
GRAPHICAL EXPANSION OF NON-COMMUTATIVE MATRIX INTEGRALS

MOTOHICO MULASE

1. Yesterday we learned about many great achievements of Professor Harold Widom from
the speakers of the conference. I believe it is fair to say Harold has been someone like King
Midas throughout his mathematical career: the only difference is that whatever he touched
did not change to gold; they turned into papers, truly monumental papers.

The impact of Random Matrix Theory is felt in every corner of mathematics. It is my
pleasure to report to you today about such an impact in finite group theory. Using ideas
from RMT, one can obtain a very simple and beautiful formula in finite group theory.

Of course there are extremely deep works on symmetric groups in the context of RMT,
due to many of you in the audience. What I’d like to discuss today is not directly related
these works. Rather, I would like to talk about a theorem that is applicable to all finite
groups.

This talk is based on my recent collaborations with Michael Penkava, Andrew Waldron,
and Josephine Yu.

2. Let me begin with reviewing some classical formulas in finite group theory. So let G be
a finite group, and Ĝ the set of all complex irreducible representations of G. Then we have∑

λ∈Ĝ

(dim λ)2 = |G|

∑
λ∈Ĝ

(dim λ)0 = |Conj| ,

where Conj denotes the set of conjugacy classes of G. Since we are considering the power
sums of the dimensions of irreducible representations, we may ask what we get when the
power is one. There is no general formula for that, but if a group is special such as a
symmetric group Sn, then we have∑

λ∈Ĝ

(dim λ)1 = |Inv|,

where Inv is the set of involutions of G. Now we have powers 0, 1, and 2 appearing, why
don’t we consider more general powers?

Before going on, we need a little more analysis of the set Ĝ to modify the third formula
to make it applicable for all finite groups. We classify complex representations into three
categories

Ĝ = Ĝ1 ∪ Ĝ2 ∪ Ĝ4 .
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I believe the RMT community would not ask why I used 4 for the third one. They are
defined by

Ĝ1 =
{

λ ∈ Ĝ

∣∣∣∣ 1
|G|

∑
γ∈G

χλ(γ2) = 1
}

= GOE

Ĝ2 =
{

λ ∈ Ĝ

∣∣∣∣ 1
|G|

∑
γ∈G

χλ(γ2) = 0
}

= GUE

Ĝ4 =
{

λ ∈ Ĝ

∣∣∣∣ 1
|G|

∑
γ∈G

χλ(γ2) = −1
}

= GSE .

We recall that every irreducible representation of G is naturally unitary. If it happens to
be real orthogonal, then it belongs to Ĝ1. If a representation has a G-invariant symplectic
structure, then it is in Ĝ4. Otherwise, it belongs to Ĝ2. Now the third formula becomes
completely general: ∑

λ∈Ĝ1

(dim λ)1 −
∑

λ∈Ĝ4

(dim λ)1 = |Inv|,

which is true for every finite group G. From RMT, we can deduce the following:

Theorem 1 (math.QA/0209008). Let S be a compact surface without boundary.
(1) If S is orientable, then∑

λ∈Ĝ

(dim λ)χ(S) = |G|χ(S)−1|Hom(π1(S), G)| .

(2) If S is non-orientable, then∑
λ∈Ĝ1

(dim λ)χ(S) +
∑

λ∈Ĝ4

(−dim λ)χ(S) = |G|χ(S)−1|Hom(π1(S), G)| ,

where χ(S) is the Euler characteristic of S.

First remark I should make here is that the first formula for the orientable case is es-
sentially due to Burnside (1911). I thank Professor Andrei Okounkov for this information.
(According to him, Burnside attributes the formula to Frobenius.) In our time, Freed-Quinn
(CMP 1993) rediscovered the first formula by using Chern-Simons gauge theory with G as
the gauge group. Actually, my talk can be thought of as a mathematical explanation of
the recently discovered relation between Chern-Simons gauge theory and RMT. It has to
be emphasized, however, that our RMT method works equally well for both orientable and
non-orientable surfaces.

