LIMIT LINEAR SERIES
AN INTRODUCTION

ADAM SORKIN

Our central objects of study are nonsingular curves, which were classically studied via linear series. Limit linear series are a generalization of linear series on nonsingular curves to (certain classes of) reducible curves. Their purpose is to examine how linear series degenerate on a family of smooth curves degenerating to a reducible curve. This degeneration technique can then be used to prove classical theorems about nonsingular curves, for example Brill-Noether and Clifford. We begin with a short review of linear series on a smooth curve. Next we provide an in depth analysis of sections 1 and 2 of [1], then end with a sketch of its remaining 3 sections. The appendix will contain a short derivation of the Brill-Noether number, \(\rho \). We will generally work over \(\mathbb{C} \); at times the subscript will be dropped to simplify notation.

Linear Series Background and EH §0

Linear Series. Let \(Y \) be a nonsingular genus \(g \) curve, projective over \(\mathbb{C} \). We want to analyze \(Y \), and we do so by looking at morphisms \(Y \to Z \) for suitably chosen \(Z \). One’s first hope would be something simple, say Spec \(A \), or possibly \(\mathbb{A}^n_\mathbb{C} \), where we’d most likely choose \(A = \mathbb{C} \). However, morphisms \(Y \to \text{Spec} \; A \) are in bijection with ring maps \(A \to \Gamma(Y, \mathcal{O}_Y) \). And as \(Y \) is projective (or more generally, not affine), its ring of global sections, \(\mathbb{C} \), does not at all characterize its geometry. Our next simplest target is projective space, \(\mathbb{P}^r_\mathbb{C} \).

Suppose we have a \(\mathbb{C} \)-morphism \(\varphi : Y \to \mathbb{P}^r \) of degree \(d \). Then writing \(x_i \) for the global sections generating \(\mathcal{O}_{\mathbb{P}^r}(1) \), it is a fact that \(\varphi^*(\mathcal{O}(1)) \) is a degree \(d \) line bundle on \(Y \) which is generated by the global sections \(\sigma_i = \varphi^*(x_i) \). In fact, the converse holds: any degree \(d \) line bundle \(\mathcal{L} \) on \(X \) generated by global sections \(\sigma_0, \ldots, \sigma_r \) induces a unique degree \(d \) \(\mathbb{C} \)-morphism \(\varphi : X \to \mathbb{P}^r \) such that \(\varphi^*(\mathcal{O}(1)) \cong \mathcal{L} \) and \(\varphi^*(x_i) \cong \sigma_i \). For a proof of this, see [3] II.7.1. Additionally, if we instead consider the vector space (of dimension \(r + 1 \)) spanned by the global sections of \(\mathcal{L} \), then the morphism to projective space is specified only up to a linear change of coordinates, i.e., automorphism, on \(\mathbb{P}^r \).

By a linear series on \(Y \) we mean a pair \(L = (\mathcal{L}, V) \) where \(\mathcal{L} \) is a line bundle on \(Y \) and \(V \) is a vector subspace of the space of global sections \(\Gamma(Y, \mathcal{L}) \); at times \(V \) will be given by a basis \(s_0, \ldots, s_r \) of global sections of \(\mathcal{L} \). By our above discussion, this almost gives a map to projective space: almost, because we need that \(V \) has a basis which globally generates \(\mathcal{L} \). Such a linear series is called basepoint free. If this is not the case, then all global sections of \(V \) vanish (in the fiber of \(\mathcal{L} \)) at some point \(P \in X \). We call such \(P \) a base point of the linear series, and the family of base points the base locus or base divisor \(B \).

One can think of the morphism obtained from a linear series with basepoints \((\mathcal{L}, V) \) in two ways. Away from the base locus, the linear series does give a morphism
to projective space. Hence we always obtain a birational map from a nonsingular curve to the complete variety \mathbb{P}^r. One implicitly obtains a morphism by recalling that every such birational map can be extended, [4] Theorem 2.1.

A more concrete construction is to instead consider the linear series $(\mathcal{L}(D), V)$, where D is the base divisor. Then that ‘same’ subspace of global sections, interpreted now in the twisted sheaf $\mathcal{L}(D)$, is basepoint free, and immediately gives a morphism to \mathbb{P}^r. Moreover, if the degree of the morphism, as constructed above from the birational map, has degree d, then this construction yields a morphism of degree $d - \deg(D)$.

Hence we see that any linear series uniquely determines a degree d morphism to r-dimensional projective space. A g^d_r is a linear series (\mathcal{L}, V) of degree d with vector space of dimension $r + 1$. For a section σ in V, and $P \in Y$ we write $\text{ord}_P \sigma$ to denote the order of vanishing of σ at P.

Claim There are exactly $r + 1$ distinct integers for the orders of vanishing of sections of V.

Proof. Let a denote the highest order of vanishing of sections of V. Consider the subvector space $V(-bP)$ consisting of sections of V vanishing to order at least c at P, where $c \geq 0$. We claim that $V(-bP)/V(-(b+1)P)$ has dimension zero or one. Suppose that $V(-bP) \neq V(-(b+1)P)$, and let t be a local parameter of Y at P. Then there is some $\sigma \in V(-bP) \setminus V(-(b+1)P)$, and we can write $\sigma = t^b \rho$, where ρ is a local section (defined in some neighborhood of P) of \mathcal{L} nonvanishing at P. We show that σ spans the quotient $V(-bP)/V(-(b+1)P)$. Consider any section $\sigma' \in V(-bP)$. Then writing $\sigma' = t^b \rho'$ with ρ' a rational section of \mathcal{L} defined and nonvanishing at P, we must have $b' \geq b$. Then, as $b' - b \geq 0$, the global section $\sigma' = t^{b'-b}(\rho')/\rho(P) \sigma$ vanishes to order at least $b'+1 > b$ at P, and is therefore trivial in $V(-bP)/V(-(b+1)P)$. Hence the quotient space is generated by σ.

