Exercise 1. Let K/F be any algebraic extension, with char $F = p$.
 (a) Prove that $L = \{ \alpha \in K : \alpha \text{ is separable over } F \}$ is a subfield of K containing F.
 (b) Prove that no element of $K \setminus L$ is separable over L.
 (c) Prove that for every $\alpha \in K$, for some $n \geq 1$ we have $\alpha^{p^n} \in L$. (That is, K is obtained from F by taking pth-power roots)

The L of the above exercise is called the separable part of K/F. Given a finite extension K/F, define the separable degree $[K : F]_s$ to be the degree over F of the separable part of K/F.

Exercise 2. Show that $[K : F]_s$ is multiplicative in towers of extensions.

Exercise 3. Let F be a finite field. Prove that every function $F \to F$ can be realized by a polynomial $f(x) \in F[x]$.

Exercise 4. Prove that the only automorphism of \mathbb{R} is the identity. Hint: show that the condition $x > y$ can be expressed purely algebraically.

Exercise 5. Given a field F, determine the fixed field of the automorphism of $F(x)$ given by $x \mapsto x + 1$.
