Exercise 1. Given integers a, b, c with $a < b$ and $c < 0$, show the following:

(a) $a + c < b + c$
(b) $a^2 \geq 0$
(c) $ac > bc$
(d) $c^3 < 0$

Exercise 2. Prove by induction that $2^n < n!$ for all $n \geq 4$.

Exercise 3. Find the mistake in the following proof by induction, which shows that all horses are the same color. More specifically, it shows that for every positive integer n, in any group of n horses, all the horses have the same color. The base case is $n = 1$, which is obvious. Now, suppose we know the statement for groups of size n, and we have a group of $n + 1$ horses. If we remove one horse from the group, we have a group of size n, so by the induction hypothesis, all the horses in that group have the same color. If we put the removed horse back into the group, and remove a different horse, we can again apply the induction hypothesis to conclude that all n horses have the same color. But this means that all $n + 1$ horses in the group must have had the same color, completing the proof.

Exercise 4. What can you conclude if a and b are integers such that $a \mid b$ and $b \mid a$?

Exercise 5. Are there integers a, b, c such that $a \mid bc$, but $a \nmid b$, $a \nmid c$?