Theta Bodies Notes

M. Omar*

April 26, 2010

1 Background

We consider the problem of understanding the convex hull of a real variety. Let \(I \subset \mathbb{R}[x_1, \ldots, x_n] \) be an ideal, and \(V_\mathbb{R}(I) \) its real variety. Assume that \(I \) is generated by the polynomials \(\{f_1, \ldots, f_m\} \). The convex hull of \(V_\mathbb{R}(I) \) is cut out by linear functions that are non-negative on \(V_\mathbb{R}(I) \). That is,

\[
\text{conv}(V_\mathbb{R}(I)) = \{x \in \mathbb{R}^n \mid f(x) \geq 0 \ \forall f \text{ non-negative on } V_\mathbb{R}(I)\}
\]

For computational reasons, a natural relaxation of the convex hull can be achieved by lifting the non-negativity condition on linear functions defining the convex hull, to the condition that they are sums of squares in the ideal \(I \). If we further restrict the degrees of the polynomials in the sums of squares representation, then computing this relaxation can be done via semidefinite programming. Such restrictions motivate the following definitions.

Definition 1.1. The polynomial \(f \) is \(k \)-sos mod \(I \) if there exist \(h_1, \ldots, h_t \in \mathbb{R}[x_1, \ldots, x_n] \) all of degree at most \(k \) such that \(f \equiv \sum h_i^2 \mod I \).

Definition 1.2. The ideal \(I \) is \((1, k)\)-sos mod \(I \) if every linear polynomial that is non-negative on \(V_\mathbb{R}(I) \) is \(k \)-sos mod \(I \).

Example 1.3. Consider the ideal \(I = (x_1^2 x_2 - 1) \subset \mathbb{R}[x_1, x_2] \). Then \(\text{conv}(V_\mathbb{R}(I)) \) is the open upper half-plane. Any linear polynomial that is non-negative over \(V_\mathbb{R}(I) \) is of the form \(\alpha x_2 + \beta \) where \(\alpha, \beta \geq 0 \). Now, mod \(I \), \(\alpha x_2 + \beta \equiv (\sqrt{\alpha} x_1 x_2)^2 + (\sqrt{\beta})^2 \), and so \(I \) is \((1, 2)\)-sos.

Definition 1.4. For a given positive integer \(k \), the \(k \)th **theta body** of \(I \) is

\[
\text{TH}_k(I) := \{x \in \mathbb{R}^n \mid f(x) \geq 0 \text{ for every linear } f \text{ that is } k \text{ - sos mod } I\}.
\]

It is immediate that we have the chain of inclusions

\[
\text{TH}_1(I) \supseteq \text{TH}_2(I) \supseteq \cdots \supseteq \text{conv}(V_\mathbb{R}(I)).
\]

If for some positive integer \(k \), we have \(\text{TH}_k(I) = \text{conv}(V_\mathbb{R}(I)) \), then we say \(\text{TH}_k \)-**exact**. Indeed, if an ideal \(I \) is \((1, k)\)-sos, it is automatically \(\text{TH}_k \)-exact.

Lemma 1.5. If \(I \) is \((1,k)\)-sos, then \(I \) is \(\text{TH}_k \)-exact.

*Department of Mathematics, University of California, Davis. Partially supported by Natural Sciences and Engineering Council of Canada Postgraduate Scholarship 281174.
Proof. Let \(s \in \mathbb{R}^n \) be such that \(s \notin \text{conv}(V_{\mathbb{R}}(I)) \). Then by the Separation Theorem (see standard books on convex bodies), there is a linear function \(\ell \) such that \(\ell \) is non-negative on \(\text{conv}(V_{\mathbb{R}}(I)) \) and \(\ell(s) < 0 \). Since \(I \) is \((1,k)\)-sos, \(\ell \) is \(k \)-sos, and hence \(s \notin TH_k(I) \). The result follows. \(\square \)

The reverse inclusion in fact does not hold.

Example 1.6. Let \(I = (x^2) \). All linear polynomials non-negative on \(V_{\mathbb{R}}(I) \) are of the form \(\pm a^2 x + b^2 \) for some \(a,b \in \mathbb{R} \). If \(b \neq 0 \), then \((\pm a^2 + b^2)^2 \equiv (\frac{a^2}{b^2} x \pm b)^2 \mod I \). However, when \(b = 0 \), the polynomials \(\pm x \) are not sums of squares mod \(I \), and so are not \((1,k)\)-sos for any \(k \). On the other hand, \(I \) is \(TH_1 \)-exact since it is cut out by the infinite set of inequalities

\[
\pm x + b^2 \geq 0, \ b \in \mathbb{R}, \ b \neq 0.
\]