Thus we obtain a filtration of our vector space $V \supset V(-P) \supset V(-2P) \supset \cdots \supset V(-aP) \supset V(-(a+1)P) = 0$ where $V(-aP) \neq 0$ and $V(-bP)/V(-(b+1)P)$ has dimension zero or one. After removing duplicates from the left to the right (i.e., if $V(-bP) = V(-(b+1)P)$ remove $V(-bP)$), we are left with a filtration of a vector space such that each consecutive quotient has dimension 1. Thus each vector space in the filtration must decrease dimension by one, and as V is $r + 1$ dimensional, there must be exactly $r + 1$ nontrivial vector subspaces in our filtration.

We label the $r + 1$ distinct orders of vanishing by $a^L_i(P)$ with $i = 0, \ldots, r$, in ascending order and call it the vanishing sequence of L at P. Defining $\alpha^L_i(P)$ to be $a^L_i(P) - i$, the nondecreasing sequence $(\alpha^L_0(P), \ldots, \alpha^L_r(P))$ of (nonnegative) integers is called the ramification sequence of L at P.

Caution: Even if $\{\sigma_i\}$ is a basis for V, it is not always the case that

$$\{\text{ord}_P \sigma_i \} = \{a^L_i(P)\},$$

though we can, for each P, pick a basis whose orders of vanishing are precisely the vanishing sequence. Moreover, it is impossible to choose a basis for V that has this
property everywhere; indeed, if \(\sigma_i \) vanished to order \(a_i^L \) at every \(P \), then \(\sigma_1 \) through \(\sigma_r \) would be identically zero!

We say that \(L \) is unramified at \(P \) if \(\alpha_i^L(P) = 0 \) for all \(i \), otherwise, \(P \) is a ramification point of \(L \). The sum of the ramification sequence at \(P \) is the weight of \(L \) at \(P \):

\[
w^L(P) = \sum_{i=0}^{r} \alpha_i^L(P) = \left(\sum_{i=0}^{r} a_i^L(P) \right) - \left(r + 1 \right)
\]

There are only finitely many ramification points of \(L \). The proof of finiteness comes from the Plucker formula, see [2]. Because \(\alpha_i^L(P) \neq 0 \) only finitely many times, the weight is also nonzero only finitely many times, and hence we can sum the weight over the entire smooth curve. This quantity has a combinatorial description via the Plucker Formula,

\[
\sum_{P \in Y} w^L(P) = \sum_{P \in Y} \sum_{i=0}^{r} \alpha_i^L(P) = (r + 1)d + \left(\frac{r + 1}{2} \right)(2g - 2)
\]

Note that in the case of a basepoint free \(g_1^d \) (a branched cover of \(\mathbb{P}^1 \)), the formula reduces to

\[
\sum_{P \in Y} (a_i^L(P) - 1) = 2d + (2g - 2)
\]

i.e., the Riemann-Hurwitz formula

\[
\chi(Y) = \chi(\mathbb{P}^1)d - \sum_{P \in Y} (e_P - 1)
\]

where \(e_P \) denotes the ramification at \(P \).

EH §0: Preliminaries. By curve we mean a reduced and projective curve over \(\mathbb{C} \) having only ordinary nodes for singularities. Notice this means we can write \(X = Y_1 \cup \cdots \cup Y_n \) as a decomposition into irreducible components (possible as \(X \) is finite type over \(\mathbb{C} \), and hence noetherian), where each \(Y_i \) is a reduced and irreducible (though possible singular) projective curve over \(\mathbb{C} \). By genus of \(X \) we mean the arithmetic genus, \((-1)^{\dim X} \chi(\mathcal{O}_X) - 1 = H^1(X, \mathcal{O}_X)\). With the decomposition of \(X \) as above into irreducible components, on can quickly calculate this genus with the formula

\[
g(X) = \sum_{i=1}^{n} g(Y_i) - \#(\text{components}(X)) + \#(\text{nodes}(X)) + 1
\]

where \(g(Y_i) \) denotes the geometric genus of the normalization of \(Y_i \). This formula leads one to say ‘genus is additive’, as the genus of two curves intersecting in a node is simply the sum of the individual genera.

We define the dual graph of a curve \(X \) as follows: the dual graph has one vertex for each irreducible component of \(X \), and an edge per node, connecting vertices when the corresponding irreducible components intersect. Hence a cusp singularity will give a loop: an edge connecting a vertex to itself.

We say that a curve \(X \) has compact type if its dual graph is a tree. Recall that \(\text{Pic}^0(X) \) denotes the variety of line bundles on \(X \) whose restriction to each irreducible component is degree zero. Equivalently \(X \) is compact type if \(\text{Pic}^0(X) \) is compact. Conceptually, a line bundle on a compact type curve having only ordinary nodal singularities is uniquely determined by its restriction to each irreducible
component. In this case, \(\text{Pic}^0(X) \) is simply the product \(\text{Pic}^0(Y_i) \) over each irreducible component \(Y_i \). Conversely, if \(X \) is not of compact type, then \(\text{Pic}^0(X) \) has more freedom; namely the way in which line bundles are pasted together. As one glues around a loop in the dual graph, one obtains \(\mathbb{C}^* \) worth of choices for gluing the line bundles, and as \(\mathbb{C}^* \) isn’t compact, neither is \(\text{Pic}^0(X) \).

Note that a reducible curve with only ordinarily nodal singularities has compact type if and only if it can be drawn as a tree: there is no loop of intersecting irreducible components \(Y_1 \neq Y_2 \neq \cdots \neq Y_n \) where \(Y_i \cap Y_{i+1} \neq \emptyset \) and \(Y_1 = Y_n \).

