THE GEODESIC PROBLEM IN NEARMETRIC SPACES

QINGLAN XIA

ABSTRACT. In this article, we study the geodesic problem in a generalized
metric space, in which the distance function satisfies a relaxed triangle in-
equality d(z,y) < o(d(z, z) + d(z,y)) for some constant o > 1, rather than the
usual triangle inequality. Such a space is called a nearmetric space. We show
that many well-known results in metric spaces (e.g. Ascoli-Arzeld theorem)
still hold in nearmetric spaces. Moreover, we explore conditions under which
a nearmetric will induce an intrinsic metric. As an example, we introduce a
family of nearmetrics on the space of atomic probability measures. The as-
sociated intrinsic metrics induced by these nearmetrics coincide with the dq
metric studied early in [6]. Moreover, optimal transport paths between atomic
probability measures turn out to be geodesics in these intrinsic metric spaces.

1. INTRODUCTION

This article aims at studying some classical analysis problems in semimetric
spaces, in which the distance does not required to satisfy the triangle inequity.
Researches on semimetric spaces are mainly carried out by topologist so far (see
[2] and references there). Analysts have not shown enough interest in studying
semimetric spaces, partially because of lacking some interesting modeling examples
of semimetric spaces. Nevertheless, during the author’s recent study of optimal
transport path between probability measures, he observes that there exists a family
of very interesting semimetrics on the space of atomic probability measures. These
semimetrics satisfy a relaxed triangle inequality d (z,y) < o (d(z,2) + d(z,y)) for
some constant ¢ > 1, rather than the usual triangle inequality. Such semimetric
spaces were called nearmetric spaces in [4]. Moreover, these family of nearmetrics
induce a family of intrinsic metrics on the space of atomic probability measures.
Furthermore, optimal transport paths studied in [6], [7],[8],[9] etc turn out to be
geodesics in these induced metric spaces. This observation motivates us to study
functions in nearmetric spaces in this article.

This article is organized as follows. In section 2, we first introduce the concept as
well as some basic properties of nearmetric spaces, then we extend some well-known
results (e.g. Ascoli-Arzeld theorem) about continuous functions in metric spaces to
continuous functions in nearmetric spaces. After that, in section 3, we consider the
geodesic problem in nearmetric spaces. We show that every continuous nearmetric
will induce an intrinsic pseudometric on the space. In case that the nearmetric
is nice enough (e.g. either “ideal” or “perfect” in the sense of Definition 2.5 or
Definition 3.14), then the nearmetric will indeed induce an intrinsic metric. In
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the end, we spend the last section in discussing our motivation example: optimal
transport paths between atomic probability measures. We first introduce a family of
nearmetrics on the space of atomic probability measures. Each of these nearmetric
is both ideal and perfect, and thus it induces an intrinsic metric on the space of
atomic probability measures. We showed that the d,-metrics introduced in [6]
is simply the intrinsic metrics induced by these nearmetrics. Furthermore, each
geodesic in these length spaces corresponds to an optimal transport path studied
in [6].

2. CONTINUOUS MAPS IN NEARMETRIC SPACES

2.1. Nearmetric Spaces.

Definition 2.1. Let X be any nonempty set. A function J : X x X — R is called
a nearmetric if for any x,y,z € X, we have
(1) (non-negativity) J (x,y) > 0;
(identity of indiscernibles) J (x,y) = 0 if and only if x =y

(2)

(3) (symmetry) J (z,y) = J (y, 2);

(4) (relazed triangle inequality) J (x,y) < o[J (x,z)+ J (2,y)] for some con-
stant o > 1.

When J is a nearmetric on X, the pair (X, J) is called a nearmetric space. Let
o (J) denote the smallest number o satisfying condition (4).

Every metric space is clearly a nearmetric space with o = 1.