From Theorem 1, we can recover the classical formulas I mentioned earlier. For example,
if we take S to be a 2-dimensional sphere, then χ(S) = 2 and π1(S) = 1, and the first
classical formula for the order of the group is recovered. If we chose a real projective plane
S = RP 2 for our surface, then χ(S) = 1 and π1(S) = {±1}, and the homomorphism counts
involutions of G. Thus the formula for |Inv| is obtained. Finally, if we take a real 2-torus
S = T 2, then it is an easy exercise to show

|Hom(Z2, G)| = |G| · |Conj| ,

and hence the second classical formula is recovered.
The key of our generalization of the classical formulas is to identify the power of dim λ

as the Euler characteristic of a surface, and replace the right hand side with the number of
homomorphisms from the fundamental group of the surface into the group G.
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It has to be also remarked that Theorem 1 has a rather simple algebraic proof (see our
paper cited above). But we are led to the formula through RMT first, and discovered
the simple proof only after formulas are established. RMT also provides the reason why
irreducible representations of a finite group has something to do with surface geometry. We
note that G and S have no relation what so ever!

3. Now let me turn to the subject appeared in the title of this talk. We need three formulas
for graphical expansion of matrix integrals, one each for GOE, GUE and GSE.

A GUE formula is essentially due to Bessis-Itzykson-Zuber 1980:

log
∫
HN,C

e−
1
2
NtrX2

e
N

∑
j

tj
j

trXj

dµ(X) =
∑

Γ connected
Ribbon graph

1
|AutRΓ|

N
χ(SΓ)

∏
j

t
vj(Γ)
j ,

where HN,C denotes the space of hermitian matrices of size N , and e−
N
2

trX2
dµ(X) the

normalized probability measure on HN,C = RN2
. A ribbon graph is a graph with a cyclic

order assigned to each vertex.

Figure 1. A vertex with a cyclic order given to incident half-edges can be placed
on an oriented plane. An oriented cross road emerges.

Equivalently, it is a graph Γ that is drawn on a closed oriented surface S such that the
complement S \Γ is the disjoint union of open disks. We use f(Γ) to denote the number of
these disks (or faces), and vj(Γ) the number of j-valent vertices of Γ. Let

v(Γ) =
∑

j

vj(Γ) and e(Γ) =
1
2

∑
j

jvj(Γ)

be the number of vertices and edges of Γ, respectively. Then the genus g(S) of the surface
S is given by the formula for the Euler characteristic

χ(S) = 2− 2g(S) = v(Γ)− e(Γ) + f(Γ).

The automorphism group AutR(Γ) of a ribbon graph Γ consists of automorphisms of the
cell-decomposition of S that is determined by the graph.
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Figure 2. A ribbon graph is obtained by connecting cyclically ordered vertices
with a ribbon like edge preserving the orientation.
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There is a similar formula for GOE, due to many researchers such as Brézin-Itzykson-
Parisi-Zuber 1978 and Goulden-Harer-Jackson 2001:

log
∫
HN,R

e−
1
4
NtrX2

e
N
2

∑
j

tj
j

trXj

dµ(X) =
∑

Γ connected
Möbius graph

1
|AutΓ|

N
χ(SΓ)

∏
j

t
vj(Γ)
j ,

where what we call a Möbius graph is a graph drawn on a closed surface, orientable or
non-orientable, defining a cell-decomposition of the surface. Its automorphism is an auto-
morphism of the cell-decomposition of the surface that is determined by the graph, but this
time we allow orientation-reversing automorphisms.

Every compact non-orientable surface without boundary is obtained by removing k dis-
joint disks from a sphere S2 and glue k cross-caps back into the holes. The number of
cross-caps is called the cross-cap genus of the non-orientable surface. If SΓ is non-orientable,
then its cross-cap genus k is determined by

χ(SΓ) = 2− k = v(Γ)− e(Γ) + f(Γ) ,

where again by f(Γ) we denote the number of disjoint open disks in SΓ \ Γ.
The space HN,R of N × N real symmetric matrices is a real vector space of dimension

N(N + 1)/2, and dµ(X) is the normalized Lebesgue measure of this space. We note that
the coefficients of the integral in GOE case are different from GUE case, reflecting the fact
that a dihedral group naturally acts on a vertex of a Möbius graph.

