We begin by introducing the sheaf of analytic functions on X_{an}; this plays a role in understanding smooth and étale morphisms similar to that of the analytic topology for proper and separated morphisms.

Exercise 1. Let X be a scheme of finite type over Spec \mathbb{C}, with associated analytic topological space X_{an}.

(a) First suppose that X is affine, and fix a closed imbedding $X \subseteq \mathbb{A}^n_{\mathbb{C}}$, so that $X_{an} \subseteq \mathbb{C}^n$ has the subset topology. Let I be the ideal of polynomials defining X. For any open $U \subseteq X_{an}$, we define

$$O_{X}^{an}(U) = (\lim_{\to} O_{\mathbb{A}^n_{\mathbb{C}}}(V))/(I),$$

where V ranges over open subsets (in the analytic topology) of \mathbb{C}^n such that $V \cap X = U$, and $O_{\mathbb{A}^n_{\mathbb{C}}}$ denotes the sheaf of analytic functions on $\mathbb{A}^n_{\mathbb{C}}$ in the usual sense. That is, we take the \mathbb{C}-algebra of all analytic functions defined on some V, with two equivalent if they agree on some smaller V, and we mod out by the ideal generated by I.

Show that this gives a well-defined sheaf on X_{an}, which depends only on X and not the imbedding into $\mathbb{A}^n_{\mathbb{C}}$. Conclude that for any X, we have a unique sheaf of \mathbb{C}-algebras O_{X}^{an} defined by the condition that for any open affine U, we have that $O_{X}^{an}|_U$ agrees with the sheaf $O^{an}|_U$ constructed above.

(b) Show that O_{X}^{an} gives X_{an} the structure of a locally ringed space, with local rings having residue field \mathbb{C}, and that for any $x \in X_{an}$, the residue map $O_{X,x}^{an} \to \mathbb{C}$ corresponds to evaluation of functions at x.

(c) Show that a morphism $f : X \to Y$ of schemes of finite type over Spec \mathbb{C} gives a morphism of locally ringed spaces, but not necessarily conversely. [This is a fancy way of saying that every polynomial is an analytic function, but not conversely]

Exercise 2. Do Hartshorne, Exercise 10.1 of Chapter III.

The following exercises form the beginnings of deformation theory.

Exercise 3. Do Hartshorne, Exercise 8.6 of Chapter II, but using the relationship between regularity and smoothness (write this out carefully, and discuss which hypotheses are and are not necessary).

Exercise 4. Do Hartshorne, Exercise 8.7 of Chapter II.