d

dw

)n−1

= n(w′)ngw

(
d

dw

)n−1

⇐⇒ g(w)′ =
n− 1

2
(logw′)′.

Hence the line bundle on which P acts is K
−n−1

2
C . And when we use the projective coordi-

nate system, from (3.20) we find dw
dz = 1

(cz+d)2
. Therefore, the transition function for the

canonical sheaf is (cz + d)2, and with a choice of a spin structure on C, we can use cz + d

as the transition function of K
1
2
C . Then (3.21) should give

(3.22)

(
d

dz

)n
=

(
dw

dz

)n
e−g(w)

(
d

dw

)n
eg(w)

⇐⇒
(
d

dz

)n
= (cz + d)−n−1

(
d

dw

)n
(cz + d)−n+1

⇐⇒
(
d

dw

)n
= (cz + d)n+1

(
d

dz

)n
(cz + d)n−1,

which is easy to check by induction on n.

The differential equation Pψ = 0 makes sense globally on C if ψ is a section ofK
−n−1

2
C , and

P changes it to a section of K⊗nC ⊗K
−n−1

2
C = K

n+1
2

C . In terms of the projective coordinates,

we start with a section ψ ∈ ⊗K−
n−1
2

C , which satisfies ψ(w) = (cz + d)−(n−1)ψ(z). Then the
third line of (3.22) gives

ψ(n)(w) :=

(
d

dw

)n
ψ(w) = (cz + d)n+1

(
d

dz

)n
(cz + d)n−1(cz + d)−(n−1)ψ(z)

= (cz + d)n+1

(
d

dz

)n
ψ(z) = (cz + d)n+1ψ(n)(z).

Thus the n-derivative ψ(n) globally makes sense as a section of K
n+1
2

C in this projective
coordinate system.

In conclusion, we have verified that a locally given n-th order differential operator P of
(0.4) can globally be extended on the curve C if we use a projective coordinate system on

C, and if P is considered to be a C-linear map P : K
−n−1

2
C −→ K

n+1
2

C .

3.3. Spectral curves and opers.

Question 3.3. An n-th oder globally defined linear differential equation Pψ = 0 on C is
equivalent to a system of n first order differential equations on every local neighborhood
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U ⊂ C. Does this equivalence globally hold? And if so, what is the condition for the system
of first order differential equations?

The opers [7, 8] give an answer. Our starting point is the local connection ∇z of (0.5).

Since ψ ∈ K−
n−1
2

C , and its n-th derivative ψ(n) ∈ K
n+1
2

C , the vector Ψ of (0.5) on which ∇z
acts is a local section of

n−1⊕
`=0

K
−n−1

2
C ⊗K⊗`C ,

which is the same as E0 of (3.14). And the matrix expression of ∇z of (0.5) exhibits a
similarity with the Higgs field φ(q) of (3.15). Here, similarity means that the connection
matrix of (0.5) and the matrix of (3.15) have the same characteristic polynomial, which
is a point of the base B. However, we learn from Atiyah [5] that there is no holomorphic
connection on this particular vector bundle E0. We need to identify the vector bundle

E such that the differential operator

(
P,K

−n−1
2

C

)
is equivalent to a connection (E,∇),

globally on C. The equivalence we want to achieve here is the obvious local equivalence
between (0.4) and (0.5). In the local expression

(3.23) P =

(
d

dz

)n
+

n∑
k=2

ak

(
d

dz

)n−k
,

the coefficients are ak ∈ H0
(
C,K⊗kC

)
. Therefore, the dimension of the space of globally

defined differential operator of order n of the shape (3.23) is equal to dimB = (g−1)(n2−1).
For the purpose of analyzing the situation, let us go back to the consideration of the

second order case (3.16) again. The operator P = (d/dz)2 + q(z) depends only on q ∈
H0
(
C,K⊗2

C

)
= B in this case. As in Section 3.2, we use local coordinates w and z connected

by a fractional linear transformation (3.20). The spin structure K
1
2
C we choose corresponds

to the transition function ξ = ξwz = cz + d.

