Exercise 1. A topological space X is compact if and only if for every topological space Y, the projection map $X \times Y \to Y$ is a closed map.

Hint: given an open cover $\{U_i\}$ of X, define Y by adding a single point ω to X, with the topology whose open subsets consist of: any subset of X; and any set of the form $\{\omega\} \cup (X \setminus U)$, where U is contained in a finite union of sets U_i. Show that the U_i must contain a finite subcover.

Exercise 2. One could define a prevariety X to be universally closed if for all prevarieties Y, the projection map $X \times Y \to Y$ is closed. Thus, if X is universally closed and is also a variety, then X is complete. Show that conversely, if X is a complete variety, then X is universally closed. Show the stronger statement that a prevariety X is universally closed if and only if $X \times \mathbb{A}_k^n \to \mathbb{A}_k^n$ is closed for all n.

Exercise 3. Do Exercise 6.3 of Chapter I of Hartshorne.

Exercise 4. Do Exercise 6.4 of Chapter I of Hartshorne.