Example 2.2. Suppose d is a metric on a nonempty set X. Then, for any B >
LA>0,u >0, J(z,y) = Md(z,y) + pd (a:,y)ﬁ is typically not a metric on X.
However, J defines a nearmetric on X with o (J) < 2°71. Indeed,

J(zy) = M@y)+pd(z,y)’
< Md(z,2) +d(y, 2)) + pld(@, 2) + d(y, )]
< Ad(@,2) + d(y, 2)) + 277 [d(w, 2)° + d(y, 2)"]
< 251[J(a?z)+J(zy)]

In section 4, we will provide a family of interesting nearmetrics on the space of
atomic probability measures.

More generally, suppose J is a distance function on X satisfying conditions
(1),(2),(3) in Definition 2.1. For each n, let o, (J) be the smallest number o,, > 1
satisfying

(2.1) T (@1, 2p41) € on Y J (@5, 2i41) 4
i=1
for any x1, -+, Zp41 € X. In particular, o1 (J) = 1 and o9 (J) = o (J).
Lemma 2.3. Suppose (X,J) is a nearmetric space. Then, for each n,
on(J) <o ()" .

Proof. We show this using the mathematical induction. It is trivial when n =1 or
2. Then, from condition (4), we see that for any n and any points {x1,z2, - ,z,}
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in X, we have
J(@y,zn) < o () (J (21, 2n1) +J (@n-1,2n))

o (J) (U(J)n_2 Z_: J (i i) + J(ﬂﬁnl,xn))

i=1

IN

n—1
< o(J)" Z J (x;,xip1) since o (J) > 1.

=1

Therefore, o, (J) < o (J)" " for all n. O

Proposition 2.4. Suppose (X, J) is a nearmetric space. Then, for each n and m

in N,
Onm (J) < op (J)om (J).
Proof. Note that, for any {x1,x2, -, Tmny1} in X, from (2.1), we have
J(xlvxanrl)
< on (J) (J (x17$m+1) +J (xm+1aw2m+l) +o+J (x(n—l)m-‘rlaxnm-&-l))
< o, (J) am(J)ZJ(xi,xiH)+~-~—|—0m(J) Z J (4, Tit1)
i=1 i=(n—1)m+1
= o0 (J)om (1) YT (@i wiga) .-
i=1

Therefore,

Onm (J) < op (J)om (J).

Clearly, o, (J) is nondecreasing as n increases. Thus, we define
(2.2) Ooo (J) :=limay, (J)
for any nearmetric J on X.

Definition 2.5. Suppose J is a nearmetric on X. If o (J) < 00, then J is called
an ideal nearmetric on X.

Note that J is an ideal nearmetric if and only if for some o > 1,

(23) J($7y) < UZJ(xi7xi+1)a

i=1
for any finitely many points x1,- -+, z,4+1 € X with 21 = 2, ,11 = y. The smallest
o satisfying (2.3) is just o (J).

A sequence {x,,} is convergent to x in a nearmetric space (X, J) if J (2, x) — 0,

and we denote it by z, > 2. A sequence {zn} is Cauchy in (X,J) if for any
e > 0, there exists an N € N such that J (x,,zy,) < € for all n,m > N. Since
J (@n,xm) <o (J) (J (xn,x) + J (2,2,)), it follows that every convergent sequence
in (X, J) is a Cauchy sequence. If every Cauchy sequence in (X, J) is convergent,
then we say J is a complete nearmetric on X. A nearmetric J on X always gives a
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topology on X where a subset A is closed if it contains every point a € X for which
there is some sequence a; € A with lim;_,, J (a;,a) = 0.

Definition 2.6. A nearmetric J on X is continuous if for any convergent sequences
Tn KA T, Yn 4, Yy, we have

(2.4) J(zn,yn) — J (x,y), asn — .

If for any convergent sequences T, > T, yn >y, we have
(2.5) J(z,y) < lminf J (xn, yn),
n

then we say J is lower semicontinuous.