EH §1: Limit Series

Let \(X \) be a curve of compact type. Though we can define a linear series on \(X \) in terms of invertible sheaves and a vector subspace of sections, it is actually more fruitful (in the context of deformations) to consider individual linear series on each irreducible component of \(X \). Subject to an elementary intersection inequality, this is exactly how we define a limit series on \(X \).

A crude limit \(g^r_d \), also called a crude limit series, denoted \(L \), on \(X \), is, for each irreducible component \(Y \) of \(X \), a \(g^r_d \) = \((L_Y, V_Y)\) on \(Y \), which we call the \(Y \)-aspect of \(L \). Moreover, we require the Compatibility Condition hold: for any irreducible components \(Y, Z \) of \(X \) which meet at a point \(P \in X \), the vanishing sequences satisfy

\[
\text{(CC)} \quad a^L_Y(i) + a^L_Z(r-i) \geq d
\]

for \(i = 0, 1, \ldots, r \). A crude limit series is refined providing (CC) is an equality at all times. For brevity, we will now refer to a refined crude limit series on \(X \) as a refined limit series, or even shorter, a limit series.

The compatibility condition seems quite mysterious, but the following proposition shows that at least in the case of refined limit series, we are extending linear series.

Proposition (1.1). (Plucker Formula) Let \(X \) be a genus \(g \) curve of compact type. If

\[
\{(L_Y, V_Y) \mid Y \text{ a component of } X\}
\]

is a crude limit \(g^r_d \) on \(X \) then

\[
\sum_{P \in X \text{ Nonsingular}} w^L(P) \leq (r + 1)d + \left(\frac{r + 1}{2} \right)(2g - 2)
\]

with equality if and only if \(L \) is a limit series.

Proof. We prove the case for \(X \) the union of two irreducible components, the general case done by induction. So suppose \(X = Y \cup Z \) with \(Y, Z \) nonsingular irreducible curves of genus \(g_Z, g_Y \), meeting at a point \(P \in X \). Note that \(g_Z + g_Y = g \), as genus
is additive. We have

\[
 w^L_Y(P) = \sum_{i=0}^{r} \alpha_i^L_Y(P) \\
 = \sum_{i=0}^{r} \alpha_i^L_Y(P) - i \\
 \geq \sum_{i=0}^{r} (d - a_{r-i}^L(Z)) - i \\
 = \sum_{i=0}^{r} d - a_{i}^L(Z) - i,
\]

where the inequality follows directly from (CC). Another equality we’ll need is

\[
 \sum_{i=0}^{r} (a_i^L(Z) - i) + \sum_{i=0}^{r} (d - a_i^L(Z) - i) = \sum_{i=0}^{r} (d - 2i) \\
 = (r + 1)d - (r + 1)r \\
 = (r + 1)d + \binom{r + 1}{2} (2g_Z - 2) \\
 + (r + 1)d + \binom{r + 1}{2} (2g_Y - 2) \\
 - \left[(r + 1)d + \binom{r + 1}{2} (2g - 2) \right],
\]

for all \(Q \in Z\). Then we can compute

\[
 \sum_{P \in X^{\text{Nonsingular}}} w^L(P) = \sum_{Q \in Y} w^L_Y(P) + \sum_{Q \in Z} w^L_Z(Q) - w^L_Y(P) - w^L_Z(P) \\
 \leq (r + 1)d + \binom{r + 1}{2} (2g_Y - 2) \\
 + (r + 1)d + \binom{r + 1}{2} (2g_Z - 2) \\
 - \left[\sum_{i=0}^{r} (d - a_i^L(Z) - i) + \sum_{i=0}^{r} (a_i^L(Z) - i) \right] \\
 = (r + 1)d + \binom{r + 1}{2} (2g - 2).
\]

\[\square\]

EH §2: Limits of Linear Series

The whole purpose of this section is to show that, subject to certain hypothesis, given a family of nonsingular curves degenerating to a singular curve, a family of linear series on the nonsingular curves degenerates to a refined limit series over the singular curve. Let \(\pi : X \rightarrow B\) be our family of curves. The hypothesis we impose are collectively called *Situation 2.0*:
We can extend where one, fix a group of inclusions commute. So by base change over all of \(X \) a larger field \(K \) instead, it is a fact that if \(X \) is not defined over \(\mathbb{F} \), so that \(\mathbb{F} \) injects into \(O \). Notice that nonsingularity is not preserved by base change, and so this might introduce singularities on \(X \) (though the fibers of \(X \) remain unchanged). So we allow chains rational curves at nodes of \(X_0 \) in order to smooth \(X \). Hence we may take \((\mathcal{L}_\eta, V_\eta) \) as a linear series on \(X_\eta \).

Claim. We can extend \(\mathcal{L}_\eta \) to a line bundle on \(X \), unique up to twisting by \(\mathcal{O}_X(D) \), where \(D \) is a divisor supported on \(X_0 \).

Proof. Since \(X \) is projective over \(B \), we have that \(X_\eta \) is projective over the field \(\mathbb{F} \). Moreover, \(X_\eta \) is an irreducible variety, and so \(\text{Pic}(X_\eta) \) injects into the class group of \(X_\eta \). Hence we may take \(sL_\eta = \mathcal{O}_{X_\eta}(E) \) for some Weil Divisor \(E \) on \(X_\eta \). Now we extend \(E \) to a divisor \(\overline{E} \) on \(X \) via the map \(P \mapsto \overline{P} \) for each prime divisor \(P \) of \(E \). Finally, as \(X \) is nonsingular over \(B \), we have a correspondence between Weil and Cartier divisors on \(X \), so \(\overline{E} \) is equivalently given by a Cartier divisor on \(X \). Hence \(\mathcal{O}_X(\overline{E}) = \mathcal{L} \) is a line bundle on \(X \) which is immediately seen to restrict to (a sheaf isomorphic to) \(\mathcal{L}_{X_\eta} \) on \(X_\eta \).

