Theorem 1.1. Suppose m is a primitive mth root of unity, then $\mathcal{O}_{\mathbb{Q}(\zeta_m)} = \mathbb{Z}[\zeta_m]$.

1. The ring of integers

Since ζ_m satisfies $x^m - 1 = 0$, we have $\mathbb{Z}[\zeta_m] \subset \mathcal{O}_{\mathbb{Q}(\zeta_m)}$. We can now prove the following theorem fairly easily:

Theorem 1.1. If ζ_m is a primitive mth root of unity, then $\mathcal{O}_{\mathbb{Q}(\zeta_m)} = \mathbb{Z}[\zeta_m]$.

To do so, we need the following lemma:

Lemma 1.2. Suppose $m = p^n$. Then in $\mathcal{O}_{\mathbb{Q}(\zeta_m)}$, we have:

(i) The elements $(1 - \zeta_m^i)/(1 - \zeta_m^i)$ all generate the same ideal for $(i, p) = 1$;

(ii) If $p > 2$, the element $1 + \zeta_m^i$ is a unit;

(iii) We have the ideal factorization $(p) = (1 - \zeta_m^i)^{(p-1)p^{n-1}}$

Proof. (i) We have $(1 - \zeta_m^i)/(1 - \zeta_m^i) = 1 + \zeta_m^i + \cdots + \zeta_m^{i-1} \in \mathbb{Z}[\zeta_m]$. On the other hand, if $ii' \equiv 1$ (mod p^n), we have $(1 - \zeta_m^{ii'})/(1 - \zeta_m^i) = (1 - \zeta_m^{ii'})/(1 - \zeta_m^i) = 1 + \zeta_m^i + \cdots + \zeta_m^{i-1} \in \mathbb{Z}[\zeta_m]$, so we find that $(1 - \zeta_m^i)$ and $(1 - \zeta_m^{i'})$ divide one another in $\mathbb{Z}[\zeta_n]$ and hence in $\mathcal{O}_{\mathbb{Q}(\zeta_m)}$. (ii) By (i), $1 + \zeta_m^i = (1 - \zeta_m^2)/(1 - \zeta_m^i)$ is a unit; hence in $\mathcal{O}_{\mathbb{Q}(\zeta_m)}$. (iii) We have $\Phi_p(x) = (x^{p^n} - 1)/(x^{p^{n-1}} - 1) = 1 + x^{p^{n-1}} + \cdots + x^{(p-1)p^{n-1}} = \prod_{i=1}^{p-1}(x - \zeta_m^i)$, so $\Phi_p(1) = p - 1$.

By (i), the right side generates the same ideal as $(1 - \zeta_m^i)^{(p-1)p^{n-1}}$.

We now prove the theorem.

Proof of the theorem. We first prove the case that $m = p^n$ for some n. It is enough to show that for every prime q, we have $\mathcal{O}_{\mathbb{Q}(\zeta_m)}/q = \mathbb{Z}[\zeta_m]/q$. Now, for $q \neq p$, we know that $\Phi_p(x)$ is separable mod q, so disc $\Phi_p(x) = D_{\mathbb{Q}(\zeta_m)/\mathbb{Q}}(1, \zeta_m, \ldots, \zeta_m^{(p-1)p^{n-1}})$ is a unit in $\mathbb{Z}(q)$, and it follows that $\mathcal{O}_{\mathbb{Q}(\zeta_m)}/q = \mathbb{Z}[\zeta_m]/q$. It remains only to consider the case that $q = p$. By (iii) above, we have that $(1 - \zeta_m^i)$ is the unique prime ideal lying above p, and we also observe by the degree formula that we must have $\mathcal{O}_{\mathbb{Q}(\zeta_m)}/(1 - \zeta_m^i) \cong \mathbb{Z}/(p)$. Thus, by the last theorem from last time, we have

$$\mathcal{O}_{\mathbb{Q}(\zeta_m)}/p = \mathbb{Z}[1, 1 - \zeta_m^i]/p = \mathbb{Z}[\zeta_m]/p.$$

This completes the proof for the $m = p^n$ case.

But for the general case, we induct on the number of prime factors; as in the proof of the irreducibility of $\Phi_m(x)$, we have that $(D_{\mathbb{Q}(\zeta_m)}, D_{\mathbb{Q}(\zeta_r)}) = 1$ if p is prime to r, and then by the first theorem of the last lecture, we have

$$\mathcal{O}_{\mathbb{Q}(\zeta_m)} = \mathcal{O}_{\mathbb{Q}(\zeta_m, \zeta_r)} = \mathcal{O}_{\mathbb{Q}(\zeta_m)} \mathcal{O}_{\mathbb{Q}(\zeta_r)},$$

and since $\mathbb{Z}[\zeta_m, \zeta_r] = \mathbb{Z}[\zeta_m]\mathbb{Z}[\zeta_r]$, we are able to carry out the induction.
Example 1.3. This example is due to Dedekind. Let \(\alpha \) be a root of \(x^3 - x^2 - 2x - 8 \), and consider \(\mathbb{Q}(\alpha) \). One can show that \(\mathcal{O}_{\mathbb{Q}(\alpha)} \) is generated by \(\alpha \) and \(\frac{4}{\alpha} \). By analyzing \(\mathcal{O}_{\mathbb{Q}(\alpha)} \) modulo 2, one can show that it is not generated over \(\mathbb{Z} \) by any single element.