For instance, suppose J satisfies conditions (1),(2),(3) in Definition 2.1, and also
the following condition

(2.6) [ (z,y) = J (z,w)| <o (J(z,2) + J (w,y))

for any z,y,z,w € X and some o > 1. By setting z = w, we get J(z,y) <
o[J (z,2z) + J(z,y)], and hence J is a nearmetric on X. Also, since for each n,

[T (s yn) = J (2, y)] < o (J (@, 20) + T (Y, 9n))

J is automatically satisfying the continuous condition (2.4) in this case. When J
is indeed a metric on X, then (2.6) trivially holds.

2.2. Continuous maps in nearmetric spaces. In this section, we extend some
well-known results (see for instance in [5] or [1]) about continuous maps in metric
spaces to continuous maps in nearmetric spaces.

Suppose (X, J) is a nearmetric space, and K is a compact metric space with
a metric dg. A map f: K — (X,J) is continuous if J(f (x,),f(z)) = 0in X
whenever di (z,,2) — 0in K asn — co. A map f: K — (X,J) is uniformly
continuous if for every € > 0, there exists a 6 > 0 such that J(f (z),f(y)) < ¢
whenever z,y € K with dg (z,y) <. Amap f: K — (X,J) is Lipschitz if there
exists a constant C' > 0 such that

J(f(x), f(y)) < Cdg(x,y)

for any z,y € K. Let C (K, (X, J)) be the family of all continuous maps from K to
(X,J), and Lip (K, (X, J)) be the family of all Lipschitz maps from K to (X, J).

Proposition 2.7. Suppose J is a continuous nearmetric on X. Then, every con-
tinuous map f: K — (X, J) is uniformly continuous.

Proof. Suppose f : K — (X, J) is continuous. If f is not uniformly continuous, then
there exists an € > 0, and two sequences {z,,},{yn} in K such that d (2,,,y,) < %,
but J(f (), f (yn)) > €. By the compactness of K and taking subsequence if
necessary, we may assume that both {z,} and {y,} converge to the same point
xz* € K. So, by the continuity of J in (2.4) and the continuity of f at z*, we have

0=J(F (), f (@) = lim J(f (a) f (4n)) > e

A contradiction. Thus, f must be uniformly continuous. ([l
For any maps f,h: K — (X, J), let
(2.7) Joo (f,h) = sup J (f(x),h(x)).
AS

If Joo (fn, f) — 0, then we say that f,, is uniformly convergent to f.
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Proposition 2.8. Suppose J is a nearmetric on X. Then, Jo is a nearmetric on
C (K, (X,J)).

Proof. For any f,h € C (K, (X,J)), by definition (2.7), we have Jo, (f,h) > 0 and
Joo (fih) = Jso (B, f). Also, Joo (f,h) = 0if and only if f (x) = h(z) forall z € K.
Moreover, for any g € C' (K, (X, J)),

Joo (fi1) = flelllgt](f (x),h(x))
< ig}gU(J) [J(f (2),9(x)) + (g (x),h(x))]
< o (J) |sup J(f(2),9(x)) + sup J (g (z),h(x))
reK zeK
= o (J)[J (f.9) + Jso (g, h)].
Therefore, (C (K, (X,J)), Jx) is also a nearmetric space. O

Proposition 2.9. Suppose {f, : K — (X, J)} is a sequence of continuous maps.
If Joo (fu, f) — 0O, then f is also continuous.

Proof. Since J (frn, f) — 0, for any € > 0, there exists an n such that
(2.8) Su}g‘](fn (), f(z)) <€/3
e

For any x € K, since f, is continuous at z, there exists a 6 = ¢ (z) > 0 such that
J (fn (@), fn(y)) < €/3 whenever y € K with dg (z,y) < §. Therefore, by lemma
2.3 and (2.8), we have

T(f @), f@) < o @) fa@)+ T (fa (@), fa @)+ (fa @), f )]
< e (J)

and thus f is continuous at every = € K. O

Theorem 2.10. Suppose (X,J) is a complete nearmetric space and J is lower
semicontinuous. Then, the space (C (K, (X,J)), Jx) is also a complete nearmetric
space.

