Exercise 1. (Chevalley’s theorem) Do Hartshorne, Exercise 3.19 of Chapter II.

Exercise 2. (Chow’s lemma) Do Hartshorne, Exercise 4.10 of Chapter II.

Exercise 3. Show that a topological space \(X \) is Hausdorff if and only if the diagonal map \(X \to X \times X \) is closed.

Exercise 4. (Extra credit) Show that a topological space \(X \) is quasi-compact if and only if for every topological space \(Z \), the projection map \(X \times Z \to Z \) is closed.

For the following exercises, let \(X \) be of finite type over \(\mathbb{C} \). You may use without proof (we will give a proof of this later) the following:

Theorem 5. Let \(U \) be a Zariski open subset of \(X \). The Zariski closure \(\bar{U} \subseteq X \) has preimage in \(X_{\text{an}} \) precisely equal to the closure (in the analytic topology) of the preimage of \(U \).

Exercise 6. Show that if \(X \) is disconnected in the Zariski topology, then \(X_{\text{an}} \) is disconnected in the analytic topology.

Exercise 7. Show that a subset \(U \) of \(X \) is Zariski closed if and only if it is constructible and its preimage in \(X_{\text{an}} \) is closed.

Hint: for the following two exercises, you will need to use Chevalley’s theorem and Chow’s lemma.

Exercise 8. Show that \(X \) is separated over \(\text{Spec} \, \mathbb{C} \) if and only if \(X_{\text{an}} \) is Hausdorff.

Exercise 9. Show that \(X \) is proper over \(\text{Spec} \, \mathbb{C} \) if and only if \(X_{\text{an}} \) is compact (i.e., quasi-compact and Hausdorff).

Exercise 10. Show that \(\text{Spec} \, \mathbb{C} \) is not universally closed. Hint: consider \(Z = \text{Spec} \, \mathbb{Z} \).