Abstract. Linear series are fundamental to the study of algebraic curves, and the most powerful technique to date for studying linear series is the theory of limit linear series, a degeneration technique introduced by Eisenbud and Harris. After reviewing their original theory, we will discuss how an alternative point of view sheds new light both on the original definition, and on various generalizations. To carry out the construction, we introduce a generalization of determinantal loci to the context of pushforwards.

A tease: suppose $F_0 \to F_1 \to \cdots \to F_m$ is a finite complex of locally free sheaves of finite rank on a scheme S, with $\text{rk} F_i = r_i$. Define the kth vanishing locus of F_\bullet to be the closed subscheme of S on which d_0 has rank at most $r_0 - k$. Then the kth vanishing locus of F_\bullet is a quasi-isomorphism invariant. The proof is not hard, but the definition seems rather unnatural, so I don’t know if it’s been considered before. Note that it’s not enough to have a morphism inducing an isomorphism on the first two homology groups, or any fixed finite number of homology groups; the Koszul complex on affine space is a counterexample to this. We’ll return to this later.

1. Linear series

Linear series arise naturally from the study of maps of varieties into projective space. Let X be a smooth proper curve over a field k. Then we define:

Definition 1.1. A g^d_r on X is a pair (\mathcal{L}, V) where \mathcal{L} is a line bundle of degree d on X, and V is an $(r + 1)$-dimensional subspace of $H^0(X, \mathcal{L})$.

The idea of ramification will also be important:

Definition 1.2. Given a linear series (\mathcal{L}, V) and a point $P \in X$, the vanishing sequence $a_0(P) < \cdots < a_r(P)$ of (\mathcal{L}, V) at P is defined to be the increasing sequence of orders of vanishing at P of sections of V. The non-decreasing ramification sequence $\alpha_0(P), \ldots, \alpha_r(P)$ is defined by $\alpha_i(P) = a_i - i$.

Example 1.3. A few basic cases:

(1) The pair (\mathcal{L}, V) corresponds to a map to \mathbb{P}^r when $a_0(P) = 0$ for all P. In this case, we say (\mathcal{L}, V) is basepoint-free.

(2) If $r = 1$, and (\mathcal{L}, V) is basepoint-free, then $a_1(P)$ (or $\alpha_1(P) := a_1(P) - 1$, depending on convention) corresponds to the usual ramification index at P of the map of curves.

(3) If $r = 2$ and (\mathcal{L}, V) defines a birational map onto its image, then a point with $a_1(P) > 1$ corresponds to a cusp-type singularity in the plane curve image of X, while a point with $a_1(P) = 1$ but $a_2(P) > 2$ corresponds to an inflection point.

The following question is then quite natural:

Question 1.4. Given a curve X, and r, d, does X have a g^d_r? If so, what is the dimension of the space of g^d_r's? What about if we also impose ramification conditions?

This question is answered for general curves by the famous Brill-Noether theorem, and its generalization due to Eisenbud and Harris:
Theorem 1.5. Given g, r, d, n, and n nondecreasing sequences $\alpha^1 := \alpha^1_0 \leq \ldots \leq \alpha^1_r$ of nonnegative integers bounded by $d - r$, let

$$\rho = (r + 1)(d - r) - rg - \sum_{j=1}^{n} \sum_{i=0}^{r} \alpha^1_i.$$

Suppose that one of the following holds:

1. $\text{char } k = 0$ or $d < \text{char } k$;
2. $n \leq 2$.

If X together with P_1, \ldots, P_n is a general (smooth) proper n-marked curve of genus g, the space of g_d's on X with ramification sequence at least α^1 at every P_j has dimension exactly ρ if it is nonempty.

2. Limit linear series

Theorem 1.5 was proved via degeneration techniques, using the Eisenbud-Harris theory of limit linear series. We describe their theory and briefly sketch this proof. As further motivation, we mention that Eisenbud and Harris considered the case of curves of compact type, working with a collection of refined limit linear series as a smooth curve degenerates to a singular one. Eisenbud and Harris gave a range of other applications, including proving the existence of a range of types of Weierstrass points, and proving that the moduli space of curves of genus at least 24 is of general type. For the latter argument, the key point is the explicit computation of the classes in the Picard group of \mathcal{M}_g of some effective divisors defined in terms of Brill-Noether theory.

