
DIVISORS ON NONSINGULAR CURVES

BRIAN OSSERMAN

We now begin a closer study of the behavior of projective nonsingular curves, and morphisms
between them, as well as to projective space. To this end, we introduce and study the concept of
divisors.

1. Morphisms of curves

Suppose ϕ : X → Y is a nonconstant morphism of curves. Then we know that ϕ is dominant.
The induced field extension K(Y ) ↪→ K(X) must be algebraic, since K(X) and K(Y ) have the
same transcendence degree, and indeed it must be finite, since K(X) is finitely generated over k.

Definition 1.1. The degree of a morphism ϕ : X → Y of curves is 0 if ϕ is constant, and is
[K(X) : K(Y )] otherwise.

In the case that X,Y are projective, nonsingular curves and ϕ is nonconstant, we already know
that ϕ is necessarily surjective, but we will prove (more accurately, sketch a proof of) a much
stronger result.

Definition 1.2. Suppose ϕ : X → Y is a nonconstant morphism of nonsingular curves, and P ∈ X
any point. The ramification index eP of ϕ at P is defined as follows: let t ∈ Of(P ),Y be a local
coordinate at P (that is, at element with ordf(P )(t) = 1); then eP = ordP (ϕ∗P (t)).

Observe that eP is well defined, since ϕ∗P is injective, and eP > 1 always, since ϕ∗P t must vanish
at P .

Definition 1.3. Suppose ϕ : X → Y is a morphism of nonsingular curves, and P ∈ X any point.
Then P is a ramification point of ϕ if eP > 2. In this case, we say ϕ(P ) is a branch point of
ϕ. If eP = 1, we say that P is unramified.

Remark 1.4. Conceptually (and in fact precisely, when one is working over C), a ramification point
is a critical point of ϕ (i.e., a point where the derivative of ϕ vanishes), and a branch point is a
critical value. We will discuss a closely related version of this statement after we have introduced
differential forms.

The fundamental result in the case that X,Y are projective is:

Theorem 1.5. Let ϕ : X → Y be a nonconstant morphism of projective, nonsingular curves,
having degree d, and let Q ∈ Y any point. Then∑

P∈ϕ−1(Q)

eP = d.

Sketch of proof. We use the projectivity hypothesis only to argue that if V ⊆ Y is an affine open
neighborhood of Q, then U := ϕ−1(V ) is also affine, and furthermore A(U) is a finitely generated

A(V )-module. Let ỸX be the normalization of Y in K(X); since Y is projective, we know that ỸX
is likewise projective. Also, ỸX is necessarily nonsingular, and because ỸX is birational to X, we
conclude that ỸX is isomorphic to X, and the isomorphism commutes with ϕ and the normalization
morphism. But we know that the normalization morphism has the property that the preimage of V
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is affine, and in fact its coordinate ring is the integral closure of A(V ) in K(X). We conclude that
U is affine, and A(U) is integral over A(V ). But because A(U) is finitely generated as an algebra,
it follows from integrality that A(U) is a finitely-generated A(V )-module, as desired.

The desired result now follows from a standard result in algebra on the behavior of extensions
of Dedekind domains. In our case, the main idea is to show that if we use the notation

OQ,X :=
⋂

P∈ϕ−1(Q)

OP,X ,

then OQ,X is a free module over OQ,Y of rank d, and then (if t ∈ OQ,Y is a local coordinate) to
relate OQ,X/(ϕ

∗t) to the various OP,X/(ϕ
∗t) in terms of the eP . �

The geometric intuition behind the theorem is that at most points, the morphism ϕ is a d : 1
cover, but that at certain points (the ramification points), some of the d sheets come together.