Proposition 3.4 (Section 3.1 of [33]). Choose an element ~ ∈ H1(C,KC) ∼= C. Then the
Higgs bundle on the Hitchin section

(3.24) (E0, φ) =

(
K

1
2
C ⊕K

− 1
2

C ,

[
q

1

])
automatically selects a unique ~-connection

(
E~,∇~) on the extension bundle

(3.25) 0 −−−−→ K
1
2
C −−−−→ E~ −−−−→ K

− 1
2

C −−−−→ 0

determined by ~ ∈ Ext1
(
K
− 1

2
C ,K

1
2
C

)
. Here, the ~-connection is given by

(3.26) ∇~ = ~ d+

[
q

1

]
.

Remark 3.5. The surprise here is in the connection matrix (3.26). It is identical to the
Higgs field φ of (3.24)! But this is exactly what we wanted.

Proof. The transition function for the vector bundle E0 is

[
ξwz

ξ−1
wz

]
, and the Higgs field

φ transforms [
q(w)

1

]
dw =

[
ξwz

ξ−1
wz

] [
q(z)

1

]
dz

[
ξwz

ξ−1
wz

]−1

,
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because φ is a matrix valued 1-form. We note that dw/dz = ξ−2
wz = 1/(cz+d)2. As calculated

in [33, Section 3.1], the extension group Ext1
(
K
− 1

2
C ,K

1
2
C

)
is generated by the cohomology

class d
dz ξwz = c, which is the image of the line bundle K

1
2
C under the cohomology map

· · · −−−−→ H1
(
C,O∗C

)
−−−−→ H1

(
C,KC

)
−−−−→ · · ·

associated with the short exact sequence 0 −→ C∗ −→ O∗C −→ KC −→ 0. The extension

(3.25) is then defined by a matrix

[
ξwz ~ c

ξ−1
wz

]
, and the ~-connection ∇~ satisfies the desired

transition relation

~ d+

[
q(w)

1

]
dw =

[
ξwz ~ c

ξ−1
wz

](
~ d+

[
q(z)

1

]
dz

)[
ξwz ~ c

ξ−1
wz

]−1

.

�

The precise cancellation here makes us feel miraculous. Definitions of a few terminologies
are due here. Deligne’s ~-connection ∇~ is a linear differential operator ∇~ : E −→ E ⊗
KC [[~]] on a vector bundle E that satisfies

∇~(fs) = s⊗ ~ df + f∇~(s).

The restriction ∇~∣∣
~=0

is a Higgs field, and ∇~∣∣
~=1

is a connection in the usual sense. The

extension E~ of (3.25) comes with a natural 3-term filtration 0 ⊂ F1 ⊂ E~ that satisfies a
condition F1 ∼=

(
E~/F1

)
⊗KC . More generally, a connection (∇, E) on a vector bundle E

of rank n is an oper if there is a full length filtration

0 = Fn ⊂ Fn−1 ⊂ Fn−2 ⊂ · · · ⊂ F0 = E

that satisfies the Griffiths transversality

∇
∣∣
Fi : F i −→ F i−1 ⊗KC , i = 1, 2, . . . , n,

and the OC-module isomorphism of graded objects

∇ : F i
/
F i+1 ∼−→

(
F i−1

/
F i
)
⊗KC , i = 1, 2, . . . , n− 1,

induced by the connection ∇. The concept can be extended to the case of ~-connections.
The discovery of [33, Section 3.1] is a full generalization of Proposition 3.4 to the case of

the Hitchin section on M
(
C, SLn(C)

)
.

Theorem 3.6 ([33], Theorem 3.8, Theorem 3.10, Theorem 3.11). Let C be a smooth projec-
tive algebraic curve of genus g(C) > 1. Choose a projective coordinate system on C, and a

spin structure K
1
2
C . Consider the characteristic polynomial map (3.12) on M

(
C, SLn(C)

)
.