Moreover, \(\mathcal{L} \) is unique up to twisting by \(\mathcal{O}_X(D) \), where \(D \) is a divisor supported on \(X_0 \). For let \(\mathcal{L} \) and \(\mathcal{L}' \) be two extensions of \(\mathcal{L}_\eta \). Then fix an isomorphism \(\varphi: \mathcal{L}|_{X_\eta} \to \mathcal{L}'|_{X_\eta} \) and let \(s \) be a rational section of \(\mathcal{L} \). Consider the divisor \(D = \text{Div } s - \text{Div } \varphi(s) \). Now as \(\varphi \) is an isomorphism restricted to \(X_\eta \), we see that \(D \) is supported on \(X \setminus X_\eta = X_0 \). Finally, one can show that \(\varphi \) extends to an isomorphism \(\mathcal{L}' \cong \mathcal{L}(D) \).

It is clear that \(X_0 = \pi^*(\mathcal{O}(0)) = V(\pi^*(t)) \). Hence \(X_0 \) is a globally principal divisor, generated by the vanishing of the global section \(\pi^*(t) \). Then outside of \(X_0 \), \(\pi^*(t) \) is invertible. Hence \(\mathcal{O}_X(X_0) \cong \mathcal{O}_X \) simply by multiplication/division of \(\pi^*(t) \). Therefore twisting by all of \(X_0 \) gives an isomorphic sheaf; to get something new we need to twist by irreducible components of \(X_0 \).

Suppose \(\mathcal{L} \) has degree \(i \) on \(Y \) and \(d-i \) on \(Z \). We will analyze \(\mathcal{L}(Y) \). Notice that \(\mathcal{L}(Y)|_Z = \mathcal{L}|_Z(P) \) as \(Y \cap Z = P \). Then because \(Y + Z = X_0 \) is a principal divisor,
we have \(\mathcal{L}(Y)|_{Y} \cong \mathcal{L}(Y - Y - Z)|_{Y} \cong \mathcal{L}(-Z)|_{Y} = \mathcal{L}|_{Y}(-P) \), again, as \(Y \cap Z = P \).

So we see that \(\mathcal{L}(Y) \) has degree \(i - 1 \) on \(Y \) and \(d - i + 1 \) on \(Z \). Therefore we can have any pair \((i, d - i)\), where \(\mathcal{L} \) is an extension of \(\mathcal{L}_{\eta} \) of degree \(i \) on \(Y \) and \(d - i \) on \(Z \). Now \textit{a priori} there may be two nonisometric extensions of \(\mathcal{L}_{\eta} \) having the same pair of degrees on \(Y \) and \(Z \), but recall that above we showed the extension is unique up to twisting by a divisor supported on \(X_{0} \).

As the structure of divisors on \(X_{0} \) is quite simple, we see immediately that the pair \((i, d - i)\) uniquely specifies the extension of \(\mathcal{L}_{\eta} \). We will write \(\mathcal{L}_{Y} \) for the extension having degree \(d \) on \(Y \) and zero on all other irreducible components of \(X_{0} \).

Again, we use that fact that \(\mathcal{O}_{X}(-nX_{0}) = \pi^{*}(t)^{n} \cdot \mathcal{O}_{X} \) to deduce that \(\mathcal{L}_{Y}|_{X_{\eta}} \) is an \(\mathcal{O} \)-subsheaf of \(\mathcal{L}_{\eta} \), isomorphic to \(\mathcal{L}_{\eta} \) via multiplication by some power of \(\pi^{*}(t) \).

Now that we’ve extended our line bundle to all of \(X \) along a chosen irreducible component \(Y \) of \(X_{0} \), we must extend the vector space of sections \(V_{\eta} \) to all of \(X \).

Next we restrict both to \(Y \) in order to obtain a linear series on \(Y \).

\textbf{Claim} The global sections of \(\pi_{*}(\mathcal{L}_{Y}) \) form a free \(\mathcal{O} \)-module.

\textbf{Proof}. Because \(\pi \) is projective, the pushforward remains quasicoherent. So all that remains is to show freeness of the global sections of \(\pi_{*}(\mathcal{L}_{Y}) \). We have that \(\pi_{*}\mathcal{L}_{Y} \) is \(M \) for some finitely generated \(\mathcal{O} \)-module \(M \). Now \(\mathcal{O} \) is a principal ideal domain, so by the classification of finitely generated modules over \(\mathcal{O} \)-PIDs, we have that \(M \) is free if and only if \(M \) is torsion free. Let \(\sigma \in M \) be a global section. Then if \(t \cdot \sigma = 0 \), where, remember, \(t \) generates the maximal ideal of \(\mathcal{O} \), then \(t \cdot \sigma|_{X_{\eta}} = 0 \). But on \(X_{\eta} \), \(t \) is a unit. Hence we’d have \(\sigma|_{X_{\eta}} = 0 \), which would imply \(\sigma = 0 \) to begin with, as \(\mathcal{L}_{Y} \) is invertible on an integral scheme \(X_{\eta} \), and so torsion free. Therefore \(M \) is torsion free, and so the Spec \(\mathcal{O} \)-module is free. \(\Box \)

Define \(V_{Y} = V_{\eta} \cap \pi_{*}\mathcal{L}_{Y} \), i.e, sections in \(V_{\eta} \) extending to global sections of \(\mathcal{L}_{Y} \) under the isomorphism \(\mathcal{L}_{Y}|_{X_{\eta}} \cong \mathcal{L}_{\eta} \) chosen above. Notice this is a free \(\mathcal{O} \)-module of rank \(r + 1 \). Then we restrict these sections to lie in the special fiber, so \(V_{Y} = V_{Y} \otimes \kappa(0) = V_{Y} \otimes \mathcal{O}/t \) is a vector space of rank \(r + 1 \). Notice the rank stays constant, because we had a free module to begin with. Our construction is now complete: \((\mathcal{L}_{Y}|_{Y}, V_{Y}) \) is now a \(t^{n} \)-module on \(Y \).

