This summarizes some of the main definitions, results and algorithms from class leading up to and following from the fundamental theorem of arithmetic. This is in no way a comprehensive list of everything you need to know, but is intended to help you review and organize your knowledge. They are ordered according to when we covered them in lecture.

Definitions

Definition 1. Given integers \(a, b \), we say \(a \) divides \(b \), or that \(a \) is a divisor of \(b \), and write \(a \mid b \), if there exists an integer \(q \) such that \(b = q \cdot a \).

Definition 2. An integer \(a > 1 \) is prime if its only positive integer divisors are 1 and itself.

Definition 3. Given \(a, b \in \mathbb{Z} \) not both zero, the greatest common divisor of \(a \) and \(b \), written \((a, b) \) or \(\gcd(a, b) \), is the greatest integer which divides both \(a \) and \(b \). By convention, we set \((0, 0) = 0\). We say that \(a \) and \(b \) are relatively prime if \((a, b) = 1\).

Definition 4. Given \(n \geq 2 \), and \(a_1, \ldots, a_n \in \mathbb{Z} \) not all zero, the greatest common divisor of \(a_1, \ldots, a_n \), denoted \((a_1, \ldots, a_n)\), is the greatest integer which divides all of the \(a_i \). By convention, we set \((0, \ldots, 0) = 0\). We say \(a_1, \ldots, a_n \) are mutually relatively prime if \((a_1, \ldots, a_n) = 1\).

Results

Theorem 5. There are infinitely many prime numbers.

Proposition 6. Every integer greater than 1 has a factorization as a product of primes.

Theorem 7 (The division “algorithm”). Given \(a, b \in \mathbb{Z} \) with \(b \neq 0 \), there exist unique \(q, r \in \mathbb{Z} \) such that \(a = bq + r \), and \(0 \leq r < |b| \).

Theorem 8. For any integers \(a, b \), if \(d = (a, b) \), then there exist \(x, y \in \mathbb{Z} \) such that \(d = ax + by \).

In particular, if \(d' \) is any common divisor of \(a \) and \(b \), then \(d' \) also divides \(d \).

Corollary 9. Given \(a, b, c \in \mathbb{Z} \), the equation \(ax + by = c \) has integer solutions if and only if \((a, b) \mid c\).

Corollary 10. If \(p \) is a prime number, then given \(n \in \mathbb{P} \) and \(a_1, \ldots, a_n \in \mathbb{Z} \), if \(p \mid (a_1 \cdots a_n) \), then \(p \mid a_i \) for some \(i \).

Theorem 11 (Fundamental Theorem of Arithmetic). Let \(a > 1 \) be an integer. Then there is a factorization \(a = p_1 \cdots p_n \) of \(a \) as a product of primes (where the \(p_i \) are not necessarily distinct), and this factorization is unique up to reordering.

Corollary 12. Suppose that \(\alpha \) is a zero of a polynomial of the form \(x^d + c_{d-1}x^{d-1} + \cdots + c_1x + c_0 \), where \(c_i \in \mathbb{Z} \) for all \(i \), and suppose also that \(\alpha \) is a rational number. Then \(\alpha \) is an integer.
Proposition 13. Given \(a, b, c \in \mathbb{Z}\), suppose that the equation
\[ax + by = c\]
has a solution with \(x, y \in \mathbb{Z}\). Then it has infinitely many such solutions. More specifically, if \(x_0, y_0\) is any fixed solution, then every solution can be written in the form \(x = x_0 + (b/d)q, y = y_0 - (a/d)q\), where \(d = (a, b)\), and \(q \in \mathbb{Z}\).

Corollary 14. Given \(a, b, c \in \mathbb{Z}\), suppose that the equation
\[ax + by = c\]
has a solution with \(x, y \in \mathbb{Z}\). If \(a, b > 0\), then there are at most finitely many solutions with \(x, y \geq 0\). If \(x_0, y_0\) is any fixed solution, then the nonnegative solutions are of the form \(x = x_0 + (b/d)q, y = y_0 - (a/d)q\), with \(d = (a, b)\), and
\[-(d/b)x_0 \leq q \leq (d/a)y_0.\]

Theorem 15. Given \(a_1, \ldots, a_n, b \in \mathbb{Z}\):
(i) the solutions to the equation
\[a_1x_1 + \cdots + a_nx_n = b\]
with all the \(x_i \in \mathbb{Z}\) are the same as the solutions to the two equations
\[a_1x_1 + \cdots + a_{n-2}x_{n-2} + (a_{n-1}, a_n)w = b\]
and
\[a_{n-1}x_{n-1} + a_nx_n = (a_{n-1}, a_n)w,\]
where \(w\) is also allowed to vary in \(\mathbb{Z}\);
(ii) the equation (1) has solutions if and only if
\[(a_1, \ldots, a_n)|b,\]
and in this case, it has infinitely many solutions;
(iii) if all the \(a_i\) and \(b\) are positive, then (1) has at most finitely many solutions with all the \(x_i\) nonnegative.

Algorithms

Algorithm 16 (Euclidean algorithm). Given nonzero integers \(a, b\), set \(r_0 = a, r_1 = b\) and for \(i \geq 2\), as long as \(r_{i-1} \neq 0\), let \(r_i\) be the remainder when dividing \(r_{i-2}\) by \(r_{i-1}\). Let \(n\) be maximal with \(r_n \neq 0\), and set \(d = r_n\). Then \(d = (a, b)\).

Algorithm 17 (Extended Euclidean algorithm). Given \(a, b\), let \(q_i\) be the quotient arising in the \(i\)th step of the algorithm, so that \(r_{i-1} = r_iq_i + r_{i+1}\). Then we can find \(x, y\) with
\[ax + by = d\]
as follows: let \(s_0 = 1, s_1 = 0, t_0 = 0, t_1 = 1\), and then for \(i > 1\) let
\[s_i = s_{i-2} - q_{i-1}s_{i-1}, \text{ and } t_i = t_{i-2} - q_{i-1}t_{i-1}.\]
Then
\[(a, b) = s_na + t_nb.\]

Algorithm 18 (Trial division). Given an integer \(a > 1\):
(I) Let \(S = \{p_1 < \cdots < p_n\}\) be the primes less than or equal to \(\sqrt{a}\).
(II) Let \(i = 1\), and \(b = a\).
(III) divide \(p_i\) into \(b\) as many times as possible, and let \(e_i\) be the largest integer such that \(p_i^{e_i}|b\)
(so that \(e_i > 0\) if and only if \(p_i|b\).
(IV) If $e_i > 0$, replace b by $b/p_i^{e_i}$, update S by removing any primes larger than the new value of \sqrt{b}.

(V) If p_{i+1} is still in S, increase i and return to step (III). Otherwise, stop.

If n' is the final number of primes tested, the prime factorization of a is
$$p_1^{e_1} \cdots p_{n'}^{e_{n'}} \cdot a/(p_1^{e_1} \cdots p_{n'}^{e_{n'}}).$$

Algorithm 19 (Sieve of Eratosthenes). Given an integer $a > 1$, to find all primes less than or equal to a:

(I) start by writing all integers greater than 1 and less than or equal to a.

(II) Let b be the smallest number in the list (2, to start with).

(III) b is prime. Go over the list, removing all multiples of b.

(IV) If the next entry on the list is not bigger than \sqrt{a}, replace b by it, and return to step (III). Otherwise, stop. The remaining numbers are the primes.