Recall that every point p ∈ B of the base B represents a spectral curve Σ ⊂ T ∗C. Then ev-
ery spectral curve uniquely determines an ~-family of opers

(
E~,∇~), which corresponds to

an ~-family of globally defined differential operators P ~ of order n. The semi-classical limit
of P ~ recovers the spectral curve Σ. Moreover, the map from p ∈ B to the corresponding
connection

(
E~=1,∇~=1

)
is a biholomorphic map between B and the moduli space of opers

in the character variety χ
(
π1(C), SLn(C)

)
, which is a complex Lagrangian.
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4. In search of the geometry that knows the irrationality of ζ(3)

4.1. The Mystery Formula.

(4.1)

(−1)n(n!)2
∑

`+m=n
`,m≥0

(2`+m)!(`+ 2m)!

(`!)5(m!)5

(
1 + (m− `)

(
H2`+m + 2H`+2m − 5Hm

))

=
n∑
`=0

(
n

`

)2(n+ `

`

)2

, n ≥ 0.

Apéry’s astonishing discovery of [4] announced in 1978, that proves the irrationality of a
special value ζ(3) of the Riemann zeta function, caused a huge sensation (see [95]). It
was followed by an almost immediate, and unexpected, geometric surprise [9, 10] that the
generating function of the key integer sequence An of Apéry, the second line of (4.1), solves a
Picard-Fuchs differential equation associated with a particular family of K3 surfaces. Since
last decade, there has been a renewed sensation [44, 46, 47, 68, 99] on this topic. This
time it is due to the identification that the Borel-Laplace transform of the same generating
function is identical to the generating function of the genus 0, 1-marked point, degree d ≥ 2
Gromov-Witten invariants of a Fano 3-fold described below, after adjusting the exponential
factor e5t. This is the content of the Mystery Formula (4.1).

Following [19], let us introduce the Fano 3-fold V12:

Definition 4.1 ([19], p.139. Fano 3-fold V12). We consider a rank 3 vector bundle E =
(U∗ ⊗ detU∗)⊕ detU∗ defined on the 6-simensional Grassmannian Gr(2, 5), where U is the
universal bundle. Take a generic section σ ∈ H0

(
Gr(2, 5), E) of E . The Fano 3-fold V12 is

the zero locus [σ]0 of this section. The genericness condition assures smoothness of the zero
locus.

Theorem 4.2 ([19], p.141). Let X be a non-singular model for the Fano 3-fold V12, and
−KX its anticanonical divisor. Define the anticanonical degree d ≥ 2, type (g, n) = (0, 1),
Gromov-Witten invariant of X by

(4.2) γd :=
∑

β∈H2(X,Z)
d=〈β,−KX〉

∫
M0,1(X,β)

ev∗(pt)ψd−2,

where

• M0,1(X,β) is the moduli stack of holomorphic maps f : (C,∞) −→ X from a genus
0 curve C with a marked point ∞ ∈ C to X such that the homology class of f(C) is
equal to β in H2(X,Z);
• ev :M0,1(X,β) 3 f 7−→ f(∞) ∈ X is the evaluation map;

• ev∗ : H•(X,Q) −→ H•
(
M0,1(X,β),Q) is the induced cohomology map; and

• ψ = c1(L) is the first Chern class of the tautological line bundle π : L −→M0,1(X,β)

whose fiber at f ∈M0,1(X,β) is T ∗f(∞)f(C).

Then the generating function of these type (0, 1) Gromov-Witten invariants is given by

(4.3)

GW0,1(X) :=
∞∑
d=0

γd t
d = e−5t

∞∑
n=0

(−1)nn!
∑

`+m=n
`,m≥0

(2`+m)!(`+ 2m)!