Example 1.6. Suppose X = Y = P1, and ϕ is given by (X0, X1) 7→ (Xd
0 , X

d
1 ). Away from X0 = 0,

we can normalize so that X0 = 1, and the morphism is the morphism A1 → A1 given by x 7→ xd.
We first assume that we are not in the situation that char k = p and p|d. If c 6= 0, the preimage
of x = c consists of d distinct points, so we see that each of these d points must be unramified.
However, over c = 0, we have only a single preimage, so the ramification index at 0 must be d. The
situation is symmetric for x1 6= 0, so we find that the ramification points are (1, 0) and (0, 1), each
with ramification index d, and all the other points are unramified.

Now, suppose that char k = p and p|d. Write d = prd′, with p not dividing d′. In this case, we
see that all points are ramified; (1, 0) and (0, 1) still have ramification index d, while the rest all
have ramification index pr.

Remark 1.7. Theorem 1.5 has a parallel result in classical algebraic number theory, describing how
prime ideals in a ring of integers factor when one extends to a larger ring of integers. It is one
of the appealing aspects of Grothendieck’s theory of schemes that it allows one to phrase a single
theorem which simultaneously encompasses both results.

Exercise 1.8. Show that a nonconstant morphism ϕ : P1 → P1 is ramified at all points of P1 if and
only if it factors through the Frobenius morphism.

Our next goal is to study the behavior of such morphisms in more detail. In order to do so, we
will have to introduce the concepts of divisors and differential forms.

2. Divisors on curves

An important topic in classical algebraic geometry is the study of divisors. They play a crucial
role in understanding morphisms to projective space, and will also be important for us in our study
of morphisms between curves. We will restrict our treatment to the case of nonsingular curves,
although most of the basic definitions generalize rather easily to the case of higher-dimensional
nonsingular varieties (with points being replaced by closed subvarieties of codimension 1). We will
assume throughout this section that X is a nonsingular curve.

Definition 2.1. A divisor D on X is a finite formal sum
∑

i ci[Pi], where ci ∈ Z, and each Pi is a
point of X. Given also D′ =

∑
i c
′
i[Pi], we write D > D′ if ci > c′i for each i. We say D is effective

if D > 0. The degree degD of D is defined to be
∑

i ci.

We can define pullbacks of divisors under morphisms as follows:

Definition 2.2. If X,Y are nonsingular curves, and ϕ : X → Y is a nonconstant morphism, and
D =

∑
ci[Qi] a divisor on Y , we define the pullback of D under ϕ, denoted ϕ∗(D), to be the

divisor
∑

i

∑
P∈ϕ−1(Qi)

eP ci[P ] on X.
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We then have the following corollary, which is an immediate consequence of Theorem 1.5.

Corollary 2.3. Let ϕ : X → Y be a morphism of projective nonsingular curves, of degree d. Then
for any divisor D on Y , we have

degϕ∗(D) = ddegD.

Divisors are closely related to the study of rational functions.

Definition 2.4. Given f ∈ K(X)∗, the associated divisor D(f) is
∑

P∈X ordP (f). A divisor D is
principal if D = D(f) for some f ∈ K(X)∗.

Note that D(f) is indeed a divisor: f is regular away from a finite number of points, and where
f is regular, it only vanishes at a finite numbers of points.

Remark 2.5. The terminology of principal divisor is suggestive, and indeed there is a close relation-
ship between principal divisors and principal ideals. However, we will not discuss this until after
we have introduced schemes.

If we stick to projective curves, we find that principal divisors are quite well behaved. In partic-
ular:

Proposition 2.6. A principal divisor on a projective nonsingular curve has degree 0.

Proof. Let D(f) be a principal divisor on the projective nonsingular curve X. If f is constant,
then D(f) = 0, so the degree is visibly 0. If f is nonconstant, we have seen that it defines
a dominant rational map to A1, which we may extend to a morphism f : X → P1. We claim
that D(f) = f∗([0] − [∞]). But this is clear: the morphism f : X → P1 is induced by the field
inclusion k(t) → K(X) sending t to f , and ord(0) t = 1, so the definition of ramification index
gives us precisely that the part of D(f) with positive coefficients are the ramification indices of
zeroes of f . But similarly, ord∞

1
t = 1, and maps to 1

f , so the negative part of D(f) is given by

ordP ( 1
f ) = − ordP (f) at points P with f(P ) =∞.