For each irreducible component \(Y \subseteq X_{0} \), the linear series \((\mathcal{L}_{Y}|_{Y}, V_{Y}) \) is called the \textit{Y-aspect} of \((\mathcal{L}_{\eta}, V_{\eta}) \), and the collection \(L \) of \(Y \)-aspects over each irreducible component is the \textit{limit} of \((\mathcal{L}_{\eta}, V_{\eta}) \).

We now analyze the limit \(L \), ultimately showing it is always a crude limit and providing a characterization for it to be a refined limit.

For \(\sigma \in V_{Y} \), let \(\tilde{\sigma}_{Y} \) denote \(t^{n}\sigma \), where \(n \) is the least integer such that \(t^{n}\sigma \in \tilde{V}_{Y} \), and let \(\sigma^{Y} \) be the image of \(t^{n}\sigma \) in \(V_{Y} \). Let \(D_{\sigma} \) be the closure in \(X \) of the divisor \((\sigma) \) of \(X_{\eta} \).

\textbf{Proposition} (2.2). If \(Y \) and \(Z \) are components of \(X_{0} \) meeting at a point \(P \) and \(\sigma \in V_{\eta} \), then

\[\text{ord}_{P} \sigma^{Y} + \text{ord}_{P} \sigma^{Z} = d + (D_{\sigma}Y)_{P} + (D_{\sigma}Z)_{P} \geq d. \]

Notice that \(\tilde{\sigma}^{Y} \) is a section of \(\mathcal{L}_{Y} \), and \(\sigma^{Y} \) is the restriction of a section of \(\mathcal{L}_{Y} \) to \(X_{0} \).

Recall \(\mathcal{L}_{Y} \) has degree \(d \) and \(Y \) and zero on irreducible components \(Z \) not equal to \(Y \). If \(\sigma \) was not zero to begin with, then by construction (i.e., our choice of \(n \) above), \(\tilde{\sigma}^{Y} \) cannot vanish on both \(Y \) and \(Z \). Now if \(\sigma^{Y} \) vanishes on \(Y \), then it vanishes at \(P \). Because \(\mathcal{L}_{Y} \) has degree zero on \(Z \), it would follow that \(\sigma_{Y} \) vanishes...
on \(Z \) also. Therefore we can conclude \(\sigma^Y \) doesn’t vanish on \(Y \), and similarly \(\sigma^Z \) doesn’t vanish on \(Z \).

Proof. For simplicity, we again take \(X = Y \cup Z \) with \(Y \cap Z = P \). Suppose \(\tilde{\sigma}^Y \) vanishes along \(Z \) to order \(a \) and \(\tilde{\sigma}^Z \) vanishes along \(Y \) to order \(b \). Because \(\text{ord}_P \sigma^Y = (Y,\{\tilde{\sigma}^Y = 0\})_P = a + (D_{\sigma} Y)_P \) and \(\text{ord}_P \sigma^Z = (Z,\{\tilde{\sigma}^Z = 0\})_P = b + (D_{\sigma} Z)_P \), it suffices to prove \(a + b = d \).

The key insight is

\[
L_Y(-dZ) = L_Z.
\]

To see this, notice that \(L_Y \) has degree \(d \) on \(Y \) and 0 and \(Z \), while \(L_Y(-dZ)|_Z = L_Y(dY)|_Z = L_Y(Z(dP)) \) has degree \(d \) on \(Z \), and so \(L_Y(-dY)|_Y \) has degree zero on \(Y \).

Now as \(\tilde{\sigma}^Y \) vanishes in \(Y \) to order \(a \), we have that \(\tilde{\sigma}^Y \in L_Y(\cdot -a) \), and interpreted in this sheaf, vanishes to order zero on \(Z \). Using our key insight above to view \(L_Y(-aZ) \) as \(L_Y((-d-a)Z) \), we have that \(t^{d-a}\tilde{\sigma}^Y \in L_Y(-dZ) = L_Z \). Then because \(t^{d-a}\tilde{\sigma}^Y \) vanishes to order zero in the sheaf \(L_Y(-dZ) = L_Z \) and because a section of \(L_Z \) is determined by its restriction to \(L_Z \), we can conclude that \(t^{d-a}\tilde{\sigma}^Y = \tilde{\sigma}^Z \) as sections of \(L_Z = L_Y(-dZ) \).

Now as \(\tilde{\sigma}^Z \) vanishes to order \(b \) on \(Y \) as a section of \(L_Z \), we can twist these sections by \(t^{-b} \). But we also want to interpret everything in \(L_Y = L_Z(-dY) \) now, so we must twist by \(t^d \). The net effect is that we can multiply our equation by \(t^{-b} \) and interpret the resulting section as an element of \(L_Y = L_Z(-dY) \). Doing so, we obtain

\[
t^{d-b} \tilde{\sigma}^Z = t^{d-b+d-a} \tilde{\sigma}^Y.
\]

Notice that this section doesn’t vanish on \(Y \), for \(\tilde{\sigma}^Z \) vanished on \(Y \) to order \(b \) as a section of \(L_Z \), and we untwisted that vanishing (the multiplication by \(t^d \) was simply to get everything in \(L_Y \)).

The section \(t^{d}\tilde{\sigma}^Y \) also doesn’t vanish on \(Y \), as a section of \(L_Z(-dY) = L_Y(-X_0) \cong L_Y \). Then because we have two sections of \(L_Y \), both coming from \(\sigma \), which don’t vanish on \(Y \), they must be equal. So we can say \(t^{d-b+d-a}\tilde{\sigma}^Y = t^d\tilde{\sigma}^Y \), and hence conclude that \(d = d - b + d - a \), proving the desired equality.