As the name suggests, the theory of limit linear series attempts to understand what happens to a linear series as a smooth curve degenerates to a singular one. Eisenbud and Harris considered the case of curves of compact type, of which we will focus on the simplest case: a curve X_0 consisting of two smooth components Y and Z glued at a single simple node Q. The idea here is relatively simple: imagine a family \mathcal{X} of curves over the spectrum of a DVR, with regular total space, X_0 as the special fiber, and smooth generic fiber X_η; [picture]

then we want to think about how a g_d on X_η extends to X_0. First, any line bundle \mathcal{L} of degree d on X_η can be extended over X_0, but not uniquely: Y and Z are divisors on \mathcal{X}, and twisting by them doesn’t change anything away from X_0. However, it turns out that this is the only ambiguity, and it follows that if we specify a pair of degrees $(i, d - i)$ for the restrictions to Y and Z there is a unique extension which we denote by $\mathcal{L}(i,d-i)$. If we have a linear series $(\mathcal{L}, \mathcal{V})$ on X_η, then given a choice of the extension of \mathcal{L}, the space \mathcal{V} of global sections extends uniquely. Thus, we find that we have an infinite family of extensions $(\mathcal{L}(i,d-i), \mathcal{V}(i,d-i))$ of $(\mathcal{L}, \mathcal{V})$ to X_0.

Eisenbud and Harris consider the extensions $(\mathcal{L}(d,0), \mathcal{V}(d,0))$ and $(\mathcal{L}(0,d), \mathcal{V}(0,d))$ and observe that in this case, no information is lost by restricting to Y and Z respectively. Thus, from a g_d on X_η defined away from X_0, one obtains a pair $(\mathcal{L}^Y, \mathcal{V}^Y)$ and $(\mathcal{L}^Z, \mathcal{V}^Z)$ of g_d's on Y and Z respectively. One then wants to determine what additional condition best captures that they arose as limits of a g_d on X_η. Their definition is as follows:

Definition 2.1. Let $(\mathcal{L}^Y, \mathcal{V}^Y)$ and $(\mathcal{L}^Z, \mathcal{V}^Z)$ be g_d's on Y and Z respectively. Then they constitute an (Eisenbud-Harris) limit g_d's on X_0 if they satisfy the following condition:

$$a^Y_i + a^Z_{r-i} \geq d, \quad \forall i : 0 \leq i \leq r,$$

where a^Y_i, a^Z_i denote the vanishing sequences at P of $(\mathcal{L}^Y, \mathcal{V}^Y)$ and $(\mathcal{L}^Z, \mathcal{V}^Z)$ respectively. If further (2.1.1) is an equality for all i, we say the limit g_d is **refined**.

The same definition works for more complicated curves of compact type, working with a collection of g_d's for each component, with the condition (2.1.1) imposed independently at each node.

Eisenbud and Harris showed that if $(\mathcal{L}^Y, \mathcal{V}^Y)$ and $(\mathcal{L}^Z, \mathcal{V}^Z)$ are obtained as the limit of a g_d on X_η, then they satisfy (2.1.1). They also showed that in characteristic 0, after base change and blowing up the special fiber (introducing new rational components to X_0) we can arrange so that the resulting limit g_d is refined. On the other hand, they showed that if the space of refined limit g_d's on X_0 has the expected dimension ρ, then every refined limit g_d arises as the limit of g_d's on X_η. This last result is proved by constructing a single scheme parametrizing g_d's on X_η and refined limit g_d's on X_0. One then carries out a dimension count to prove the desired statement.
Given these results, to study limits of linear series on X_0, it more or less suffices to study linear series on Y and Z (which can be chosen to have smaller genus), at the price of considering also imposed ramification conditions. Thus, the context of Theorem 1.5 is the natural setting to apply the theory.

The first case of Theorem 1.5 can be proved via a relatively straightforward inductive argument using limit linear series. This proof encapsulates the power of the Eisenbud-Harris approach: limit linear series on the reducible curve can be described in terms of independent linear series on each component. However, it also points to the weakness of the approach: it is not at all obvious how to construct a moduli space in families as discussed above. Even the construction of Eisenbud and Harris, which only contains refined limit g^4_8 on X_0, is difficult and technical, and it has remained open until now to produce a proper moduli space which contains not necessarily refined limit g^4_8s as well. The fact that the space constructed only contains refined limit g^4_8 means that we need an alternate construction to handle the second case of the theorem.

3. A NEW CONSTRUCTION

In my thesis, I introduced an alternate construction of limit linear series, which has recently been applied in joint work with Eduardo Esteves to fibers of Abel map for reducible curves, and in joint work withMontserrat Teixidor i Bigas to Brill-Noether theory for vector bundles of rank 2 with special determinant. Inspired by this construction, I have recently realized how to construct a proper space of (limit) linear series in families, so that fibers parametrize linear series for smooth curves, and (not necessarily refined) limit linear series for reducible curves. This construction also works for higher rank, although does not produce a proper space in this context. The first observation is that if we have a g^r_d on the smooth generic fiber X_0 of X as above, and $(\mathcal{L}^Y, V^Y), (\mathcal{L}^Z, V^Z)$ is the resulting limit g^r_d, if we consider the g^r_d on X_0 given by $(\mathcal{L}(i,d-i), V(i,d-i))$ for some i between 0 and d, the sections of $V(i,d-i)$ are glued together from sections of V^Y vanishing to order at least $d - i$ at the node Q, and sections of V^Z vanishing to order at least i at Q.