2. Fermat’s Last Theorem

We will now prove certain cases of Fermat’s Last Theorem, by studying the arithmetic of \(\mathbb{Z}[\zeta_p] \). We introduce the following (non-standard) terminology:

Definition 2.1. We say that an odd prime \(p \) is **h-regular** if \(p \) does not divide the class number (i.e., the order of the ideal class group) of \(\mathbb{Q}(\zeta_p) \). We say that \(p \) is **strongly h-regular** if it is h-regular, and if it satisfies the further property that for all units \(u \in \mathbb{Z}[\zeta_p]\times \) such that \(u \equiv m \pmod{p\mathbb{Z}[\zeta_p]} \) for some \(m \in \mathbb{Z} \), then \(u = u'^p \) for some \(u' \in \mathbb{Z}[\zeta_p] \).

Remark 2.2. We will see later, by class field theory, the fact (known as Kummer’s lemma) that a prime \(p \) being h-regular implies that it is strongly h-regular. We will also give an explicitly computable criterion for h-regularity in terms of Bernoulli numbers.

Fermat’s Last Theorem for prime exponents is classically broken up into two cases: case I is the situation that all terms are prime to \(p \), whereas in case II, one term may be divisible by \(p \). Case II is the harder one. While both cases begin with a factorization of the left side in \(\mathbb{Z}[\zeta_p] \), case I then shows that the factors are prime, and produces a linear relation among different powers of \(\zeta_p \) modulo \(p \). Case II involves subtler analysis, and an induction argument on the power of \(p \) dividing the appropriate term of the equation.

Exercise 2.3. Prove case I of Fermat’s Last Theorem for h-regular primes. That is, prove that if \(p \) is h-regular, there do not exist integer solutions to

\[
x^p + y^p = z^p
\]

with \(x, y, z \) prime to \(p \).

Our aim is to prove case II of Fermat’s Last Theorem for strongly h-regular primes.

Theorem 2.4. Let \(p \) be strongly h-regular. Then there are no non-zero integer solutions to

\[
x^p + y^p = z^p
\]

with \(p \) dividing (at least) one of \(x, y, z \).

Proof. Suppose to the contrary that a solution exists. We first note that we may assume that \(p | z \), but \(p \) is prime to \(x, y \); indeed, we may certainly assume that \(x, y, z \) have no common factors; because \(p \) is odd, we may write \(x^p + y^p + (-z)^p = 0 \), so the situation is symmetric in \(x, y, z \), and we assume that \(p | z \). But then, if \(p \) divided \(x \) or \(y \), it would have to divide all three, contradicting relative primality.

Let \(p^{n'} \) be the largest power of \(p \) dividing \(z \). We will prove by induction on \(n' \) that no such solution is possible. However, we will induct on the following slightly stronger statement: there do not exist \(\alpha, \beta, \gamma \in \mathbb{Z}[\zeta_p], u \in \mathbb{Z}[\zeta_p]\times \), and \(n \in \mathbb{N} \) such that

\[
\alpha^p + \beta^p + u(1-\zeta_p)^{pn} \gamma^p = 0,
\]
and \((1 - \zeta_p)\) does not divide \(\alpha\beta\gamma\). (Note that \(n\) here is \(n'(p-1)\).) Before beginning the induction, we make some general observations. If we had such a solution, we would obtain an identity of ideals:

\[
\prod_{j=0}^{p-1} \left(\alpha + \zeta_p^j \beta \right) = (1 - \zeta_p)^n \gamma^p. \tag{2.4.2}
\]

Note that \(\alpha + \zeta_p^j \beta \equiv \alpha + \beta \pmod{1 - \zeta_p}\), so since \(1 - \zeta_p\) must divide at least one factor on the left, it must in fact divide all of them.

We now observe that all the \(\alpha + \zeta_p^j \beta\) must be distinct modulo \((1 - \zeta_p^2)\). If we had \(\alpha + \zeta_p^j \beta \equiv \alpha + \zeta_p^{j'} \beta \pmod{1 - \zeta_p^2}\) for \(j' > j\), we would have \((1 - \zeta_p^2)\left(\zeta_p^j \beta \right)\) \(\in \mathbb{Z}[[\zeta_p]]\). Since \((1 - \zeta_p^{j'-j})\) is a unit multiple of \(1 - \zeta_p\), this would imply \((1 - \zeta_p)\beta\), contradicting our initial hypothesis.

Proof to be continued next time. \(\square\)