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Abstract. In general, one cannot expect that every point of the intersection of the tropicalizations
of two varieties can be lifted to the intersection of the varieties themselves. A result of Bogart,
Jensen, Speyer, Sturmfels and Thomas asserts that one always has such a lifting if the tropicaliza-
tions intersect suitably transversely. In joint work with Sam Payne, we generalize and strengthen
their result in three directions: we weaken the transversality hypothesis, we work with intersections
in more general ambient varieties, and we also treat intersection multiplicities. We hope that these
results can be applied to moduli spaces to prove correspondence theorems relating enumerative
algebraic geometry to enumerative tropical geometry.

1. Correspondence theorems and tropical intersections

If one wishes to use tropical geometry to prove results in enumerative algebraic geometry – for
instance, problems relating to Schubert calculus – the natural approach is in two steps: understand
the tropicalized version of the problem, and then prove a correspondence theorem relating the
tropical version to the version in algebraic geometry. One approach to the latter is to prove
directly that the tropicalized objects can be lifted to algebrogeometric objects. We propose an
alternate approach to this sort of question: one could instead work with tropical moduli spaces. If
the tropical moduli spaces are the tropicalization of the moduli spaces in algebraic geometry (as
is the case for instance for the Grassmannian), a correspondence theorem becomes a question on
lifting intersections inside tropicalized moduli spaces to intersections in the original moduli spaces.
This provides additional motivation for the following question, which is in any case quite natural
and fundamental:

Question 1.1. What is the relationship between intersection and tropicalization? In particular,
under what conditions do they commute?

If we have X,X ′ ⊆ (K∗)n (where K is an algebraically closed field with non-Archimedean
valuation and algebraically closed residue field, for instance Puiseux series over C), then

(1.1) Trop(X ∩X ′) ⊆ Trop(X) ∩ Trop(X ′),

but in general it is easy to see that one need not have equality.

Example 1.2. Suppose X,X ′ are lines in the plane. Then it is possible for X,X ′ to be disjoint
but Trop(X) = Trop(X ′). Or we can have Trop(X) ∩ Trop(X ′) a single ray, and we must always
have strict containment in (1.1). However, if Trop(X) ∩ Trop(X ′) is a single point, then X ∩ X ′
must also intersect at a single point, so we have equality in (1.1).

If X is a line and X ′ is the parabola y = x2, then we can have Trop(X) intersecting Trop(X ′) at
one or two points, and X ∩X ′ is also always one or two points. In fact, in this case we always have
equality in (1.1) (and the number of intersection points is the same, if counted with appropriate
multiplicity).

These examples may be suggestive, and indeed a result of Bogart, Jensen, Speyer, Sturmfels and
Thomas asserts that if Trop(X) and Trop(X ′) intersect transversely in a suitable sense then (1.1)
is always an equality. This handles the well-behaved examples discussed above, except in the case
of a parabola and a line, when the intersection is a single point, but not tropically tranverse.
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Our results build on their work by weakening the transversality hypothesis, taking intersection
multiplicities into account, and – crucially, from the point of view of applications to correspondence
theorems – allowing the intersections to occur inside an ambient variety. That is, we suppose
X,X ′ ⊆ Y ⊆ (K∗)n, and under suitable hypotheses on the behavior of Trop(X) ∩ Trop(X ′) inside
Trop(Y ), we prove equality in (1.1). Initially, examples of this type are discouraging: for instance,
if one starts with X,X ′ being disjoint lines in (K∗)3 with Trop(X) ∩ Trop(X ′) consisting of a
single point, it is easy to write down smooth quadric surfaces Y ⊂ (K∗)3 containing X,X ′. Then
the intersection of Trop(X) with Trop(X ′) occurs as transversely as possible inside Trop(Y ), but
equality fails in (1.1). However, it turns out that there is a natural hypothesis which prevents this
from happening.

