The following exercise sounds complicated, but is a situation one frequently runs into in making arguments involving degenerations.

Exercise 1. Suppose we are given \(f : X \rightarrow Y \), with \(X \) and \(Y \) Noetherian and irreducible, \(f \) open and of finite type, and \(X \) regular and \(Y \) universally catenary. Suppose further that every component of every fiber of \(f \) has some given dimension \(d \). Given \(Z_1, \ldots, Z_n \) closed subschemes of \(X \) of codimensions \(d_1, \ldots, d_n \), set \(\rho = d - \sum_i d_i \), and suppose \(\rho \geq 0 \).

Set \(Z = \bigcap_i Z_i \subseteq X \). Suppose we are given a point \(z \in Z \), with image \(f(z) = y \) in \(Y \). Show that every component of \(f^{-1}(y) \cap Z \) has dimension at least \(\rho \). Suppose that \(f^{-1}(y) \cap Z \) has dimension exactly \(\rho \). Show that every neighborhood \(U \) of \(z \) in \(Z \) maps dominantly to \(Y \).

We give Nagata’s example of an infinite-dimensional Noetherian ring.

Exercise 2. (a) Suppose that \(R \) is a ring such that: (i) for every maximal ideal \(m \), we have \(R_m \) Noetherian; and (ii) every non-zero element \(r \in R \) is contained in only finitely many maximal ideals of \(R \). Show that \(R \) is Noetherian.

(b) Now let \(R_0 = k[x_1, x_2, \ldots] \) be the polynomial ring in infinitely many variables over a field \(k \), and choose an increasing function \(d : \mathbb{N} \rightarrow \mathbb{N} \). Define a sequence of prime ideals \(P_i \) of \(R_0 \) by \(P_i = (x_{d(i)}^1, \ldots, x_{d(i+1)}) \), and set \(S \) to be the multiplicative set \(R_0 \setminus \bigcup_{i=1}^\infty P_i \). Finally, let \(R = S^{-1}R_0 \). Show that the maximal ideals of \(R \) are the ideal \(S^{-1}P_i \).

(c) Conclude that for an appropriate choice of \(d \), the \(R \) of (b) is a Noetherian ring of infinite dimension.

The following exercise is intended to provide some practice with regular and local complete intersection rings, and cotangent spaces.

Exercise 3. (a) Let \(\varphi : A \rightarrow B \) be a surjection of Noetherian local rings, inducing an isomorphism on cotangent spaces, and suppose further that \(B \) is regular. Show that \(\varphi \) is an isomorphism. [Geometrically, this says that a regular scheme is as large as possible for its cotangent space.] Hint: you may use that a regular local ring is necessarily an integral domain.

(b) Give an example to show that (a) fails if we assume instead that \(A \) is regular.

(c) Use (a) to show that if \(X \subseteq Y \) is a closed subscheme, with both \(X \) and \(Y \) regular and irreducible, then \(X \) is necessary a local complete intersection in \(Y \).

Exercise 4. Do Hartshorne, Exercise 9.1 of Chapter III.

Exercise 5. Do Hartshorne, Exercise 9.3 of Chapter III.