1. From Last Time

We briefly recall the following fact, which we had left unproved:

Proposition 1.1. Let G be a finite multiplicative subgroup of a field. Then G is cyclic.

Proof. Let m be the maximal order of the elements of G. We will show that $m = |G|$. Of course, it is clear that $m \leq |G|$. We next claim that the order of every element of G divides m: it suffices to show that given elements x_1, x_2 of orders m_1, m_2, there exists an element of order lcm(m_1, m_2). Indeed, finding m_1', m_2' which are relatively prime, divide m_1 and m_2 respectively, and have $m_1' = \text{lcm}(m_1, m_2)$, it is easy to check that $x_1^{m_1'/m_1} x_2^{m_2'/m_2}$ has the desired order. But elements of order dividing m are roots of $x^m - 1$, so there can be at most m of them, and we have $|G| \leq m$, so $|G| = m$, as desired. \qed

Recall that we had just shown that any additive subgroup of \mathbb{R}^n which meets every bounded region in a finite set must be a lattice. Also recall the rings we are considering:

Definition 1.2. We say that a subring $R \subset \mathcal{O}_K$ is an **order** if R contains a basis for K over \mathbb{Q}.

We now finish the proof of the proposition from last time:

Proposition 1.3. The image $\psi(R^*) \subset \mathbb{R}^{r_1+r_2}$ is a lattice, and contained in the hyperplane defined by $x_1 + \cdots + x_{r_1+r_2} = 0$.

Proof. We first claim that $\psi(R^*)$ is contained in the hyperplane defined by $x_1 + \cdots + x_{r_1+r_2} = 0$. But since $R \subset \mathcal{O}_K$, we have $R^* \subset \mathcal{O}_K^*$, so if $x \in R^*$, we have $|N_{K/\mathbb{Q}}(x)| = 1$. But $|N_{K/\mathbb{Q}}(x)| = \prod_{i=1}^{r_1+r_2} |\sigma_i(x)| = \prod_{i=1}^{r_1} |\sigma_i(x)| \prod_{i=r_1+1}^{r_1+r_2} |\sigma_i(x)|^2$, since $|y| = |\bar{y}|$, and taking log of both sides gives the desired statement.

Next, we need to show that $\psi(R^*)$ is a lattice, or equivalently, that it contains only finitely many points in any bounded region. But note that if we restrict each coordinate log $|\sigma_i(x)|$ or $2 \log |\sigma_i(x)|$, depending on whether or not $i \leq r_1$, to be bounded by some t, this is equivalent to requiring that $|\sigma_i(x)| < e^t$ or $|\sigma_i(x)|^2 < e^t$, so it follows that the images $\varphi(x)$ are bounded in \mathbb{R}^n. Since $R^* \subset \mathcal{O}_K$, there are only finitely many $x \in R^*$ with $\varphi(x)$ in the given region in \mathbb{R}^n, and hence only finitely many with $\psi(x)$ in the given region in $\mathbb{R}^{r_1+r_2}$, proving that $\psi(R^*)$ is a lattice, as desired. \qed
2. Properties of orders

We begin with some properties of orders:

Lemma 2.1. We have:

(i) \(\varphi(R) \) is a lattice of full rank in \(\mathbb{R}^n \); in particular, the additive group of \(R \) is a free abelian group of rank \(n \).

(ii) \(R/I \) is finite for any non-zero ideal \(I \).

(iii) \(R \) is Noetherian, and has the property that every non-zero prime ideal is maximal.

(iv) For any non-zero \(x \in R \), there exist only finitely many ideals of \(R \) containing \(x \).

Proof. For (i), we have that \(\varphi(R) \subset \varphi(O_K) \) and is still an additive subgroup, so it is certainly a lattice. But since \(R \) contains a \(\mathbb{Q} \)-basis of \(K \), it follows by the same discriminant argument used in the case of \(O_K \) that it must span all of \(\mathbb{R}^n \), and must therefore be of full rank.

For (ii), by (i) and as in the case of \(O_K \), it suffices to see that \(I \) contains a non-zero integer. But Lemma 1.5 of lecture 3 worked for arbitrary integral domains, so the proof goes through for \(R \) as well.

For (iii), the proof follows from (ii) just as in the case of the full ring of integers.

For (iv), it suffices to show that \(R/(x) \) has only finitely many ideals. and this follows from the fact that \(R/(x) \) is finite. \(\square \)

Remark 2.2. \(R \) is not in general a Dedekind domain, as it will not satisfy the condition of being integrally closed. In fact, \(O_K \) is the integral closure of \(R \) in \(K \).

3. Fullness

Our aim now is to prove the harder half of the theorem:

Proposition 3.1. The image \(\psi(R^*) \) spans the hyperplane defined by \(x_1 + \cdots + x_{r_1 + r_2} \).

To do so, we use the following criterion:

Lemma 3.2. Let \(L \subset \mathbb{R}^m \) be a lattice. Then \(L \) is of full rank if and only if there exists a bounded region \(S \subset \mathbb{R}^n \) such that the translates \(S + L \) cover \(\mathbb{R}^m \).

Proof. Certainly, if \(L \) is full, then the translates of a fundamental parallelepiped of \(L \) cover \(\mathbb{R}^n \). Conversely, let \(S \) be a bounded region of \(\mathbb{R}^n \); say that the maximal distance of a point in \(S \) from \((0,\ldots,0)\) is \(t \). If \(L \) is not full, then its span is a proper subspace of \(\mathbb{R}^m \), and there exist vectors of distance \(> t \) from any point in this subspace. It follows that such vectors cannot be in any translate of \(S \) by \(L \). \(\square \)

To set up the argument for next time, we introduce the following ideas:

Definition 3.3. We have the multiplication map \(\cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) given by considering \(\mathbb{R}^n \) as \(\mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \), and multiplying coordinates.

Definition 3.4. We define the norm map \(N : \mathbb{R}^n \to \mathbb{R}_{\geq 0} \) by the formula

\[
N(x_1, \ldots, x_n) = \prod_{i=1}^{r_1} |x_i| \prod_{i=1}^{r_2} (x_{r_1+2i-1}^2 + x_{r_1+2i}^2).
\]
Let \(\chi : \mathbb{R}^n \to \mathbb{R}^{r_1+r_2} \) be the map such that \(\psi = \chi \circ \varphi \). Explicitly,

\[
\chi(x_1, \ldots, x_n) = (\log |x_1|, \ldots, \log |x_{r_1}|, \log(x_{r_1+1}^2 + x_{r_1+2}^2), \ldots, \log(x_{n-1}^2 + x_n^2)).
\]

We then have the following compatibilities with existing ideas:

(i) \(\varphi(xy) = \varphi(x) \cdot \varphi(y) \) for \(x, y \in K \).

(ii) \(\chi(\bar{x} \cdot \bar{y}) = \chi(\bar{x}) + \chi(\bar{y}) \) for \(\bar{x}, \bar{y} \in \mathbb{R}^n \).

(iii) \(N(\bar{x} \cdot \cdots \cdot \bar{y}) = N(\bar{x})N(\bar{y}) \) for \(\bar{x}, \bar{y} \in \mathbb{R}^n \).

(iv) \(\log N(\bar{x}) \) is given by the sum of the coordinates of \(\chi(\bar{x}) \), for \(\bar{x} \in \mathbb{R}^n \).