(`!)5(m!)5

×
(

1 + (m− `)
(
H2`+m + 2H`+2m − 5Hm

))
tn.
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Remark 4.3. From the expected dimension dimM0,1(X,β) = d+ 1, we normalize γ0 = 1
and γ1 = 0. Only γ2 has a direct geometric counting interpretation. The exponential factor
is chosen to assure γ1 = 0.

We recall that topological recursion for simple Hurwitz numbers and higher genus Catalan
numbers, as we have seen in earlier sections, are uniformly formulated on the corresponding
spectral curves, and the spectral curves are exactly the generating functions of the (g, n) =
(0, 1)-invariants. The role of topological recursion is to produce all (g, n) invariants from
the spectral curve through a universal recursive procedure.

From the definition (see below), the generating function of the Apéry sequence

A(t) =

∞∑
n=0

Ant
n

automatically satisfies a linear ODE with regular singular points. There is a 3-dimensional
integral expression of ζ(3) making it a period in the sense of Kontsevich-Zagier [60], which
provides an illuminating geometric understanding of Apéry’s proof. And this integration
formlula, modified with Apéry sequences, makes the direct passage toward the Gauss-Manin
connection on the K3 fibration. Right after Apéry’s discovery, it was pointed out that the
differential equation for A(t) is identified to the Picard-Fuchs differential equation associated
with a 1-dimensional family of K3 surfaces [9, 10], as mentioned above.

Now, researchers are wondering (e.g., [99]), isn’t this pair, a Fano 3-fold and a family
of K3 surfaces, a mirror symmetric pair? Our interest is in the following question, hoping
that something in the line of Section 1.1 may come up:

Question 4.4. • Does Apéry’s A(t) define a spectral curve?
• If so, does the topological recursion formulated on this spectral curve generate all

Gromov-Witten invariants of V12 for arbitrary (g, n)?
• What is its quantum curve?
• What geometry does this quantum curve tell us?
• Is the asymptotic solution to the quantum curve, considered as a Schrödinger equa-

tion, at the irregular singular point a τ -function of an integrable system, such as the
KP equations?

Nothing precise is known at this moment. The Quantum Differential Equation (see [55])
for the Fano variety V12 is identified in [19] (see below, Theorem 4.17). The quantum
curve in question is an ~-deformation family of QDE. This point relates to the work [28] on
Gaiotto conjecture [42] discussed in Section 3.

4.2. A quick review of Apéry’s ideas. Apéry proposed a recursion formula

(4.4) (n+ 1)3un+1 − (34n3 + 51n2 + 27n+ 5)un + n3un−1 = 0, n ≥ 1.

Following Apéry [4], let us define two solutions of (4.4) and their generating functions:

{An}∞n=0 , A0 = 1, A1 = 5, A(t) :=

∞∑
n=0

Ant
n, α(t) :=

∞∑
n=0

An
n!
tn,(4.5)

{Bn}∞n=0 , B0 = 0, B1 = 6, B(t) :=
∞∑
n=0

Bnt
n, β(t) :=

∞∑
n=0

Bn
n!
tn .(4.6)

The space of solutions of (4.4) has dimension 2, spanned by {An}∞n=0 and {Bn}∞n=0. First few
terms of Bn are: 0, 6, 351

4 , 62531
36 , 11424695

288 , 35441662103
36000 , 20637706271

800 , 963652602684713
1372000 , . . . . Closed
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formulas for Apéry’s sequences are established:

An =

n∑
`=0

(
n

`

)2(n+ `

`

)2

, n ≥ 0,(4.7)

Bn =
n∑
`=0

(
n

`

)2(n+ `

`

)2
(

n∑
m=1

1

m3
−
∑̀
m=1

(−1)m
1

2m3
(
n
m

)(
n+m
m

)) , n ≥ 1.(4.8)

Partial sums of ζ(3) =
∑∞

m=1
1
m3 are appearing here. Notice that {An} is a natural basis

for the space of solutions because it is unique, up to a constant multiplication, that satisfies
(4.4) for all n ≥ 0.