The next observation is that in fact the Eisenbud-Harris conditions (2.1.1) are equivalent to the condition that for every nonnegative degree pair $(i, d - i)$, it is possible to construct an $(r + 1)$-dimensional space of global sections of $\mathcal{L}(i,d-i)$ by gluing together sections from V^Y and V^Z. To make sense of this in smoothing families, we can also work equivalently with $V(d,0)$ and $V(0,d)$; the idea is that we are looking for the locus on which $\mathcal{L}(i,d-i)$ has an $(r + 1)$-dimensional space of global sections mapping into both $V(d,0)$ and $V(0,d)$, or equivalently, the locus on which the natural map

$$H^0(X_0, \mathcal{L}(i,d-i)) \to H^0(X_0, \mathcal{L}^{(d,0)}_0)/V(d,0) \oplus H^0(X_0, \mathcal{L}^{(0,d)}_0)/V(0,d)$$

has kernel of dimension at least $r + 1$. Now, this wants to be a determinantal locus, but it isn’t quite, due to the pushforward involved and the fact that pushforward need not commute with base change.

The solution is to develop a generalized notion of determinantal locus involving pushforwards of coherent sheaves flat over a base, which turns out to be straightforward enough. As motivated by the above, the perspective we wish to take is that a determinantal locus should be thought of not as the locus where the rank is at most a given value, but rather the locus on which the kernel is at least a certain size. Given proper $\pi : X \to S$ with S Noetherian (*) and \mathcal{F}, \mathcal{G} coherent sheaves on X, flat over S, and a morphism $f : \mathcal{F} \to \mathcal{G}$, we define the kth vanishing locus of $\pi_* f$ to be the set of $s \in S$ such that $f|_s : H^0(X_s, \mathcal{F}|_s) \to H^0(X_s, \mathcal{G}|_s)$ has kernel of dimension at least k. We endow it with a canonical closed subscheme structure as suggested by the tease at the beginning of the talk: let \mathcal{F}_* and \mathcal{G}_* be finite complexes of locally free, finite-rank sheaves on S computed the derived pushforwards of \mathcal{F} and \mathcal{G} respectively, and such that there exists $f_* : \mathcal{F}_* \to \mathcal{G}_*$ induced by f_*; these objects are then unique up to quasi-isomorphism. We are interested in subspaces of \mathcal{F}_0 which are simultaneously in the kernel of d_0 and of f_0; this is precisely captured by the kernel of the mapping cone $\mathcal{E}_* f_*$ of f_*. Thus, we can give the kth vanishing locus of $\pi_* f$ a closed subscheme structure by using the kth vanishing locus of $\mathcal{E}_* f_*$ as defined at the beginning of the talk.

We thus obtain a generalization of determinantal loci to pushforwards (note that the classical case is recovered as the special case that π is the identity), and the construction generalizes rather trivially to allow modding out the target by subbundles on S, as we need to do for our above description of limit linear series. Thus, we have a functorial, proper construction of Eisenbud-Harris limit linear series which works in families. From this point of view, we see that one may think of Eisenbud-Harris limit linear series spaces as something of a hybrid between classical G^r_d and W^r_d spaces.
4. Curves not of compact type

Developing a robust theory of limit linear series for (reducible) curves not of compact type has been a long-standing open problem. One hopes that such a theory would help compute cohomology classes of effective cycles on $\overline{\mathcal{M}}_g$ having codimension higher than 1. Also, the flexibility to degenerate to curves not of compact type may prove useful in dealing with remaining open questions on linear series on curves, such as the maximal rank conjecture. In any event, the first test of a robust theory would be to provide a new proof of the Brill-Noether via degeneration to a reducible curve not of compact type.

I have recently started to work with Eduardo Esteves on developing a theory of limit linear series for curves not of compact type. For concreteness, we will focus on the case that X_0 is a “banana curve,” with components Y and Z glued at nodes Q_1 and Q_2. Complications include that line bundles are no longer determined by their restrictions to components, that the effect of twisting by Y or Z depends on the family \mathcal{X}, and that the moduli space of line bundles is no longer proper. However, these issues appear surmountable, so we will instead focus on the question of what is the right generalization of the Eisenbud-Harris conditions for limit linear series. As in the case of a single node, given a family of curves \mathcal{X} degenerating to X_0, there are infinitely many extensions to X_0 of line bundles on X_0. Again, an extension is uniquely determined by its degrees on Y and Z, but not every degree can be achieved: the parity is predetermined. Again for simplicity, let’s consider the case that d is even and $(d, 0)$ (equivalently) $(0, d)$ can be achieved as degrees on Y and Z. Then as in the Eisenbud-Harris case, from a family of curves \mathcal{X} degenerating to X_0, there are infinitely many extensions to X_0 of line bundles on X_0. Again, an extension is uniquely determined by its degrees on Y and Z, but not every degree can be achieved: the parity is predetermined. Again for simplicity, let’s consider the case that d is even and $(d, 0)$ (equivalently) $(0, d)$ can be achieved as degrees on Y and Z.

