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APPLICATIONS
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We describe a criterion for closed immersions in terms of injectivity on points
and on tangent spaces. This includes a more general version of the criterion in
Hartshorne [1], from which we deduce his version. Finally, we state an even simpler
version in the special case of curves, and use it to give some applications of the
Riemann-Roch theorem.

1. The criterion

The general idea is that we wish to produce a criterion for immersions in terms
of injectivity of points and of tangent spaces. However, we immediately see that
this is not quite possible:

Example 1.1. Let C ⊆ A2
k be the nodal cubic plane curve given by y2 = x3 + x2,

where k is some algebraically closed field. Let C̃ be its normalization; then C̃ ∼= A1.
Finally, let D be the open subcurve of C̃ obtained by removing one of the two points
lying over the node of C. We consider the morphism D → A2

k. Via an explicit
parametric form, it is easy to check that this morphism is injective both on points
and on tangent spaces. However, we also see that the map is not an immersion: for
instance, an immersion would give an isomorphism of D onto its image, but while
D is non-singular, its image has a node.

It turns out that the way to salvage such a criterion is to restrict our attention
to closed immersions. However, we see immediately that it is not enough to simply
require that the morphism in question be closed: indeed, the morphism of the above
example is also closed, as the only closed subsets of D are finite collections of closed
points, which maps to closed subsets of A2

k. We will remedy this by restricting our
attention to morphisms which are not just closed, but universally closed, and in
fact proper. Since every closed immersion is proper, we will still be able to obtain
an “if and only if” criterion, under the mild hypothesis that the schemes in question
are locally Noetherian.

Proposition 1.2. Let f : X → Y be a morphism, with Y locally Noetherian.
Then f is a closed immersion if and only if f is proper, and both of the following
conditions hold:

(i) (Strong injectivity on points) For each y ∈ Y , there is at most one x ∈ X

such that f(x) = y, and furthermore k(y)
∼

→ k(x) under the induced map.
(ii) (Injectivity on tangent spaces) For each x ∈ X, the induced map Tx(X) →

Tf(x)(Y ) is injective.

Note that the last part of (i) justifies the existence of the map on tangent spaces
in (ii).
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The proof of the proposition rests on the following three ingredients: a trivial
topological lemma, an easy lemma in commutative algebra, and a theorem which
is quite non-trivial in general, but not so difficult in the case which we will mainly
use it, which is morphisms of projective varieties.

Lemma 1.3. Let f : X → Y be a continuous map of topological spaces, and suppose
that f is injective and closed. Then f is a homeomorphism onto a closed subset of
Y .

Lemma 1.4. Let f : A → B be a local homomorphism of Noetherian local rings,
and suppose that the following conditions hold:

(i) f induces an isomorphism A/mA → B/mB;
(ii) f induces a surjection mA → mB/m

2
B;

(iii) f makes B into a finite-generated A-module.

Then f is surjective.

Proof. This is an easy application of Nakayama’s lemma: see Lemma II.7.4 of
[1]. �

Theorem 1.5. Let f : X → Y be a proper morphism, with Y locally Noetherian,
and F a coherent sheaf on X. Then f∗F is coherent on Y .

See Corollary II.5.20 for the case of projective varieties over a field. The general
statement is the i = 0 case of Theorem 3.2.1 of [3].

Proof of proposition. We leave as an exercise the statement that if f is a closed
immersion, then f is proper and satisfies both the asserted conditions. For the
converse, the first observation is that by the topological lemma above, properness
and (i) imply that on underlying topological spaces f is a homeomorphism onto a
closed subset of Y . It therefore suffices to check that f♯ : OY → f∗OX is surjective,
which may be checked on stalks. Fix x ∈ X, with y = f(x). Because f is a
homeomorphism onto its image, (f∗OX)y = OX,x, so we just need to check that
the induced map on stalks OY,y → OX,x is surjective. But the hypotheses (i) and
(ii) imply that conditions (i) and (ii) of the above algebra lemma are satisfied, and
the theorem above implies that f∗OX is coherent on Y , and hence OX,x is finitely
generated as a OY,y-module. Therefore the lemma implies the desired surjectivity,
and we are done. �

If we work with schemes of finite type over a field, we can strengthen Proposition
1.2 as follows:

Proposition 1.6. In the situation of Proposition 1.2, suppose that f is a morphism
of schemes of finite type over Spec k, for some field k. Then in (i) and (ii) it is
enough to consider only the closed points of X and Y .