Re-interpreting the result of [19, 47, 99], the Mystery Formula (4.1) has a geometric
expression:

(4.9) α(t) = e5t ·GW0,1(X).

Notice that GW0,1(X) does not have a linear term in t, while A1 = 5. This requires the
adjustment of e5t in (4.9). Some of these amazing formulas are proved (relatively) easily
through differential equations established in [9, 10, 19, 47]. Direct calculations remain to
be very hard.

To see how fast the sequence determined by (4.4) grows or decreases, put un ∼ nαCn

with constants C and α. For large n, we then have

(n+ 1)3+α

n3+α
C2 −

(
34 +

51

n

)
C +

(n− 1)α

nα
∼ 0.

At n → ∞ we find C2 − 34C + 1 = 0. Define C = 17 + 12
√

2. Then the other solution of
this quadratic equation is C−1. Since C2 = 34C − 1, the sub order terms give us

3 + α

n
C2 − 51

n
C − α

n
∼ 0 =⇒ α = −51C − 3

34C − 2
= −3

2
.

Therefore, every solution of (4.4) has a growth behavior

(4.10) un ∼ const n−
3
2 C±n.

In particular, both An and Bn grow exponentially fast, ∼ n−
3
2Cn, as n → ∞. Since

the space of solutions has dimension 2, there is a unique solution, again up to a constant
multiple, that decays exponentially. This means there exists a unique constant ζ ∈ R such
that

lim
n→∞

(
Anζ −Bn

)
= 0.

Since {An} is unique up to constant multiple, and {Bn} is canonical up to constant multiple
by choosing B0 = 0 to make it linearly independent with {An}, the sequence (4.4) knows
this constant ζ.

The other surprise, the relation to the Gauss-Manin connection of [10], starts with the
integral expression

ζ(3) =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

dxdydz

1− z + xyz
.

Then it is proved that

(4.11) Anζ(3)−Bn =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

(
xyz(1− x)(1− y)(1− z)

1− z + xyz

)n dxdydz

1− z + xyz
.
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These integral expressions show that Anζ(3) − Bn is a period of [60] for every n ≥ 0, that
includes ζ(3). Since

0 <

(
xyz(1− x)(1− y)(1− z)

1− z + xyz

)n
< 1

in the domain of integration (x, y, z) ∈ (0, 1)3, we immediately see that

lim
n→∞

(
Anζ(3)−Bn

)
= 0.

The mysterious constant ζ is indeed ζ(3). We know An and Bn grow exponentially fast,
while the linear combination Anζ(3)−Bn converges to 0. It is also a solution of the recursion
(4.4). Therefore, it decreases exponentially fast!

(4.12) Anζ(3)−Bn ∼ const n−
3
2C−n =⇒

∣∣∣∣ζ(3)− Bn
An

∣∣∣∣ ∼ const C−2n, n→∞.

Let us recall a criterion for irrationality of a real number.

Lemma 4.5. A positive real number r > 0 is irrational if there is an ε > 0 such that
infinitely many relatively prime positive pairs of integers p, q satisfy

0 <

∣∣∣∣r − p

q

∣∣∣∣ < 1

q1+ε
.

This means if a real number is approximated too well by a sequence of rationals, then it
cannot be rational.

Proof. Suppose r = a/b with integers a, b > 0. Then for any pair of integers p, q > 0 such
that r 6= p/q, we have

1

q1+ε
>

∣∣∣∣r − p

q

∣∣∣∣ =

∣∣∣∣ab − p

q

∣∣∣∣ =

∣∣∣∣aq − bpbq

∣∣∣∣ ≥ 1

bq
, hence 0 < q < b1/ε.

There are only a finite number of such integers. �

To appeal to this Lemma, Apéry estimated the denominator of Bn. Let

dn := LCM [1, 2, 3, . . . , n].