Here, the philosophy espoused above has been useful: the conditions should ensure that for any intermediate degree pair $(i, d-i)$ (with i even), we should have an $(r+1)$-dimensional space of sections of the corresponding extended line bundle, obtained by gluing together sections of V^Y and V^Z. Following this idea, we are led to the following sequence giving orders of simultaneous vanishing at a collection of points:

Definition 4.1. Given points P_1, \ldots, P_m on a smooth curve X, and (\mathcal{L}, V) a g^r_d on X, the multivanishing sequence $a_0 \leq a_1 \leq \ldots \leq a_r$ of (\mathcal{L}, V) at the P_i is the sequence in which the number of times j appears is equal to the dimension of

$$V(-(j(P_1 + \cdots + P_m)))/V(-(j + 1)(P_1 + \cdots + P_m)),$$

where for an effective divisor D, $V(-D)$ denotes $V \cap \Gamma(\mathcal{L}(-D))$.

Thus, the sequence is allowed to have up to m repetitions of any given number. The $m = 1$ case is simply the usual vanishing sequence at a point. It then turns out that the correct generalization of the Eisenbud-Harris condition (2.1.1) to the case of the banana curve is (still in the case that d is even and $(d, 0)$ can be achieved as an extension of \mathcal{L}) given by

$$a_i^Y + a_{r-i}^Z \geq d/2, \quad \forall i : 0 \leq i \leq r,$$

where the a_i^Y and a_i^Z are now the multivanishing sequences of (\mathcal{L}^Y, V^Y) and (\mathcal{L}^Z, V^Z) at P_1 and P_2.

However, this condition is not enough: in indices where (4.1.1) achieves equality and a particular value shows up without repetition in the vanishing sequence, we also need to impose a gluing condition on the sections with this vanishing. Imposing both (4.1.1) and the gluing condition appears to produce the correct expected dimension, although some work remains to show that the gluing conditions are actually independent for sufficiently general curves.

Pleasingly, the background theory developed to work with the limit linear series construction from my thesis for the compact type case is sufficiently general that it can be used as-is to apply also to the case of curves with two components and more than one node, so it seems quite likely that we have not only produced a definition of limit linear series for such curves which gives the expected dimension, but that furthermore a new proof of the Brill-Noether theorem via these methods is within reach.
5. Multivanishing indices on smooth curves

Limit linear series for curves not of compact type motivates a systematic look at multivanishing sequences of linear series on smooth curves. But in fact, these sequences are quite natural to consider in and of themselves. Not only do they generalize vanishing sequences at a point, but they also contain many other classical concepts: for instance, for 2-dimensional linear series and pairs of points, the multivanishing sequence specifies whether a given pair of points maps to a node in the image, or to a bitangent. As a first direction for investigation, it is natural to look for a generalized Brill-Noether theorem.

The first observation is that, just as with imposing vanishing conditions at a point, imposing at least a certain multivanishing sequence at a collection of points is described by a relative Schubert condition inside the space of \(G^r_d \)'s. This gives an expected codimension (which is slightly more complicated than the case of vanishing sequences, but can be described explicitly), and it is natural to wonder whether Theorem 1.5 generalizes further to this setting. The answer is that it does:

Theorem 5.1. Given \(g, r, d, n, m_1, \ldots, m_n \), and \(n \) nondecreasing sequences \(a^j := a^j_0 \leq \cdots \leq a^j_r \) of nonnegative integers bounded by \(d \), with each entry of \(a^j \) repeating at most \(m_j \) times, suppose that one of the following holds:

1. \(\text{char } k = 0 \) or \(d > \text{char } k \);
2. \(n \leq 2 \).

Let \(X \) be a general curve of genus \(g \), and \((P^j_i)_{1 \leq j \leq n, 1 \leq i \leq m_j}\) general points of \(X \). Then the space of \(g^r_d \)'s on \(X \) with multivanishing sequence at least \(a^j \) at the \(P^j_i \)'s has the expected dimension, if it is nonempty.

The proof uses limit linear series in a way quite similar to that of Theorem 1.5, by placing all the imposed multivanishing onto genus-0 components, and arguing directly for the case of genus-0 and \(n = 2 \).