The desired statement then follows immediately from Corollary 2.3, since deg([0]− [∞]) = 0. �

Example 2.7. Consider the case that X = P1, and write P1 = A1 ∪ {∞}, with coordinate t on
A1. Then a rational function f ∈ K(X)∗ is a quotient of polynomials g, h ∈ k[t]. At any point
λ ∈ A1, the coefficient of [λ] in D(f) is simply the difference of the orders of vanishing of g and h
at t = λ. On the other hand, at ∞ we have that 1

t is a local coordinate, and one then checks that

the coefficient of [∞] in D(f) is equal to deg h− deg g. The sum of the coefficients of points on A1

is deg g − deg h, so we see that the degree of D(f) is 0, as asserted by Proposition 2.6.

We use divisors to study rational functions on a curve by considering all functions which vanish
to certain prescribed orders at some points, and are allowed to have poles of certain orders at
others. Formally, we have the following definition.

Definition 2.8. Given a divisor D on X, define

L(D) = {f ∈ K(X)∗ : D(f) +D > 0} ∪ {0}.

Thus, if D =
∑

i ci[Pi] −
∑

j dj [Qj ] where ci, dj > 0, and Pi 6= Qj for any i, j, then L(D) is the
space of all rational functions which vanish to order at least dj at each Qj , but are allowed to have
poles of order at most ci at each Pi. This is visibly a k-vector space, and we will next prove that
it is finite-dimensional when X is projective.

Lemma 2.9. Given a divisor D on X, and P ∈ X any point, the quotient space L(D)/L(D− [P ])
has dimension at most 1.

3



Proof. First observe that L(D − [P ]) is indeed a subspace of L(D), consisting precisely of those
rational functions vanishing to order (possibly negative) strictly greater than required to be in L(D).
The quotient vector space thus makes sense. If L(D − [P ]) = L(D) (which can certainly occur),
there is nothing to prove. On the other hand, if L(D− [P ]) ( L(D), let f be in L(D)rL(D− [P ]),
and let t be a local coordinate on X at P . Then we know that f = teg for some e ∈ Z, and some g
regular and nonvanishing in a neighborhood of P . Since f 6∈ L(D−[P ]), we see that −e must be the
coefficient of [P ] in D. We claim that f spans L(D)/L(D− [P ]). Indeed, for any other f ′ ∈ L(D),

we can write f ′ = te
′
g′ with g′ regular and nonvanishing at P , and we must have e′ − e > 0, so

e′ > e. Then we observe that

f ′ − te
′−e(P )g′(P )

g(P )
f

vanishes to order strictly greater than e at P , so is therefore in L(D− [P ]), proving our claim and
the lemma. �

Corollary 2.10. For any divisor D on a projective nonsingular curve X, we have that L(D) is
finite-dimensional over k, and in fact

dimk L(D) 6 degD + 1.

Proof. We see immediately from Proposition 2.6 that if degD < 0, then L(D) = 0. The statement
then follows immediately from Lemma 2.9 by induction on degD. �

This dimension will be very important to us, so we give it its own notation.

Notation 2.11. We denote by `(D) the dimension of L(D) over k.

Example 2.12. Again consider the case X = P1, continuing with the notation of Example 2.7,
and let D = d[∞]. Then if f ∈ K(X)∗ is written as g

h , where g, h have no common factors, we see
that for f to be in L(D), we must have h constant, since we cannot have any poles away from ∞.
Then we have deg h−deg g = −deg g 6 −d, so we conclude that f must be a polynomial of degree
at most d. Conversely, any polynomial of degree less than or equal to d is in L(D), so we see that
`(D) = d+ 1. In particular, sometimes the bound of Corollary 2.10 is achieved.