He found that d3
nBn ∈ Z, which follows from (4.6). The recursion (4.4) suggests that the

denominator of a solution un starting with integral initial values u0, u1 ∈ Z is about (n!)3.
The denominator of B30 is ∼ 1.9×1033, while LCM [1, . . . , 30]3 divided by this denominator
is 6630. So the above estimate is quite accurate.

Remark 4.6. Of course what is truly astonishing is that the sequence An is an integer
sequence. Zagier [99] (see also [60]) discusses how special and rare such a phenomenon is.

Now we know that the denominator of the rational number Bn/An is estimated to be

d3
nAn ∼ n−

3
2d3
nC

n.

Does ζ(3) satisfy the criterion of Lemma 4.5? The Prime Number Theorem tells us the
following:

dn = LCM [1, 2, . . . , n] =
∏

p: prime
2≤p≤n

p

⌊
log(n)
log(p)

⌋
.

∏
p: prime
2≤p≤n

p
log(n)
log(p) =

∏
p: prime
2≤p≤n

elog(n)

= nπ(n) & n
n

log(n) = en.
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Since the asymptotic inequalities are in the opposite directions, the above estimate is crude.
However, since C = 17+12

√
2 = 33.9705 . . . is large enough compaired to e3 = 20.0855 . . . ,

we have Cn � n−
3
2d3
n for very large n. In particular, there is an ε > 0 such that∣∣∣∣ζ(3)− Bn

An

∣∣∣∣ ∼ const C−2n <
1(

n−
3
2d3
nC

n
)1+ε , n� 1.

This completes the proof of the irrationality of ζ(3). �

4.3. The differential equations behind the scene. We start with two linear differential
equations,

Pu = 0, P = D3 − t(34D3 + 51D2 + 27D + 5) + t2(D + 1)3(4.13)

Qu = 0, Q = D4 − t(34D3 + 51D2 + 27D + 5) + t2(D + 1)2,(4.14)

where D = t ddt , and t ∈ P1. To analyze these operators, let us first find solutions to the

equation Pu(t) = 0. Put u(t) =
∑∞

n=0 unt
n. Since Dtn = ntn, comparing the terms of tn+1,

we find the same 3-term recursion equation of Apéry (4.4)

(n+ 1)3un+1 − (34n3 + 51n2 + 27n+ 5)un + n3un−1 = 0, n ≥ 0.

We notice here that Pu = 0 for a formal power series implies (4.4) for all n ≥ 0, not just
n ≥ 1 as in (4.4). Therefore, a solution to (4.4) does not always give a solution of Pu = 0.
The recursion relation has two linearly independent solutions determined by the initial
values u0 and u1. The differential equation Pu = 0 imposes another condition u1 = 5u0,
hence the space of solutions of (4.13) analytic at the origin is 1-dimensional.

Thus we find that the generating functions of (4.5) and (4.6) satisfy

(4.15)

{
PA(t) = 0

Qα(t) = 0,

{
PB(t) = 6t

Qβ(t) = 6t.

We are considering this pair of differential equations to correspond to the two differential
equations (1.3) and (1.5), since the first equation has only regular singular points, while the
second one has only one irregular singular point at infinity and another regular singularity.
For these singularity analysis, it is useful to rewrite the operators in terms of the usual
expression:

P =
(
t5 − 34t4 + t3

)( d

dt

)3

+
(
6t4 − 153t3 + 3t2

)( d

dt

)2

+
(
7t3 − 112t2 + t

) d
dt

+ t2 − 5t,

Q = t4
(
d

dt

)4

+
(
− 34t4 + 6t3

)( d

dt

)3

+
(
t4 − 153t3 + 7t2

)( d

dt

)2

+
(
3t3 − 112t2 + t

) d
dt

+ t2 − 5t.