2. Results

Denote by k the residue field of K, and R the valuation ring. Recall that given a subvariety
X ⊆ (K∗)n, and w ∈ Rn, we obtain a family Xw over R with generic fiber X, and special fiber
Xw ⊆ (k∗)n, the initial degeneration of X at w. As a set, Trop(X) consists of those w for which
Xw is nonempty. Our convention will be that the data of Trop(X) is this set, together with a
polyhedral decomposition such that at any two points w,w′ in the interior of the same face, we
have that Xw, Xw′ are isomorphic, and finally, integer multiplicities associated to each facet of the
polyhedral decomposition as follows: if w lies in the interior of a facet σ, then Xw is acted on
by a subtorus of the same dimension, so the quotient is a scheme of finite length over k, and the
multiplicity of σ is defined to be the length of the quotient.

We say that a point w ∈ Trop(X) is a simple point if it lies in the interior of a facet of multi-
plicity 1; this implies in particular that Xw is isomorphic to a subtorus of (k∗)n, and in particular
is smooth. Following traditional terminology from intersection theory in algebraic geometry, we
say that Trop(X) intersects Trop(X ′) properly in Trop(Y ) if

codimTropY Trop(X) ∩ Trop(X ′) = codimTropY Trop(X) + codimTropY Trop(X ′).

Our main result is the following:

Theorem 2.1 (O.-Payne). Given X,X ′ ⊆ Y ⊆ (K∗)n, suppose that Trop(X) intersects Trop(X ′)
properly in Trop(Y ), and the simple points of Trop(Y ) are dense in Trop(X) ∩ Trop(X ′). Then

Trop(X ∩X ′) = Trop(X) ∩ Trop(X ′).

Furthermore, under these hypotheses there is a purely tropical definition of intersection multiplicities
for Trop(X) ∩ Trop(X ′) inside Trop(Y ), and these agree (in a natural sense) with the algebrogeo-
metric intersection multiplicities of X ∩X ′.

We mention that examples show that the statement of the theorem fails if the simple point
hypothesis is not satisfied, even if Trop(X) ∩ Trop(X ′) is contained inside facets of Trop(Y ).

Our results are sufficiently sharp that we obtain the natural generalization to multiple inter-
sections by inductive application of Theorem 2.1. Note that if Y = (K∗)n, every point is simple,
so we recover the result of Bogart-Jensen-Speyer-Sturmfels-Thomas under the weaker hypothesis
of proper intersection, and taking multiplicities into account. The definition of tropical intersec-
tion multiplicity in our situation is essentially the stable intersection multiplicity introduced by
Mikhalkin, which (not coincidentally) also agrees with the fan displacement rule used by Fulton
and Sturmfels to describe the intersection theory of toric varieties.

The proof of Theorem 2.1 is in two steps: we first prove that under the stated hypotheses, if
w ∈ Trop(X) ∩ Trop(X ′), then Xw and X ′w have non-empty proper intersection in Yw, which is
smooth by the simple point hypothesis. We then prove that the intersection Xw∩X ′w lifts to X∩X ′.
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Remark 2.2. Because it is quite possible for Xw and X ′w to have non-empty proper intersection
even if the hypotheses of Theorem 2.1 are not satisfied, our results in fact deal with a substantially
wider range of cases than stated. However, the statement is the sharpest we are able to obtain
under hypotheses stated purely in terms of the tropicalizations.

3. From tropicalizations to initial degenerations

The first step in our argument is to lift from the intersection of the tropicalizations to the
intersection of the initial degenerations. We prove:

Theorem 3.1 (O.-Payne). Given X,X ′ ⊆ Y ⊆ (K∗)n, suppose that Trop(X) intersects Trop(X ′)
properly in Trop(Y ) at a point w ∈ Rn, and suppose also that w is a simple point of Trop(Y ). Then
Xw, X

′
w have nonempty proper intersection inside Yw.

Of course, we also prove a version of this taking multiplicities into account, and indeed the
multiplicities are crucial to proving the nonemptiness of Xw ∩X ′w. We have in particular that the
multiplicity of Trop(X∩X ′) along a facet σ is at least equal to the tropical intersection multiplicity
of Trop(X) and Trop(X ′) along σ, computed by the fan displacement rule.