3. Linear equivalence and morphisms to projective space

Closely related to the study of divisors and rational functions is the study of morphisms to
projective space. In this section, we suppose throughout that X is a nonsingular projective curve.

Suppose we have a morphism ϕ : X → Pn, which we assume to be non-degenerate, meaning
that ϕ(X) is not contained in any hyperplane H of Pn. We then see that for any such H, we have
H ∩ ϕ(X) a proper closed subset of ϕ(X), hence a finite set of points. In fact, there is a natural
way to associate an effective divisor on X to H ∩ ϕ(X). Suppose P ∈ X such that ϕ(P ) ∈ H, and
choose i such that ϕ(P ) ∈ Ui = Pn r Z(Xi). If H = Z(

∑
j cjXj), then we identify Ui with An in

the usual way by setting coordinates yj =
Xj

Xi
for j 6= i, and on Ui we have Z(H) = Z(

∑
j cjyj),

where yi = 1. Then
∑

j cjyj is a regular function on Ui, so ϕ−1(
∑

j cjyj) is regular at P , and we

take its order at P to determine the coefficient of P in the divisor associated to H ∩ ϕ(X). One
checks easily that this is independent of the choice of i and of the equation for H (which is unique
up to scaling).

Notation 3.1. If ϕ : X → Pn is a nondegenerate morphism, and H ⊆ Pn a hyperplane, we denote
by ϕ∗(H) the effective divisor on X associated to H ∩ ϕ(X).

Obviously, ϕ∗(H) depends on H. However, if we choose a different hyperplane H ′, we find that
ϕ∗(H) and ϕ∗(H ′) are closely related.
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Proposition 3.2. Given ϕ : X → Pn a nondegenerate morphism, and H,H ′ ⊆ Pn two hyperplanes,
then ϕ∗(H)− ϕ∗(H ′) = D(f) for some rational function f on X.

Proof. The basic idea is that if H = Z(
∑

i ciXi), and H ′ = Z(
∑

i c
′
iXi), then even though the

defining equations do not give functions on Pn, the quotient
∑

i ciXi∑
i c
′
iXi

defines a rational function on

Pn, which by non-degeneracy is regular and non-vanishing on a nonempty open subset of ϕ(X),
and thus pulls back under ϕ to give a rational function f on X. We need only verify that D(f) =
ϕ∗(H)− ϕ∗(H ′).

However, following the notation of the above discussion, if the ith coordinate of P is non-zero,
we can divide through both the numerator and denominator by Xi and find∑

j cjXj∑
j c
′
jXj

=

∑
j cjyj∑
j c
′
jyj

,

so the definition of D(f) is visibly equal to ϕ∗(H)− ϕ∗(H ′). �

This motivates the following definition:

Definition 3.3. Two divisors D,D′ on X are linearly equivalent if D − D′ = D(f) for some
rational function f on X.

From Proposition 2.6, we see immediately:

Corollary 3.4. Two linearly equivalent divisors have the same degree.

We can thus define:

Definition 3.5. The degree of a nondegenerate morphism ϕ : X → Pn is degϕ∗(H) for any
hyperplane H ⊆ Pn.

Remark 3.6. It is a fact, although we will not prove it this quarter, that if ϕ(X) is injective, then
the degree is equal to the number of points in ϕ(X)∩H for a “sufficiently general” hyperplane H.
That is, if H is not too special, all the points of ϕ∗(H) will have multiplicity 1.

There is one situation of overlap between this definition and our earlier definition of degree for
morphisms between curves. We verify that the two definitions agree in this case.

Proposition 3.7. Let ϕ : X → P1 be a nonconstant morphism. Then degϕ∗H = [K(X) : K(P1)],
where H is any hyperplane (that is to say, point) in P1.