It is easy to see that Eqn.(4.14) has the unique regular singular point at t = 0, and the
unique irregular singular point at t =∞. Its solution α(t) is the unique entire solution up
to a constant factor. With a little calculation we find that Eqn.(4.13) has regular singular
points at {0, C−1, C,∞}, and no other singular points.

Problem 4.7. Find the ~-deformation family of Q, and identify the spectral curve through
the semi-classical limit of this family. This spectral curve should be our hidden curve.
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The growth order (4.10) determines the radius of convergence of A(t) and B(t), which is
C−1 = 17− 12

√
2. Both A(t), B(t) and the linear combination A(t)ζ(3)−B(t) solve

(4.16) (D − 1)Pu(t) = 0,

and the radius of convergence of A(t)ζ(3)−B(t) is C.

Theorem 4.8 ([19], p.141. Quantum Differential Equation). The generating function
GW0,1(X) of the type (0, 1) Gromov-Witten invariants of X, a smooth model of Fano 3-fold
V12, atisfies a Quantum Differential Equation.

The state-of-the-art result [47, 99] tells us that

GW0,1(X) = e−5t α(t),

and hence the Quantum Differential Equation is

(4.17)
(
e−5t ◦Q ◦ e5t

)
GW0,1(X) = 0.

If the correspondence between opers and spectral curves work for irregular singular dif-
ferential operators, then e−5t ◦Q ◦ e5t should have a canonical ~-deformation family, and its
semi-classical limit should be the spectral curve corresponding to A(t).

Summing up the integral expression (4.11) with tn for all n ≥ 0, we obtain

(4.18)

A(t)ζ(3)−B(t) =
1

2

∫ 1

0

∫ 1

0

∫ 1

0

∞∑
n=0

(
xyz(1− x)(1− y)(1− z)

1− z + xyz

)n
tn

dxdydz

1− z + xyz

=
1

2

∫ 1

0

∫ 1

0

∫ 1

0

dxdydz

1− z + xyz − txyz(1− x)(1− y)(1− z)
.

Beukers and Peters [10] considered the family of algebraic varieties defined in C3 by the
equation

1− z + xyz − txyz(1− x)(1− y)(1− z) = 0

as a parameter t ∈ P1 moves. They noticed that this is a family of K3 surfaces in P3

after projectivize the formula and blow-up all singularities. The family degenerates at
t ∈ {0, C, C−1,∞}.

5. Concluding Remark

Our observation is that the generating function of all g = 0, n = 1 invariants for a partic-
ular counting problem, such as Catalan numbers or tree counts as discussed earlier, deter-
mines a spectral curve. In terms of complex analysis over the spectral curve, we can generate
all (g, n) invariants through a recursive mechanism. The (0, 1) invariants themselves satisfy
a recursion, which is used to determine the analytic formula for the spectral curve. And in
terms of the rightly chosen coordinate of the spectral curve, the generating functions of the
(g, n) invariants turn out to be polynomials. The asymptotic behavior of these polynomials
then recover the Witten-Kontsevich formula, Virasoro constraint conditions, and particular
counting problems including the λg-formula and the Euler characteristic of Mg,n.

The fact that such mechanism exists makes the starting counting problem very special.
The method presented in these lectures are not meant to be a subject for generalization.
Rather, it tells us how special these problems are, and this explains why they have deep
connections with integrable systems, representation of Virasoro algebras, moduli spaces of
algebraic curves, and so on.

Apéry’s recursions are in the sense extremely special. Again, they are not a subject
for generalization. We are led to wondering how and why they are so special. Once we
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understand these, we may be able to transplant the geometric situation to other equally
special cases, and may obtain a new arithmetic result.