□

Lemma (2.3). (Adapted bases). If \(Y \) and \(Z \) are two irreducible components of \(X_0 \) and \(Q \in Y \), then there exists a basis \(\{\sigma_i\} \) of \(V_{\eta} \) such that

1. \(\{\sigma^Y_i\} \) is a basis of \(V_Y \);
2. \(\{\sigma^Z_i\} \) is a basis of \(V_Z \);
3. \((\text{ord}_Q \sigma^Y_1, \ldots, \text{ord}_Q \sigma^Y_r) \) is precisely the vanishing sequence of \((L_Y, V_Y) \) at \(Q \).

Proof. Omitted.

□

Remark. A basis such as in lemma 2.3 is said to be adapted to \(Q \in Y \) and \(Z \). Moreover, it follows that if \(\{\sigma_i\} \) is a basis adapted to \(P \in Y \) and \(Z \), where \(P = Y \cap Z \), then \((\text{ord}_P \sigma^Y_1, \ldots, \text{ord}_P \sigma^Y_r) \) is precisely the vanishing sequence of \((L_Z, V_Z) \) at \(P \). Note that the order is reversed.

Lemma (2.4). Suppose that \(a_0 < \ldots < a_r \) are integers. If \(\{b_i\} \) are distinct integers with \(a_i \leq b_i \) for each \(i \), and \(\sigma \) is a permutation such that

\[
b_{\sigma(i)} < \cdots < b_{\sigma(r)}
\]

then \(a_i \leq b_{\sigma(i)} \). Further, if \(a_j = b_{\sigma(j)} \) for some \(j \) then \(\sigma(j) = j \) and hence \(a_j = b_j \).
Proof. This is a typical induction argument. Clearly it is true for \(r = 1 \). Now suppose that \(b_j \) is the largest integer, so that \(\sigma(r) = j \). Then we have \(a_i \leq b_{i-1} \) for all \(i \geq j \). Swapping \(b_j \) with \(b_r \) allows us to apply induction to the first \(r \) terms, giving the result.

Proposition (2.1). \(L \) is a crude linear series.

Proof. Let \(P = Y \cap Z \) be a node of \(X_0 \) and \(\{ \sigma_i \} \) be a basis of \(V_0 \) adapted to \(P \in Y \) and \(Z \). Then the sequence \((\text{ord}_P \sigma_i^Z) \) is, by Proposition 2.2, at least \(d - \text{ord}_P \sigma_i^Y \). Because we are adapted, the vanishing sequence of \((\mathcal{L}_Z|_Z, V_Z) \) is simply a rearrangement of \(\text{ord}_P \sigma_i^Z \). Hence, by Lemma 2.4, we obtain

\[
\text{ord}_P \sigma_{r-i}^Z \geq d - \text{ord}_P \sigma_i^Y.
\]

Proposition (2.5). For a limit \(L \) of \((\mathcal{L}, V) \), the following are equivalent.

1. \(L \) is a limit series.
2. For each node \(P = Y \cap Z \) of \(X_0 \), each free basis \(\check{\sigma}_i^Y \) of \(\check{V}_Y \) adapted to \(P \in Y \) and \(Z \), and each \(\sigma \in \text{span}_{\kappa(0)} \{ \check{\sigma}_i^Y \} \), we have \(\text{ord}_P \sigma^Y + \text{ord}_P \sigma^Z = d \).
3. No ramification points of \((\mathcal{L}, V) \) specialize to a node of \(X_0 \).

Remark. It may be confusing to speak of the \(\kappa(0) \)-span of \(\check{\sigma}^Y \), as the \(\check{\sigma}^Y \in \check{V} \), which is not a \(\kappa(0) \)-vector space. But remember we have \(\check{V} = \pi_*(\mathcal{L}) \cap V \), which we can view as a coherent sheaf coming from a free \(\mathcal{O} \)-module. With this interpretation, the sections \(\check{\sigma}^Y \) are lattice points in the \(\kappa(0) = \mathcal{O}/t \)-vector space \(V = \check{V} \otimes_{\mathcal{O}} \mathcal{O}/t \).

Proof. \(2 \Rightarrow 1 \) Assume \(L \) is a limit series. Then we have \(a_i^L = a_j^L(P) + a_{r-i}^L(P) = d \). Now let \(\sigma_i \) be a basis of \(V_0 \) adapted to \(P \in Y \) and \(Z \). Then, as in the proof of 2.1, the extensions \(\check{\sigma}_i^Y \) and \(\check{\sigma}_i^Z \) form bases of \(V_Y \) and \(V_Z \) such that

\[
\text{ord}_P \sigma_i^Y + \text{ord}_P \sigma_i^Z = d,
\]

for the vanishing sequence of \(V_Z \) at \(P \) is given, in descending order, by \(\text{ord}_P \sigma_i^Z \).

Now fix \(\sigma \in \text{span}_{\kappa(0)} \{ \check{\sigma}_i^Y \} \). Then \(\text{ord}_P \sigma = \text{ord}_P \sigma_i^Y \) for some fixed \(i \). Then we can write

\[
\sigma = s_i \check{\sigma}_i^Y + \sum_{j>i} s_j \check{\sigma}_j^Y
\]

with \(s_i \neq 0 \) and \(s_j \in \kappa(0) \) for \(j \geq i \), since lower order terms (i.e., terms with \(\check{\sigma}_k^Y \) with \(k < i \)) would make \(\text{ord}_P \sigma < \text{ord}_P \check{\sigma}_i^Y \).

Viewing \(\sigma \) now in the \(\kappa(0) \)-span of \(\{ \check{\sigma}_i^Z \} \), recalling that the vanishing orders are reversed as in our remark following Proposition 2.3, we can conclude that \(\sigma \) can be written as a \(\kappa(0) \)-combination of \(\check{\sigma}_j^Z \) for \(j \leq i \). Hence we can conclude \(\text{ord}_P \sigma^Z = \text{ord}_P \sigma_i^Z \). Therefore \(\text{ord}_P \sigma^Y + \text{ord}_P \sigma^Z = \text{ord}_P \sigma_i^Y + \text{ord}_P \sigma_i^Z = d \).