Proof. This is not obvious from the definitions, but it follows easily from Theorem 1.5. Indeed, we
see immediately from the definitions that

ϕ∗H =
∑

P∈ϕ−1(H)

eP [P ],

so the desired identity follows. �

Linear equivalence also arises in the spaces L(D). If f ∈ K(X)∗ is in L(D), then instead of
looking at the zeroes and poles of f as a rational function, we could ask what its “extra vanishing”
is as an element of L(D); that is, we could look at the divisor D(f) + D, which is effective by
definition. We have:

Proposition 3.8. Given a divisor D, the set D(f) +D for nonzero f ∈ L(D) is precisely the set
of effective divisors linearly equivalent to D.
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Proof. Suppose D′ is effective, and linearly equivalent to D. Then by definition, there is some
f ∈ K(X)∗ with D′ −D = D(f), or equivalently, D′ = D(f) +D. Thus f ∈ L(D), and we get one
inclusion. Conversely, we have already observed that D(f)+D is effective by definition if f ∈ L(D)
is nonzero, but it is also visibly linearly equivalent to D. �

We can thus think of the following definition in terms of families of effective, linearly equivalent
divisors:

Definition 3.9. A linear series is a vector subspace of L(D) for some D. A linear series is
complete if it is equal to all of L(D). We say that the linear series has degree d and dimension
n if degD = d, and the subspace has dimension n+ 1.

Associated to a linear series we get a family of effective divisors, but the linear series language
is useful because the condition of being a subspace is easier to understand than the corresponding
condition on the associated divisors. The discrepancy of 1 in the dimension terminology will be
explained shortly.

We now return to considering morphisms to projective space. As above, we suppose we have
ϕ : X → Pn. We observe that the associated family of divisors ϕ∗(H) for hyperplanes H in Pn

have the property that there is no point P ∈ X such that [P ] appears with positive coefficients in
every ϕ∗(H): indeed, we can choose H to be any hyperplane in Pn such that ϕ(P ) 6∈ H, and then
the coefficient of [P ] in ϕ∗(H) will be 0.

Definition 3.10. Given a linear series V ⊆ L(D), a point P ∈ X is a basepoint of V if for
all nonzero f ∈ V , the coefficient of [P ] in D(f) + D is strictly positive. The linear series V is
basepoint-free if no P ∈ X is a base point of V .

Lemma 3.11. Suppose that D and D′ are linearly equivalent divisors on a projective nonsingular
curve X. Then there is an isomorphism α : L(D) → L(D′), unique up to scaling, such that
D(α(f)) +D′ = D(f) +D for all nonzero f ∈ L(D).

Proof. By definition, there is some g ∈ K(X)∗ with D−D′ = D(g). Because X is projective, only
constant functions have D(g) = 0, we see that g is unique up to scaling by a (nonzero) constant.
Multiplication by g then defines the desired isomorphism L(D)→ L(D′). �

Definition 3.12. We say that two linear series V ⊆ L(D) and V ′ ⊆ L(D′) are equivalent if D is
linearly equivalent to D′ and V is mapped to V ′ under the isomorphism of Lemma 3.11.

Proposition 3.13. Linear series V and V ′ are equivalent if and only if the sets of effective divisors
{D(f) +D : f ∈ V r {0}} and {D(f) +D′ : f ∈ V ′ r {0}} are equal.

Proof. It is clear from the definition and Lemma 3.11 that if V and V ′ are equivalent, the sets of
effective divisors are equal. Conversely, if the sets of effective divisors have any elements in common,
we immediately conclude that D is linearly equivalent to D′, and because the isomorphism α of
Lemma 3.11 doesn’t change the corresponding effective divisors D(f)+D, and D(f)+D determines
f up to nonzero scalar, we conclude that if the two sets of divisors are equal, then α must map V
into V ′. �

The main theorem relating linear series to morphisms to projective space is the following:

Theorem 3.14. Let V ⊆ L(D) be a basepoint-free linear series on X of dimension n and degree
d. Then V is associated to a nondegenerate morphism ϕ : X → Pn, unique up to linear change of
coordinate on Pn, such that the set D(f) + D for nonzero f ∈ V is equal to the set of ϕ∗(H) for
hyperplanes H ⊆ Pn. In particular, ϕ has degree d.