The Apéry recursions for ζ(2) and ζ(3) are indeed recursions for the (0, 1) case of Gromov-
Witten invariants of very special target manifolds. As such, the geometric origin of these
recursions come from degenerations of rational curves on these particular target spaces. In
this way we understand the origin of the Apéry recursions from symplectic geometry. Its
mirror partner is the Gauss-Manin connection found in this context, which generate infinite
sequence of periods. The speed of the asymptotic behavior of these sequences translates
into the irrationality of ζ(2) and ζ(3).

It reminds us of the new proof of the Lawrence conjecture [62] due to Habiro, on the
integrality of certain 3-manifold invariants over the ring generated by a root of unity using
his powerful universal invariants [50]. When considered for more general link invariants,
one understands the amazing symplectic nature of the counting problem (see for example,
[3]). The role that the universal invariants play, in particular, in the context of arithmeticity
[45], suggests the parallel mirror symmetric point of view in these developments.

Periods

**uu

Symplectic Counting Mirror Symmetryoo // Connections on Families
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Appendix A. The Lagrange Inversion Formula

In Appendix we give a brief proof of the Lagrange Inversion Formula. For more detail,
we refer to [97].

Theorem A.1. Let x = f(y) be a holomorphic function in y defined on a neighborhood of
y = b. Let f(b) = a, and suppose f ′(b) 6= 0. Then the inverse function y = y(x) is given by
the following expansion near x = a:

(A.1) y − b =

∞∑
k=1

dk−1

dyk−1

(
y − b

f(y)− a

)k∣∣∣∣∣
y=b

(x− a)k

k!
.

Proof. Let us recall the Cauchy integration formula

φ(s) =
1

2πi

∮
φ(t)dt

t− s
,

where φ(t) is a holomorphic function defined on a neighborhood of t = s, and the integration
contour is a small simple loop inside this neighborhood counterclockwisely rotating around
the point s. Since x = f(y) is one-to-one near y = b, for a point s close to b, we have

1

f ′(s)
=

1

f ′
(
f−1(f(s)

)
=

1

2πi

∮
df(t)

f ′
(
f−1(f(t)

)(
f(t)− f(s)

)
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=
1

2πi

∮
f ′(t)dt

f ′(t)
(
f(t)− f(s)

)
=

1

2πi

∮
dt

f(t)− f(s)
.

Therefore, assuming that s is close enough to b, we compute

y − b =

∫ y

b
1 · ds =

∫ y

b

(
1

2πi

∮
f ′(s)dt

f(t)− f(s)

)
ds

=

∫ y

b

(
1

2πi

∮
f ′(s)dt(

f(t)− a
)
−
(
f(s)− a

)) ds
=

1

2πi

∫ y

b

∮ f ′(s)
f(t)−a

1− f(s)−a
f(t)−a

dtds

=
1

2πi

∫ y

b

∞∑
n=0

∮
f ′(s)

f(t)− a

(
f(s)− a
f(t)− a

)n
dsdt

=
1

2πi

∫ f(y)

f(b)

∞∑
n=0

∮
1

f(t)− a

(
f(s)− a
f(t)− a

)n
df(s)dt

=
1

2πi

∞∑
n=0

∮
1(

f(t)− a
)n+1 ·

(
f(y)− a

)n+1

n+ 1
dt

=
1

2πi

∞∑
k=1

∮
dt(

f(t)− a
)k · (x− a)k

k

=
1

2πi

∞∑
k=1

∮
1

(y − b)k

(
y − b

f(y)− a

)k
dy · (x− a)k

k

=
∞∑
k=1

dk−1

dyk−1

(
y − b

f(y)− a

)k∣∣∣∣∣
y=b

· (x− a)k

k(k − 1)!
.

�

The following formula is a straightforward application of the above Lagrange Inversion
Theorem.

Corollary A.2. Let f(y) be a holomorphic function defined in a neighborhood of y = 0. If
f(0) 6= 0, then the inverse function of

x =
y

f(y)

is given by

(A.2) y =

∞∑
k=1

dk−1

dyk−1

(
f(y)

)k∣∣∣∣
y=0

xk

k!
.
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