Figure 3. A Möbius graph.

A corresponding formula for GSE is only recently discovered in math-ph/0206011:

log
∫
HN,H

eNtrX2
e
2N

∑
j

tj
j

trXjdµ(X) =
∑

Γ connected
Möbius graph

1
|AutΓ|

(−2N)χ(SΓ)
∏
j

t
vj(Γ)
j ,

where HN,H is the space of N ×N quaternionic self-adjoint matrices. We pay a particular
attention to the negative sign in RHS of the formula and the factor 2N . This negative sign
is responsible for the negative sign appearing in the second formula of our main theorem.

4. Now we ask a question: Why do we obtain graphs drawn on a surface rather than
arbitrary graphs?

The cyclic order of a graph in the Feynman diagram expansions we have seen above has
its origin in the cyclic invariance of the trace:

tr(X1X2X3 · · ·Xn−1Xn) = tr(X2X3 · · ·Xn−1XnX1) .

For a Möbius graph, we identify two graphs if one is obtained from the other by flipping
a vertex and twist every incident edge (see Figure 4). This equivalence has its source in
another identity of the trace of a product of matrices

tr(X1X2X3 · · ·Xn−1Xn) = tr(X∗
nX∗

n−1 · · ·X∗
3X∗

2X∗
1 ) .
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Figure 4. Flipping a vertex at the same time twisting all incident edges produces
the same Möbius graph.

Therefore, in order to have a ribbon or a Möbius graph, all we need is an algebra with
a ∗-operation and a trace. So let us consider a finite-dimensional von Neumann algebra A
together with a linear map called trace

〈 〉 : A −→ C

satisfying 

(ab)∗ = b∗a∗

〈1〉 = 1
〈a∗〉 = 〈a〉
〈ab〉 = 〈ba〉
〈aa∗〉 > 0 for a 6= 0.

We denote by
HA = {x ∈ A | x = x∗}

the real vector subspace consisting of self-adjoint elements. We can also consider a real von
Neumann algebra that is defined over R as an algebra with a real valued trace. Then we
can consider an integral

log
∫
HA

e−
1
2
〈x2〉e

∑ tj
j
〈xj〉

dµ(x) ,

where dµ(x) is a translational invariant Lebesgue measure on A that is also invariant under
the linear transformations that preserve the hermitian inner product of A define by

〈x, y〉 = 〈xy∗〉 .

If we apply Feynman diagram expansion to this integral, then the asymptotic series of the
integral is a sum over all connected ribbon or Möbius graphs, depending on whether A is a
real or a complex algebra.

Question: Does the above integral (without log) give a τ -function solution to the KP
equation in the case of a complex von Neumann algebra, and a solution to the counterpart
of the KP equation for the Pfaff Lattice equation of Adler-van Moerbeke in the case of real
von Neumann algebra?

We know that if A is a simple algebra, i.e., a full matrix algebra over R, C, or H, then
the answer is yes. Most likely the KP equation or its counterpart equation implies the
simplicity of A.

5. As a typical example for our algebra, let us take the complex group algebra A = C[G]
of a finite group G. We define the ∗-operation by

∗ : C[G] 3 x =
∑
γ∈G

xγ · γ 7−→ x∗ =
∑
γ∈G

xγ · γ−1 ∈ C[G] .
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As the trace, we use the character of the regular representation χreg, by linearly extending
to the whole group algebra:

〈 〉 =
1
|G|

χreg .