Moreover, this construction gives a bijection between equivalence classes of linear series of di-
mension n and degree d on X, and nondegenerate morphisms ϕ : X → Pn of degree d, up to linear
change of coordinates.
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Lemma 3.15. Suppose a morphism ϕ : X → Pn is described on an open subset U ⊆ X by a tuple
(f0, . . . , fn) of functions regular and not simultaneously vanishing on U . Then ϕ is nondegenerate
if and only if the fi are linearly independent in K(X) over k, and if H ⊆ Pn is the hyperplane
Z(

∑
i ciXi) for some ci ∈ k, and

D = −
∑
P∈X

min
i

(ordP (fi))[P ],

then
ϕ∗(H) = D(

∑
i

cifi) +D.

Proof. The assertion of nondegeneracy is clear, since if ϕ(U) were contained in a hyperplane, we
would obtain a linear dependence among the fi, and conversely. To check the desired identity of
divisors, fix P ∈ X, and suppose the ith coordinate of ϕ(P ) is nonzero; then the coefficient of [P ]

in ϕ∗(H) is defined to be the order of vanishing at P of ϕ∗(
∑

j cj
Xj

Xi
). Let e be the coefficient of

[P ] in D. Then each fj has order at least −e at P by hypothesis, and in fact at least one fj has
order exactly −e.

We know that ϕ is defined at P by multiplying all the fj by te, for a local coordinate t at P , so
that near P , the morphism ϕ is given by (tef0, . . . , t

efn), and so we see in particular that fi has
minimum order −e at P . Furthermore, near P we have

ϕ∗(
Xj

Xi
) =

tefj
tefi

=
fj
fi
,

so the coefficient of [P ] in ϕ∗(H) is

ordP (
∑
j

cj
fj
fi

) = ordP (
∑
j

cjfj) + e,

proving the desired statement. �

Proof of Theorem 3.14. If we choose a basis f0, . . . , fn for V , by linear independence and Lemma
3.15, the tuple (f0, . . . , fn) defines a nondegenerate morphism ϕ : X → Pn, which satisfies the
desired relationship. Now, in constructing ϕ, we chose the basis {fi} for V . It is clear that change
of basis corresponds precisely to to modifying ϕ by composing Pn by the corresponding linear change
of coordinates. We thus wish to prove that aside from this ambiguity, ϕ is uniquely determined by
the set of ϕ∗(H). But we see that if ϕ : X → Pn is any nondegenerate morphism, we obtain effective
divisors D0, . . . , Dn with Di := ϕ∗(Z(Xi)), which by hypothesis are each of the form D(gi) +D for
some gi ∈ L(D). But if ϕ is given by (f0, . . . , fn), and we let D′ = −

∑
P∈X mini(ordP (fi)), then

by Lemma 3.15 we see that D(fi) +D′ = D(gi) +D for each i, so D(fi/gi) = D−D′. If we replace

each gi by f0
g0
gi, then we don’t change ϕ, and we have D(fi) = D(gi), so the fi and gi are each

related by nonzero scalars, and we conclude the desired uniqueness.
Now, because the associated morphisms ϕ are characterized by the effective divisors D(f) +D,

we immediately see that equivalent linear series yield the same (equivalence classes of) morphisms
to projective space. For the final bijectivity assertion, it is thus enough to show that every nonde-
generate morphism to projective space arises in the manner described. However, every morphism
ϕ : X → Pn is described on some open subset U by a tuple (f0, . . . , fn) of regular functions on U ,
and from Lemma 3.15 we then see that if we set D as in the lemma statement, the fi span a linear
series in L(D) which satisfies the desired conditions. �
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