1 \(\iff \) 3 Follows from a semicontinuity argument, namely, a ramification point \(Q \) of \((\mathcal{L}, V) \) having weight \(w \) which specializes to a smooth point of \(P \in Y \) of \(X_0 \) will immediately give the inequality \(w^L(P) \geq w \).

Proposition (2.6). Let \((\mathcal{L}, V) \) be a line bundle on \(X_n \). After blowing up nodes of \(X_0 \) sufficiently often, making a finite base change, and resolving the resulting singularities of \(X \), we obtain a family \(X''/B' \) such that \(X'' \rightarrow B' \) satisfies situation 2.0, having generic fiber \(X''_n = X_n \), special fiber \(X'_0 \) derived from \(X_0 \) by inserting
chains of rational curves at nodes of X_0, and such that the limit of $(\mathcal{L}_\eta, V_\eta)$ on X'_0 is a limit series.

Proof. Omitted. \hfill \square

§3: EQUATIONS AND DEFORMATIONS

Let X_0 be a curve of compact type with a limit linear series g^r_d. We say this limit can be smoothed if it is the limit of a linear series $(\mathcal{L}_\eta, V_\eta)$ on a family $X \to B$ satisfying situation 2.0. There are three main results in this section; roughly stated they are:

1. Every g^1_d can be smoothed;
2. Not every g^r_d can be smoothed;
3. The family of limit g^r_d's over X_0 which can be smoothed is a fine moduli space (i.e., scheme).

More technically, the content of 1 is that not only can limit g^1_d's be smoothed, but the smoothing can be done such that ramification indices away from the nodes of X_0 are preserved. This is Proposition 3.1.

To specify more precisely how the ramification occurs in the smoothing, we introduce the following notation. A sequence of integers $b = (b_0, \ldots, b_r)$ with $0 \leq b_0 \leq \cdots \leq b_r \leq d - r$ is a ramification index (or sequence) of type (r, d). For $P \in X_0$ a smooth point, a limit g^r_d satisfies the ramification condition (P, b) if the ramification sequence of g^r_d at P is termwise $\geq b_i$. For b^1, \ldots, b^s ramification indices of type (r, d), the adjusted Brill-Noether number ρ is

$$\rho(g, r, d; b^1, \ldots, b^s) = (r + 1)(d - r) - rg - \sum_{i,j} b^i_j.$$

A smoothing family X/B is a family of curves such that

- $\pi: X \to B$ is a flat and proper map having genus g curves of compact type as fibers;
- There are sections $p_1, \ldots, p_s: B \to X$ such that there exists a relatively ample divisor on X with support disjoint from the images of all the p_i; [What is a relatively ample divisor?]
- B is irreducible;
- The irreducible components of the singular locus of π map isomorphically onto their image in B;
- The images of the sections p_i are disjoint and lie in the smooth locus of π.

[Added by Advisor] X is nonsingular, B is regular, and X is regular at nodes smooth generically on B [I'm not sure what this last statement means].

We can actually strengthen the statement of 3. Not only is the family of smoothable g^r_d's a fine moduli space, but the family of smoothable g^r_d's having proscribed ramification at marked points is also a fine moduli space. The statement, in all its technical glory, is

Theorem (3.3). Let $\pi: X \to B, p_1, \ldots, p_s: B \to X$ be a smoothing family, with b^1, \ldots, b^s ramification indices of type (r, d). Then there exists a scheme $G = G^r_d(X/B; (p_i, b^i))$, quasiprojective over B and compatible with base change such that the fibers G_Q are families of g^r_d's over X_Q satisfying ramification conditions
Additionally, every component of G has dimension at least $\dim B + \rho$. Finally, if
\[\sum_{i,j} b_{ij} = (r + 1)d + \binom{r + 1}{2}(2g - 2), \]
the maximum possible, then G is proper over B.

With this theorem, one can now say something about which refined g^r_d’s are smoothable. A sufficient condition is, roughly, for the smoothing family as above to have only reducible fibers, and the dimension of the component of G in which g^r_d lies has dimension $\dim B + \rho$.

Theorem (3.4). Consider a smoothing family and ramification indices as above, such that all fibers X_Q are reducible curves, and L a refined g^r_d in a fiber Q such that the component of G in which Q lies has dimension $\dim B + \rho$. Then L smooths to desired ramification: there is a 1-parameter family X_t of curves in X with $X_0 = X_Q$ and X_t smooth for $t \neq 0$ and a family of linear series L_t satisfying the ramification conditions $((p_i, b^i))$ having limit $L_0 = L$.

One special case of Theorem 3.4 is when B is zero dimensional. If that is the case, not only can we smooth every g^r_d, but we can smooth through any nearby curve, not just a 1-paramenter family in G.

[What does nearby curve mean, precisely? That X_0 is near X_1 if there is some family X_t of schemes with X_1 deforming to X_0?]

Corollary (3.5). If all irreducible components of $G = G^r_d(X/B; ((p_i, b^i)))$ have dimension ρ, then every g^r_d on X satisfying ramification conditions $((p_i, b^i))$ can be smoothed to any nearby curve, with smoothing done so as to maintain ramification conditions at nearby points.

Remark. If we specialize this theorem to the fiber over a closed point of B, we obtain a powerful result about curves. In the scheme G as above with 0 a closed point on B, observe that G_0 is a family of limit linear series on X_0, a curve. Then if G_0 has dimension exactly ρ, every limit linear series (having the correct ramification) can be smoothed to nearby curves X_η of X.