The first step is to reduce to the case that Y = (K∗)n; indeed, this reduction is immediate
from the hypothesis that w is a simple point. We see that Xw and X ′w intersect properly, because
Trop(Xw) is the star of w in Trop(X), and similarly for Trop(X ′w), so this follows from the hy-
pothesis that Trop(X) intersects Trop(X ′) properly at w. The next observation is that the tropical
intersection multiplicity of any component of Trop(X) and Trop(X ′) containing w is strictly posi-
tive, since we can always displace Trop(X ′) slightly so that the interior of a facet of Trop(X ′) meets
the interior of a facet of Trop(X).

Next, we let Σ be a complete unimodular fan which has subfans refining the stars of w in

Trop(X) and in Trop(X ′). Let Y (Σ) be the corresponding toric variety, and let Xw, X
′
w be the

closures of Xw, X
′
w in Y (Σ). Then the Chow homology classes of Xw, X

′
w in Y (Σ) are determined

by Trop(Xw) and Trop(X ′w), and Fulton-Sturmfels says that the intersection class of Xw ·X
′
w in

the Chow homology group agrees precisely with Trop(X)∩Trop(X ′), using the tropical intersection
multiplicity.

The main point remaining is then to show that Xw ·X
′
w does not have any components supported

in the boundary, which follows from the tools of extended tropicalizations, using also results on the
analytification to understand the behavior of closure. We conclude Theorem 3.1.

4. From initial degenerations to original varieties

It remains to show that we have good behavior in lifting from the initial degenerations to the
original subvarieties of the torus. We prove:

Theorem 4.1 (O.-Payne). Given X,X ′ ⊆ Y ⊆ (K∗)n, and w ∈ Rn, suppose that has Xw intersects
X ′w properly at a smooth closed point y ∈ Yw. Then there is a closed point ỹ ∈ X ∩X ′ specializing
to y.

Here, the idea is quite intuitive: let Yw be the family over SpecR used to define Yw; recall that
Yw has generic fiber Y , and special fiber Yw. Let Xw,X ′w be the families over SpecR corresponding
to X,X ′. Finally, let m = dimY − codimY X − codimY X

′. This is the “expected dimension” of
X ∩X ′. Then because y is a smooth point of Yw, it is a smooth point of Yw, and it should be the
case that every component of Xw ∩ X ′w has codimension in Yw at most

codimYw Xw + codimYw X ′w = codimY X + codimY X
′,

and thus dimension at least m + 1 (since dimYw = dimY + 1). The hypothesis of the theorem is
that the components of Xw ∩ X ′w have dimension m at y, so we conclude that none of them can
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constitute entire components of Xw ∩ X ′w, and therefore that there are points of the generic fiber
of Xw ∩ X ′w specializing to y.

To make this idea precise involves generalizing classical dimension theory results from varieties
over a field to schemes over a non-Noetherian valuation ring R of rank 1. Using Noetherian
approximation, we show that the Krull principal ideal theorem holds for schemes of finite type over
R, and we then mimic classical arguments to conclude that intersections inside a scheme smooth
over R satisfy the usual subaddivity of codimension. Both of these results fail over more general non-
Noetherian schemes, and even in the case of valuation rings of rank 2. We also generalize standard
“principal of continuity” results on intersection multiplicities in families to the non-Noetherian
setting.

Finally, for tropical geometry it is important to know that the point ỹ which specializes to y
can be chosen to be a closed point, so that it is K-rational. Using the same tools, we prove the
following general statement on the topology of morphisms of finite type:

Theorem 4.2 (O.-Payne). Let f : X → S be a morphism of finite type, and suppose we have
s, s′ ∈ S with s′ specializing to s. Given x a closed point of f−1(s), suppose there exists x′ ∈ f−1(s′)
specializing to x. Then there exists a point x′′ closed in f−1(s′), with x′ specializing to x′′ and x′′

specializing to x.

Using this, we conclude Theorem 4.1 as well as Theorem 2.1.
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