Proof. Let {f,} be any Cauchy sequence in C (K, (X,.J)) with respect to J.
That is, for any ¢ > 0, there exists an N such that whenever m,n > N, we
have Joo (fn, fm) < €. So, for each x € K, {f, (z)} is Cauchy in X. Since X is
complete, {f, (z)} converges to some f (z) € X with respect to J. Now,

< sup lim J(fn (x), fm (x)), because J is lower semicontinuous

< limsup suEJ(fn (), fm (2))| <€
m—oo |[x€

So, Joo (fn, f) — 0. By proposition 2.9, f is continuous. Hence, by proposition 2.8,
Js is a complete nearmetric on C (K, (X, J)). O

Definition 2.11. A subset F of C (K, (X, J)) is equicontinuous if for every x € K
and € > 0, there is a § = 0 (x,€) > 0, such that whenever y € K with di (x,y) <4,
we have J (f (z), f (y)) <€ forall f € F.
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Now, we have the following Ascoli-Arzela theorem in nearmetric spaces:

Theorem 2.12. Suppose (X,J) is a complete nearmetric space and J is lower
semicontinuous. A subset F of (C (K, (X,J)), ) is precompact if and only if it
is bounded and equicontinuous.

Proof. Suppose F is a precompact (i.e. every sequence has a convergent subse-
quence) subset of C (K, (X, J)). Then, for each fixed € > 0, there exists a finite
subset {f1, -, fr} of F such that

k

(2.9) Fc|JBys(fi),

i=1
where the notation B, (g) = {h € C (K, (X,J)) |Jx (9, h) < €}. Otherwise, for any
k
finite subset {f1,---, fx}, there exists an fry1 ¢ |J Be/s (fi), and thus we get a
i=1

sequence {fi} in F. Since Joo (fim, fn) = €/3 for any m # n, we know {f,} does
not contain any Cauchy subsequence, which contradicts to F being precompact.
Therefore, (2.9) must be true, which also implies that F is bounded.

Now, for any « € K and each f; in (2.9), there exists a §; > 0 such that whenever
y € K with dg (v,y) < 6;, we have J (f; (v), fi (y)) < 5. For every f € F, by
(2.9), there is an 1 < i < k such that Jo (f, fi) < §. We conclude that for any

y € K with dk (x,y) < § = min {01, --,dx}, we have

J(f @), f@) < oI @), fi @)+ T(fi (@) fi @)+ T (fi @), f @)
< eo(J)Q.

Therefore, F is equicontinuous at every = € K.

On the other hand, suppose F is equicontinuous and bounded. Then, for any
sequence {f,} in F, by using the diagonal process and taking subsequence if neces-
sary, we may assume { f,,} is convergent to f on a countable dense subset S in K.
We now prove that {f,} is Cauchy in C (K, (X, J)) with respect to Jo. Indeed,
for any € > 0, since F is equicontinuous and K is compact, there exists a finite
many points {ry, -+ ,7r;} in S such that for any = € K, there is a r;, such that

w| ™

for all n. Now, whenever m,n are large enough, for all z € K|

I (fn (), fn ()
< o (T (fn @) fu (1) + T (o (1) s fon () + T (fon (73) , fom ()]
< J(J)ze.
Therefore, {f,} is a Cauchy sequence in C (K, (X,J)). By the completeness of

C (K, (X,J)) stated in theorem 2.10, the sequence {f,} is convergent with respect
to Jso. Thus, F is precompact. (Il

Corollary 2.13. Suppose (X,J) is a complete nearmetric space and J is lower
semicontinuous. A subset F of C (K, (X,J)) is sequentially compact with respect
to J if and only if it is closed, bounded and equicontinuous.
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3. INTRINSIC METRICS INDUCED BY NEARMETRICS

This section is devoted to study the geodesic problem in a nearmetric space
(X,J). Let [a, b] be a bounded closed interval.

Definition 3.1. Let N be a natural number. A curve f € C([a,b], (X, J)) is called
an N -piecewise Lipschitz curve in (X, J) if there exists a partition
Pr={a=ay<a <---<an=0b}
of a,b] such that for eachi=0,1,--- N —1,
(1) J is a metric on the subset f ([a;,a;11]) of X and
(2) the restriction of f on [a;,a;i+1] is Lipschitz.