Let HC[G] denote the real vector subspace of C[G] consisting of self-adjoint elements. We
have a natural Lebesque measure on HC[G] = R|G|. Now we have

Theorem 2 (math.QA/0209008).

log
∫
HC[G]

exp
(
−1

2
χreg(x2)

)
exp

∑
j

tj
j

χreg(xj)

 dµ(x)

=
∑

Γ: connected
ribbon graph

1
|AutRΓ|

|G|χ(SΓ)−1|Hom(π1(SΓ), G)|
∏
j

t
vj(Γ)
j ,

where SΓ is the oriented surface determined by a ribbon graph Γ.

The application of Feynman diagram expansion gives a sum over connected ribbon graphs
whose half-edges are labeled by group elements. The integral is evaluated to be∑

Γ ribbon graph

1
|AutRΓ|

µΓ(G)
∏
j

t
vj(Γ)
j ,

where µΓ(G) is the number of configurations of assigining group elements to each half-edge
of a ribbon graph Γ subject to

Condition 1. If half-edges E+ and E− form an edge E of Γ and a group element w is
assigned to E+, then w−1 is assigned to E−;
Condition 2. At every vertex, the product of all group elements assigned to half-edges
incident to the vertex according to the cyclic order of the vertex is equal to 1.

The second condition comes from the fact that

〈w1w2 · · ·wj〉 =

{
1 w1w2 · · ·wj = 1
0 oherwise

that appears as a j-valent vertex of a graph.

Lemma 3. The quantity µΓ(G) is a topological invariant of a compact oriented surface with
a fixed number of marked points (or the faces of its cell-decomposition).

Proof. This follows from the invariance of µΓ(G) under an edge contraction and edge inser-
tion. When an edge that is not a loop is contracted, the configuration of group elements on
the new graph still satisfies Conditions 1 and 2. If the edge is inserted back, then we know
exactly what group element has to be assigned to each half-edge, due to Condition 2. This
proves the lemma. �

Since the graph contribution is a topological invariant for every genus and the number
of faces of a ribbon graph, we can use a standard graph for each topology to calculate
the number µΓ(G), provided that the space of graphs with the same topological type is
connected under contraction and expansion. It is known that this is the case indeed. So
if we use Figure 5 as our standard graph Γ, then we immediately see that the number of
configurations of assignments of group elements on this graph is

|G|f(Γ)−1|Hom(π1(SΓ), G)| ,
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Figure 5. A standard graph for a closed oriented surface of genus g with f marked
points, or faces. It has f − 1 tadpoles in the left and g bi-petal flowers in the right.

where the tadpoles of the graph have contribution |G|f(Γ)−1 in the computation. Since we
used the character of the regular representation itself instead of the normalized trace, the
power of |G| in Theorem 2 becomes χ(SΓ).

Note that we have a ∗-algebra isomorphism

C[G] ∼=
⊕
λ∈Ĝ

End(Vλ) .

For G = Sn, this decomposition is the RSK correspondence. The character of the regular
representation also decomposes into the sum of irreducible characters:

χreg =
∑
λ∈Ĝ

(dim Vλ)χλ =
∑
λ∈Ĝ

Nλ trVλ
,

where Nλ = dim λ and χλ is its character. Therefore,

log
∫
HC[G]

exp
(
−1

2
χreg(x2)

)
exp

∑
j

tj
j

χreg(xj)

 dµ(x)

= log
∫
HC[G]

∏
λ∈Ĝ

exp
(
−Nλ

2
trVλ

(x2)
)

exp

Nλ

∑
j

tj
j

trVλ
(xj)

 dµλ(x)

=
∑
λ∈Ĝ

log
∫
HNλ,C

exp
(
−Nλ

2
trVλ

(x2)
)

exp

Nλ

∑
j

tj
j

trVλ
(xj)

 dµλ(x)

=
∑

Γ: connected
ribbon graph

1
|AutRΓ|

∑
λ∈Ĝ

(dim Vλ)χ(SΓ)
∏
j

t
vj(Γ)
j ,

where dµλ is the normalized Lebesque measure on the space of Nλ×Nλ hermitian matrices.
Comparing the two expressions of the integral, we obtain the first formula of Theorem 1.