In particular, if further k = k̄, we have that f is a closed immersion if and only
if it is proper, injective on closed points, and injective on tangent spaces at closed
points.

The proof is left as an exercise.
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2. Linear series and morphisms to projective space

Recall that global sections of line bundles are closely related to morphisms of a
variety to projective space:

Theorem 2.1. Let X be a scheme over Spec k. Then morphisms X → Pn
k over

Spec k are in bijection with equivalence classes of tuples (L, (s0, . . . , sn)), where L
is a line bundle on X, and si ∈ H0(X,L), such that for each x ∈ X, there is some
i with si 6∈ mxLx.

(L, (s0, . . . , sn)) ∼ (L′, (s′0, . . . , s
′

n))

if there exists an isomorphism of sheaves α : L
∼

→ L′ such that α(si) = s′i for all i.
The correspondence is induced by associating to each morphism f : X → Pn

k the
line bundle f∗O(1), with global sections f∗(Xi), where X0, . . . , Xn are the coordi-
nate forms on Pn

k .

Recall that if X is a scheme, and L a line bundle on X, with s ∈ H0(X,L), then
we have an associated effective Cartier divisor on X, and hence a closed subscheme
of X, which we will denote by Z(s). This should be thought of as the closed
subscheme on which s vanishes; its points are the points x ∈ X with s ∈ mxLx.

We make the following basic observations:

Proposition 2.2. Let f : X → Y be a morphism of schemes, and L a line bundle
on Y . Then given s ∈ H0(Y,L), we have that Z(f∗s) = f−1(Z(s)) (as closed
subschemes of X).

Proposition 2.3. Let f : X → Pn
k be a morphism given by (L, (s0, . . . , sn)), with

X a scheme over Pn
k . Then:

(i) f is degenerate; i.e., factors through some hyperplane H ⊆ Pn
k , if and

only if the si are linearly dependent.
(ii) Composition of f with a linear change of coordinates Xi 7→

∑
j ai,jXj cor-

responds to applying the same transformation to the si.

The first proposition is checked easily from the fact that L is locally isomorphic
to OY , and left as an exercise.

Part (i) of the next proposition then follows, since f factors through a hyper-
plane H if and only if f−1(H) = X, and writing H as the zero locus of a linear
combination

∑
aiXi ∈ H0(Pn

k ,O(1)), by the first proposition this is true if and
only if the pullback section

∑
i aisi is indentically 0.

(ii) follows immediately from the above theorem.
Thus, if f is non-degenerate, and V :=< s0, . . . , sn >, then composing with a

change of coordinates is equivalent to a change of basis of V . Thus, if we only care
about f up to automorphism of Pn

k , it is enough to remember the space V rather
than the choice of basis si. This motivates the following classical definitions:

Definition 2.4. A linear series (of dimension n) on X is a pair (L, V ), with
V ⊆ H0(X,L), and dimk V = n + 1. We say x ∈ X is a base point of (L, V ) if
for every s ∈ V , we have s ∈ mxLx.

We see immediately from the above proposition that:

Corollary 2.5. Given a scheme X over Spec k, pullback of O(1) and coordinate
forms induces a bijection from the set of non-degenerate morphisms X → Pn

k over
Spec k, up to linear change of coordinate on Pn

k , to the set of basepoint-free linear
series of dimension n on X.
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We will want to know:

Lemma 2.6. If (L, V ) is a linear series on a scheme X, the locus of base points
of (L, V ) is naturally a closed subset of X.