Here, requiring J to be a metric on f ([a;, a;4+1]) is the same as asking it to satisfy
the triangle inequality: J(f(t1), f(t2)) < J(f(t1), f(t2)) + J(f(t2), f(t3)) for any
t1,t2,13 € [(li7 CL¢+1}. Let

Pn ([CL, b] ’ (Xv J))
be the family of all N—piecewise Lipschitz curves in (X, J), and P ([a,b], (X, J))
be the union of Py ([a,d], (X, J)) over all N’s.

3.1. Length of rectifiable curves. Recall that when (X,d) is a metric space,
and f : [a,b] — (X,d) is a (continuous) curve. Then, one may define its length as

L(f) =supVp (f) € [0, o],

where the supremum is over all partitions P of [a,b], and Vp (f) is the variation of
f over the partition P = {a =ty < t; <--- < tn = b} given by

N
Vp(f) = Zd(f (ti1), f ().
i=1

In case f is Lipschitz, an equivalent formula for the length of f is

where ’ f (t)’d is the metric derivative of f at f (¢) defined by

‘f (t)‘ = lim M

d st |s —

)

provided the limit exists. When f is Lipschitz,

f (t)‘d exists almost everywhere,
and is bounded and measurable in t.

Now, suppose (X, J) is a nearmetric space, and f € Py ([a,b],(X,J)). Then
on each interval [a;, a;y1], f : [a:, ai41] — (X, J) is a Lipschitz curve in the metric
space (f ([ai,ai+1]),J), and thus the length of the restriction of f on [a;, a;+1] is
well defined. As a result, we may define the length of f to be

N-1
L(f):= Z L (fL[anaHl]) :
i=0

In other words, we have
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Definition 3.2. For any f € Py ([a,b], (X, J)), the length of f is defined as

Ly (f) 12/:

where the metric derivative
)f(t)‘J = lim M

s—t |5 7t|

fo),dt,

J

provided the limit exists. We may simply write Ly (f) as L (f) if J is obvious.

Lemma 3.3. Suppose J is a continuous nearmetric on X, C > 0 is a constant,
and P ={a=a9 <a; <---<ay =b} is a partition of the interval [a,b]. Then,
for any x,y € X, the family
F_ fecl(ab,(X,J): fla)=z,f(b) =y, and J is a metric on
[ (ai,ais1]) and Lip (fliar.a5..)) < C, for eachi=0,--- N —1
is a bounded, closed and equicontinuous subset of C ([a,b], (X, J)). Moreover, if f,
is uniformly convergent to f in Jo, then,

L(f)< limninfL (fn)-

Proof. For any g € F and any t € [a,b], we have t € [aj,a;1] for some j < N —1
and

J(gt),z) = J(g(t),9(a))
j—1
= o(J) ( J(g(ai),g(ait1)) +J (g (ay) 7g(t))>
i=0

< oY Clt—al<Co (NN b—aq

Therefore, F is bounded.

Suppose {f,} is any convergent sequence in F with respect to Jo with f €
C ([a,b], (X, J)) being the limit. Then, for each fixed 7, and any t1, t,t3 € [a;, a;11],
we have

J(fn(t1), fo (t2)) < T (fu (t2), fu (83)) + T (fu (E3) 5 fu (t2))
and
J (fn (tl) ) fn (t2)) < C |t1 - tQ‘ .

Let n — oo, we have J is a metric on f ([a;,a;+1]) and Lip (f|[as, aiv1]) < C.
Therefore, f € F. This shows that F is closed and also equicontinuous. Moreover,
for any partition @ of [a;, a;4+1], the variation

Vo (Fllais ain]) = lim Vo ((fa) L[as; aia]) < Timinf L ((f) [ai, @ita]) -

So,
L (fllai, ai1]) = sup Vo (fllai; aipa]) < liminf L (o [ai, aia]) -
Hence,
N-1 N-1
L(f) = Z L <f|-[ai»ai+l]) < Z lim"infL (fn L[aivai-%—l])
=0 =0

= liminf L (f,).
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d

Proposition 3.4. Suppose (X, J) is a nearmetric space, and f € Py ([a,b], (X, J)).
If L(f) =0, then f is a constant map.