6. For the non-orientable case, we use an integral over the real group algebra R[G], which
is a real ∗-algebra with χreg as a trace function.

Theorem 4.

log
∫
HR[G]

e−
1
4
χreg(x2)e

1
2

∑
j

tj
j
χreg(xj)

dµ(x)

=
∑

Γ connected
Möbius graph

1
|AutΓ|

|G|χ(SΓ)−1|Hom(π1(SΓ), G)|
∏
j

t
vj(Γ)
j ,
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where the integral is taken over the space of self-adjoint elements of R[G], and SΓ is the
orientable or non-orientable surface determined by a Möbius graph Γ.

Recall that the real group algebra R[G] decomposes into simple factors according to the
three types of irreducible representations Ĝ1, Ĝ2, and Ĝ4. The complex conjugation acts
on the set Ĝ2 without fixed points. Let Ĝ2+ denote a half of Ĝ2 such that

Ĝ2+ ∪ Ĝ2+ = Ĝ2 .

We have a ∗-algebra isomorphism

R[G] ∼=
⊕
λ∈Ĝ1

M(dim λ, R)⊕
⊕

λ∈Ĝ2+

M(dim λ, C)⊕
⊕
λ∈Ĝ4

M(dim λ/2, H) .

The algebra decomposition gives a formula for the character of the regular representation
on R[G]:

χreg =
∑

λ∈Ĝ1

(dim λ)χλ +
∑

λ∈Ĝ2+

(dim λ)(χλ + χλ) +
∑

λ∈Ĝ4

2(dim λ) · traceH ,

where in the last term the character is given as the trace of quaternionic (dim λ)/2 ×
(dim λ)/2 matrices.

The computation of the matrix integral of each factor then establishes the second formula
of Theorem 1. Note that the Ĝ2 component has no contribution in that formula. This is
due to the fact that the graphical expansion of a complex hermitian matrix integral contains
only oriented ribbon graphs.

7. What one can do for a finite group can be usually extended to a compact group. The
counting of Hom(π1(S), G) is replaced by the volume of the moduli space of flat G-bundles
on a Riemann surface S when S is oriented. For example, the case of G = SU(2) should
reproduce Witten’s result that the volume of the moduli space of flat SU(2)-bundles on a
Riemann surface of genus g is given by ζ(2g − 2).

What is truly surprising is that if we consider the non-orientable case, then odd values of
the Riemann zeta function appear. The geometric object is a real algebraic curve S̃, which
is obtained by doubling a non-orientable surface S. The representation of π1(S) defines a
flat G-bundle on S, which lifts to S̃. The cross-cap genus k(S) of S and the genus g(S̃) of
the real algebraic curve S̃ are related by

g(S̃) = k(S)− 1 .

Since a complex irreducible representation of SU(2) is real if the dimension is odd and
quaternionic if the dimension is even, we expect that the volume of the moduli space of flat
SU(2)-bundles with real structure on a real algebraic curve of genus g is given by

∞∑
m=1

(2m− 1)χ(S) +
∞∑

m=1

(−2m)χ(S) = (1− (1 + (−1)g)21−g)ζ(g − 1) .

For both orientable and non-orientable cases, the formulas do not make sense for small
genera. Of course our integration method does not work for L2(G) in a straightforward
way, but Peter-Weyl theorem provides a definition of the integral and the decomposition of
the regular representation. These subjects will be reported elsewhere.

As a conclusion, I’d like to mention two things. First, integration over a von Neumann
algebra should be further investigated. We have considered only a few simple cases in this
talk, yet we have encountered some very interesting results.

Secondly, we have seen that consideration of non-orientable surfaces, or real algebraic
curves, is of extreme importance. The second formula of Theorem 1 is an evidence.
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I would be very pleased if this talk convinced you how wonderful the ideas from matrix
integrals are in such remote areas as finite group theory and geometry of surfaces.

Department of Mathematics, University of California, Davis, CA 95616–8633
E-mail address: mulase@math.ucdavis.edu