Proof. We have already associated a closed subscheme of X to the vanishing locus
of any section s ∈ V . The base locus is thus an intersection of closed subsets, and
hence closed. �

We can translate our criterion for closed immersions into the context of linear
series as follows:

Proposition 2.7. Let X be a proper scheme of finite type over Spec k, with k = k̄,
and suppose we are given a linear series (L, V ) of dimension n. This induces a
closed immersion X →֒ Pn

k if and only if:

(i) for each x, x′ ∈ X distinct closed points, there exists a section s ∈ V with
s ∈ mxLx, but s 6∈ mx′Lx′ ;

(ii) for each x ∈ X closed, the set of s ∈ V with s ∈ mxLx spans the k-vector
space mxLx/m

2
xLx.

Proof. First note that by the above lemma, it is enough to check that (L, V ) is
basepoint free on closed points, and this follows from (i). Next, since X is proper,
if we write f : X → Pn

k for the morphism induced by (L, V ), then f is automatically
proper (see Corollary II.4.2(e) of [1]). By Proposition 1.6, it suffices to see that
(i) and (ii) imply that f is injective on closed points and their tangent spaces,
respectively.

(i) is satisfied if and only if for any x, x′ ∈ X distinct closed points, we have
s ∈ V with s vanishing at x but not x′; this is equivalent to the existence of a
hyperplane H ⊆ Pn

k such that f−1(H) contains x but not x′, or equivalently, with
f(x) ∈ H but f(x′) 6∈ H , and this in turn is equivalent to having f(x) 6= f(x′).

On the other hand, (ii) is clearly equivalent to surjectivity of

f∗ : mf(x)O(1)f(x)/m
2
f(x)O(1)f(x) → mxLx/m

2
xLx,

which one can check is equivalent to surjectivity of the map induced by f on
cotangent spaces, which in turn is equivalent to injectivity on tangent spaces. We
therefore conclude the desired statement from Proposition 1.6. �

3. The case of curves

From this point on, we let C be a smooth, proper, and geometrically connected
curve over Spec k, of genus g. Given a field k′ ⊇ k, we denote by Ck′ the base
change C ×Spec k Spec k′ over Spec k′.

We begin with a brief discussion of the degree of a linear series:

Definition 3.1. We define the degree of a linear series (L, V ) on C to be the
degree of L.

Since the degree of a line bundle L is by definition equal to the degree of the
divisor associated to a section s of L, we see in particular that if (L, V ) is basepoint
free, hence induces a morphism f : C → Pn

k , the degree is also given as the degree
of the effective divisor f∗(H) for H any hyperplane in Pn

k .



A CRITERION FOR CLOSED IMMERSIONS AND APPLICATIONS 5

Example 3.2. Suppose that (L, V ) is a basepoint-free 1-dimensional linear series.
Then its degree is the length of any fiber of the corresponding map f : C → P1

k,
which we saw on last semester’s final exam is the same as the degree as a morphism
of curves (i.e., the degree of the induced extension of function fields).

Example 3.3. Suppose that (L, V ) induces a closed imbedding C →֒ Pn
k . Then

the degree is the length of the intersection of C with a hyperplane H .

Example 3.4. If further n = 2, we have that C is V (F ) for some homogeneous
polynomial of some degree d, and hence C intersects H with length d; thus we see
that the degree of (L, V ) is none other than the degree of the polynomial defining
C.

We also want the following observation:

Lemma 3.5. Let (L, V ) be a linear series on C, and P ∈ C(k). Then dimk(V ∩
H0(C,L(−P ))) = dim V − δ, where δ = 0 if P is a base point of (L, V ), and δ = 1
otherwise.

Proof. Since L(−P ) is the subsheaf of L consisting of sections vanishing at P , it
is clear that δ = 0 if P is a base point, and δ > 0 otherwise. It thus suffices
to see that δ ≤ 1. Suppose s ∈ V is non-vanishing at P ; we claim it generates
V/(V ∩ H0(C,L(−P ))). But since k = k(P ), for any s′ ∈ V we have a k-linear
combination of s and s′ vanishing at P , hence in V ∩H0(C,L(−P )), which is what
we needed to show. �

We can finally rephrase our criterion for closed immersions as follows in the case
of linear series on curves:

Corollary 3.6. Let (L, V ) be a linear series on C, and suppose k is algebraically

closed. Then (L, V ) is basepoint free and induces a closed immersion to Pdim V −1
k if

and only if for all P, Q ∈ C not necessarily distinct closed points, we have dim(V ∩
H0(C,L(−P − Q))) = dimV − 2.