The Brill-Noether number ρ and its generalization

The formula for ρ given in §3 currently lacks motivation. This section attempts to correct that by providing a derivation of ρ where ramification conditions are absent.

Since we are looking at g^r_d’s, it is natural to step back and ask if the parameter space $G^r_d(C/k)$ of all linear series having degree d and rank $r + 1$ is a scheme. Here C is a smooth projective curve over a field k of genus g. We might first begin by looking at the degree d line bundles on C, $\text{Pic}^d(C/k)$. At this point we are using $\text{Pic}^d(C/k)$ to simply denote the set of line bundles having degree d on k. However, we can equip this set with more structure, viewing $\text{Pic}^d(\cdot/k)$ as a contravariant functor from schemes over k to sets given by
\[T \mapsto \text{Pic}^d(C \times_k T/k)/\text{Pic}(T/k). \]

Under mild hypothesis, [what they are I don’t know], this functor is representable. Hence it is given by a pair, which we abuse notation and denote by $(\text{Pic}^d(C/k), \mathcal{L})$.
Thus \(\text{Pic}^d(C/k) \) is a \(k \)-scheme whose points correspond to degree \(d \) line bundles on \(C \) and \(L \in \text{Pic}^d(\text{Pic}^d(C/k)) \). Let us be clear \(L \) is not a line bundle on \(C \), but a line bundle on \(\text{Pic}^d(C/k) \times_k C \). We will use later the not-trivial fact that the Picard scheme \(\text{Pic}^d(C/k) \) has dimension \(g \). Also, let \(p_1 \) denote the morphism \(\text{Pic}^d(C/k) \times C \to \text{Pic}^d(C/k) \) and \(p_2 \) the morphism to \(C \).

We introduced the Picard scheme because we would like to view this part: is \(\text{Pic}^d(C/k) \times_k C \) universal in the sense of the representation of the grassmannian? Notice [I think] for each degree line bundle \(L \) on \(C \), the stalk of \((p_1)_*L \) on the scheme \(\text{Pic}^d(C/k) \) are all rank \(r \) sub-bundles of the pushforward \(\left((p_1)_*L \right)_\rho \). Notice \(\left((p_1)_*L \right)_\rho \) are precisely the global sections of \(E \) on \(C \).

Now if we took \(d \) large (specifically, \(d > 2g - 2 \), the degree of the canonical divisor on \(C \)), then for any degree \(d \) line bundle \(E \) on \(C \), we see the stalk of the pushforward \(\left((p_1)_*L \right)_E \) are precisely the global sections of \(E \) on \(C \). Then by Riemann-Roch, we have that the dimension of the space of global sections of \((p_1)_*L \) is \(d - g + 1 \).

Now we can compute the dimension of \(\text{Gr}_d(C/k) \). It is another fact that the formula for the relative dimension of the grassmannian of rank \(r + 1 \) subbundles of \(\left((p_1)_*L \right)_\rho \) is \((r + 1)(d + 1 - g - (r + 1)) \). Then as this is a sheaf over \(\text{Pic}^d(C/k) \), we must add in the dimension of the Picard group to conclude

\[
\dim \text{Gr}_d(C/k) = g + (r + 1)(d + 1 - g - (r + 1)) = (r + 1)(d - r) - rg = \rho.
\]

Now we do a more general case. Letting \(D \) denote an effective divisor on \(C \) of degree greater than \(2g - 2 \). Let \(D' = p_2^*D \), a divisor on \(\text{Pic}^d(C/k) \times C \). That is, if \(D = \sum_P n_PP \) on \(C \), then \(D' = \sum_P n_P p_2^{-1}(P) \). Then \((p_1)_*(L(D')) \) is a vector bundle of rank \(d + \deg D + 1 - g \). [I have no idea why this is true].

Recall that \(\text{Gr}(r + 1, (p_1)_*(L(D'))) \) parametrizes line bundles \(L_0 \) of degree \(d \) on \(C \) together with an \(r + 1 \) dimensional subspace of global sections of \(L_0(D) \). Hence it contains our space of interest, \(\text{Gr}_d(C/k) \).

Now let \(\pi: \text{Gr}(r + 1, (p_1)_*(L(D'))) \to \text{Pic}^d(C/k) \) be the forgetful map, taking a \(g_d \) to its defining sheaf. Let \(\mathcal{F} \subseteq \pi^*(p_1)_*(L(D')) \) be the universal subbundle [I don’t get this part: is \(\mathcal{F} \) universal in the sense of of the representation of the grassmannian?]

[Okay, so I don’t understand any of what follows: I simply typed what I had written down]

Then consider the composition

\[
\mathcal{F} \to \pi^*(p_1)_*(L(D')) \to \pi^*(p_1)_*(L(D'|D'))
\]

induced from the short exact sequence

\[
0 \to L \to L(D') \xrightarrow{f} L(D'|D') \to 0.
\]

We are interested in global sections of \(L \), so we now consider \(\ker f \).

We have that \(\text{Gr}_d(C/k) \) is therefore a closed subscheme of \(\text{Gr}(r + 1, (p_1)_*(L(D'))) \) on which the above composed map is zero. This is a map from a rank \(r + 1 \) bundle, \(\mathcal{F} \), to a bundle of rank \(\deg D \). Thus the imposed constraints force the codimension to not exceed \((r + 1)(\deg D) \). Therefore

\[
\dim \text{Gr}_d(C/k) \geq g + (r + 1)(d + \deg D + 1 - g - (r + 1)) - (r + 1)(\deg D) = \rho.
\]

This is the classic statement of the Brill-Noether theorem: For all smooth curves \(C \), \(\dim \text{Gr}_d(C/k) \geq \rho \). In fact, for general curves (an open dense subset of \(\mathcal{M}_g \)), one has equality.
§4: References

§5: References

Departments of Mathematics, University of California, Davis, CA 95616

E-mail address: azsorkin@math.ucdavis.edu