For the below problems, be sure to use relevant material relating to Wilson’s theorem and Fermat’s Little Theorem rather than simple brute force calculation.

Exercise 1. What is the remainder when $5!25!$ is divided by 31?

Exercise 2. What is the remainder when $40!$ is divided by 1763?

Exercise 3. What is the remainder when $2^{1,000,000}$ is divided by 17?

Exercise 4. Show that if $n > 4$ is a composite integer, then $(n - 1)! \equiv 0 \pmod{n}$.

Exercise 5. Show that $a^6 - 1$ is divisible by 168 whenever $(a, 42) = 1$.

Exercise 6. Show that if p, q are distinct primes, then

$$p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}.$$

Exercise 7. Show that if $p > 3$ is prime then

$$2^{p-2} + 3^{p-2} + 6^{p-2} \equiv 1 \pmod{p}.$$