Proof. We check the conditions of 2.7. By the above lemma, we must have for any
P, Q that Q is not a base point of (L(−P ), V ∩ H0(C,L(−P ))). For P 6= Q, this
is precisely (i) of the proposition, while for P = Q, this is condition (ii), since we
note that L(−P )P = mPLP , and mPLP/m

2
PLP is one-dimensional. �

The main consequence of Riemann-Roch which we will use is the following:

Corollary 3.7. (Corollary 3.5 of [2]) Let L be a line bundle with degL > 2g − 2.
Then h0(C,L) = degL + 1 − g.

Corollary 3.8. Let L be a line bundle of degree d > 2g on C. Then the linear

series (L, H0(C,L)) defines a closed immersion C →֒ P
d−g
k .

Proof. This is almost immediate from the preceding two corollaries. The only point
that needs to be verified is that it suffices to check that we have a closed immersion
after base change to k̄, which follows from the following two lemmas (see also
Proposition 1.9 and Lemma 3.2 of [2]), whose proofs are left as exercises. �

Lemma 3.9. X be a scheme over Spec k, with linear series (L, V ), and k′ a field
containing k. Let X′ and (L′, V ′) be the base change to k′. Then (L, V ) is basepoint
free on X if and only if (L′, V ′) is basepoint free on X′.
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Lemma 3.10. Let f : X → Y be a morphism of schemes over Spec k, and k′ a
field containing k. Let f ′ : X′ → Y ′ be the base change to k′. Then f is a closed
immersion if and only if f ′ is a closed immersion.

We conclude with several elementary corollaries on genus 0 and 1 curves that
make no direct reference to linear series or the cohomological machinery.

Corollary 3.11. Suppose that C has genus 0. Then C ∼= P1
k if and only if C(k) 6= ∅.

Proof. Surely, if C ∼= P1
k, then C(k) 6= ∅. Conversely, suppose P ∈ C is a k-valued

point. Then P defines a divisor of degree 1, so OC(P ) is a line bundle of degree 1,
and by Corollary 3.8 defines a closed immersion C →֒ P1

k. But since C and P1
k are

both curves, this must be an isomorphism. �

Example 3.12. Note that it is not automatic that C(k) 6= ∅: consider the plane
conic defined by (in homogeneous coordinates) X2

0 + X2
1 + X2

2 = 0 in P2
k. If k = Q,

or for that matter, R, then C has no k-valued points. However, one checks that C
does have genus 0 (for instance, by checking that over the algebraic closure, there
is an isomorphism with P1

k̄
).

However, the above example is in essence the only way a genus 0 curve can fail
to be P1

k:

Corollary 3.13. Suppose C has genus 0. Then C can be realized in P2
k as a plane

conic.

Proof. By Corollary 3.8, it suffices to produce a line bundle on C of degree 2. But
we observe that Ω1

C/k has degree −2, so (Ω1
C/k)∨ has degree 2. �

Combining the previous two corollaries, we find:

Corollary 3.14. Suppose C has genus 0. Then there exists k′ ⊇ k of degree ≤ 2
over k and such that Ck′

∼= P1
k′ .

Proof. If we realize C as a plane conic, we can choose any non-zero values in k for
X1, X2, and then finding a point on C is equivalent to solving a quadratic equation
for X0 over k. �

Corollary 3.15. Suppose C has genus 1, and C(k) 6= ∅. Then C can be realized
in P2

k as a plane cubic.

Proof. Let P ∈ C be a k-valued point. Then by Corollary 3.8, the line bundle
OC(3P ) defines a closed immersion of C in P2

k as a cubic curve. �
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