Exercise 1. Suppose that $n = p^e$ is a prime power, and we are given a with $(a, p) = 1$. Show that Miller’s primality test for the base a is no more effective than simply evaluating whether or not $a^{n-1} \equiv 1 \pmod{n}$ (in the book’s terminology, this is saying that if n is a pseudoprime for the base a, then in fact n is a strong pseudoprime for the base a).

Exercise 2. Do Exercise 2 of Section 4.6 of the textbook.

Exercise 3. Do Exercise 26 of Section 6.1 of the textbook.

Exercise 4. Let n be an odd composite integer, and let c be a multiple of $\phi(n)$. We show that a random choice of base a has a reasonably high chance of factoring n using Miller’s factorization algorithm.

Suppose that p, q are primes dividing n. Write $p - 1 = 2^i \cdot s$ and $q - 1 = 2^j \cdot t$, with s, t odd, and suppose without loss of generality that $i \leq j$. Show that if a is any integer with $(a, n) = 1$ such that a is a perfect square modulo p but is not a perfect square modulo q, then Miller factorization algorithm will find a nontrivial factor of n when the base a is used.

Exercise 5. Do Exercise 4 of Section 3.6 of the textbook.