Pure-cycle Hurwitz factorizations and multi-noded rooted trees

Fu Liu

University of California, Davis

CMS winter meeting, Vancouver, British Columbia
December 4, 2010

This is joint work with Rosena R.X. Du.
PART I:

Definitions and Backgrounds
Hurwitz’s problem

Given integers d and r, and r partitions $\lambda^1, \ldots, \lambda^r \vdash d$, a Hurwitz factorization of type $(d, r, (\lambda^1, \ldots, \lambda^r))$ is an r-tuple $(\sigma_1, \ldots, \sigma_r)$ satisfying the following conditions:

1. $\sigma_i \in S_d$ has cycle type (or is in the conjugacy class) λ^i, for every i;
2. $\sigma_1 \cdot \cdots \cdot \sigma_r = 1$;
3. $M := \langle \sigma_1, \ldots, \sigma_r \rangle$ is a transitive subgroup of S_d.
Hurwitz’s problem

Given integers d and r, and r partitions $\lambda^1, \ldots, \lambda^r \vdash d$, a Hurwitz factorization of type $(d, r, (\lambda^1, \ldots, \lambda^r))$ is an r-tuple $(\sigma_1, \ldots, \sigma_r)$ satisfying the following conditions:

1. $\sigma_i \in S_d$ has cycle type (or is in the conjugacy class) λ^i, for every i;
2. $\sigma_1 \cdots \sigma_r = 1$;
3. $M := \langle \sigma_1, \ldots, \sigma_r \rangle$ is a transitive subgroup of S_d.

The Hurwitz number $h(d, r, (\lambda^1, \ldots, \lambda^r))$ is the number of Hurwitz factorizations of type $(d, r, (\lambda^1, \ldots, \lambda^r))$ divided by $d!$.
Given integers d and r, and r partitions $\lambda^1, \ldots, \lambda^r \vdash d$, a Hurwitz factorization of type $(d, r, (\lambda^1, \ldots, \lambda^r))$ is an r-tuple $(\sigma_1, \ldots, \sigma_r)$ satisfying the following conditions:

1. $\sigma_i \in S_d$ has cycle type (or is in the conjugacy class) λ^i, for every i;

2. $\sigma_1 \cdots \sigma_r = 1$;

3. $M := \langle \sigma_1, \ldots, \sigma_r \rangle$ is a transitive subgroup of S_d.

The Hurwitz number $h(d, r, (\lambda^1, \ldots, \lambda^r))$ is the number of Hurwitz factorizations of type $(d, r, (\lambda^1, \ldots, \lambda^r))$ divided by $d!$.

Question: What is the Hurwitz number $h(d, r, (\lambda^1, \ldots, \lambda^r))$?

This question originally arises from geometry: Hurwitz number counts the number of degree-d covers of the projective line with r branch points where the monodromy over the ith branch point has cycle type λ^i.