Proof. L(f) = 0 implies that L (f\_[ai,ai«{»l]) = 0 for each i. Thus, f is a constant
on [a;,a;11] for each i. Since f is continuous, f is a constant on [a, b] . O

Since any Lipschitz curve in a metric space has an arc parametrization, by ap-
plying arc parametrizations piecewisely, we also have

Proposition 3.5. (Reparametrization) For any f € Py ([a,b],(X,J)) and L =

L(f), there exists a homeomorphism ¢ : [0,L] — [a,b] so that v = fo¢ €
Pn ([0,L],(X,J)) has | (t)|; =1 almost everywhere in [0, L].

3.2. The geodesic problem. Let N be a fixed natural number. For any z,y € X,
we consider the geodesic problem

(3.1) min{L (f)}
among all f in the family
Pathy (xvy) = {f € Pn ([07 1] ’ (X7 J)) with f (0) = f (1) = y}

Note that, by a linear change of variable, one may replace [0, 1] in Pathy (z,y)
by any closed interval [a,b] without changing the infimum value in the geodesic
problem (3.1).

Definition 3.6. Suppose J is a nearmetric on X. For any x,y € X, and N € N,
define

Dy (z,y) = inf{L(f) : f € Pathy (z,y)}
whenever Pathy (x,y) is not empty, and set Dy (x,y) = oo when Pathy (x,y) is
empty. Since Dy (z,y) is a decreasing function of N, we define

Theorem 3.7. Suppose J is a continuous complete nearmetric on a nonempty set
X. For any N € N, and z,y € X, the geodesic problem (3.1) admits a solution
f € Pathy (z,y) provided that Pathy (z,y) is not empty. So, L (f) = Dy (z,y).

Proof. Suppose Pathy (x,y) is not empty. Let L = inf {L (f) : f € Pathy (x,y)}.

Note that for each f € Pathy (x,y), we have
N-1
Jy) < o (DY T(f (@), f (ais)
v
< oYY L (Fliaan) =0 (DL
i=0

This implies that if L = 0, then we have J (z,y) = 0. Therefore, x = y and the
constant f (¢t) = x is the desired solution.

So, without losing generality, we may assume that L > 0. Let {f,} be a length
minimizing sequence in Pathy (z,y) with L (f,) — L. Let

Pf":{Ozaén)<a§n)<---<a5\7):1}
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be the partition of [0, 1], associated with f,,. By reparametrization if necessary,

we may assume that each f,, is Lipschitz with Lip (f,) < 1.5L on {agn),agi)l} for

each i = 0,--- ,N — 1. Then, by choosing a subsequence if necessary, we may
(n)

assume that each sequence {ai } is convergent to some point a; as n — oo for

each i = 0,1,--- , N. Using a linear change of variable, we may assume that for
each 1, agn)

family

F_ feC(o0,1],(X,J)): f(0)==, f(1) =y, and J is a metric on
| f(lai,ai+1]) and Lip (fua“aiﬂ]) <2L, foreachi=0,---,N—-1 [~

By lemma 3.3, F is a bounded, closed and equicontinuous subset of C' ([0, 1], (X, J)).
By the Ascoli-Arzeld theorem shown in corollary 2.13, a subsequence {f,,} of
{fn} in F is uniformly convergent to some f € F with respect to Jo. By the
lower semicontinuity of L in the family F, we have L (f) < liminfy L (f,,) = L.
Therefore, f is a length minimizer in Pathy (z,y). O

= a; and Lip (f,) < 2L on [a;,a;4+1]. Now, {f,} is a sequence in the

Recall that a function d : X x X — [0,400) is a pseudometric on X if d
satisfies conditions (1),(3) in Definition 2.1, and the triangle inequality d (x,y) <
d(xz,z) +d(z,y) for any z,y,z € X. But d(z,y) = 0 does not necessarily imply
x = y. A function d : X x X — [0,400) is a semimetric on X if d satisfies
conditions (1),(2),(3) in Definition 2.1. So, a semimetric d is not required to satisfy
the triangle inequality.

Note that each Dy is a semimetric on X in the sense that Dy (z,y) > 0,
Dy (z,y) =0 if and only if x =y, and Dy (z,y) = Dy (y, ). In general, Dy may
fail to satisfy the triangle inequality. Nevertheless, we have

Dn+m ($7y) < Dn (1‘,2) + Dm (z,y)
for any m,n and z,y,z € X. As a result, by letting N — oo, we have

Proposition 3.8. Suppose J is a nearmetric on X, then Dy is a pseudometric on
X.

Since Dj is a pseudometric, D is a metric on X if and only if
Dy (z,y) > 0 whenever x # y.

When D; becomes a metric on X. This metric is called the intrinsic metric on X
induced by the nearmetric J.

3.3. Examples of metrics induced by nearmetrics. Now, we are interested in
cases that D is indeed a metric on X.

3.3.1. Ideal nearmetrics. Let J be any semimetric on X. For any z,y € X, we set

d.]((ﬂ, y)

to be the infimum of
n—1
Z J(zi @iv1)
i=1

over all finitely many points x1,--- ,x, € X with 1 = x and z,, = y.
This d; defines a pseudometric on X, but not necessarily a metric on X.
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Example 3.9. For instance, let X = [0,1] and J (z,y) = |x — y|’ for some p > 1
defines a nearmetric on X. Then, for each n,

n—1 ..
v 1+1
dy(0,1) < ZJ( )
i=0 nen
n—1 1 p 1
= Z —| =—= —0asn—o0.
n np

i=0

Thus, dj(0,1) = 0, but 0 # 1. Hence dj is not a metric on X. Also, note that
in this example, Pathy (z,y) is empty whenever x # y. Thus, Dy (x,y) = oo
whenever x # .

As in the case of Dy, dy is a metric on X if and only if
dy(x,y) > 0 whenever x # y.

Note also that
ds(z,y) < Dy (z,y)
for each IV, and thus,
dy(z,y) < Dy(z,y).
Therefore, dj (z,y) > 0 will automatically imply Dj (z,y) > 0. As a result, we
have

Proposition 3.10. Suppose J is a nearmetric on X. If dj is a metric on X and
Dy (z,y) < oo for every x,y € X, then D; also defines a metric on X .

Remark 3.11. When J is indeed a metric on X, then both dj and Dj are metrics.
In this case, dj is just the metric J itself, while D is the intrinsic metric induced
by J.

In general, by means of definition, we have

dJ (x,y) < J(l'vy) < 000 (J) dJ (‘ray),

where 0 (J) is defined as in (2.2).
Now, suppose J is an ideal nearmetric, then o (J) < co and J satisfies the
condition

n—1
J (Ilvxn) <0 (J) Z J(thi—&-l)
i=1
for any finitely many points {21, za, - ,z,} C X. Clearly, we have the following
proposition:

Proposition 3.12. Suppose (X, J) is an ideal nearmetric space. Then for any N
and any f € Py ([a,b], (X, J)), we have

J(f(a), f (b)) <o (J)L(f).

Lemma 3.13. Suppose J is an ideal nearmetric on X . Then, dj is a metric on
X. Moreover, if Dy (x,y) < oo for every x,y € X, then Dy also defines a metric
on X.

Proof. This is simply because when = # y, dj (x,y) > #(J)J(a:,y) > 0. O
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3.3.2. Perfect nearmetrics. Here is another kind of nearmetric J which also induces
a metric Dj.

Definition 3.14. A nearmetric J on X is a perfect near metric if for any xz,y € X,
the value D (z,y) becomes a real valued constant D j (x,y) when N is large enough.

Since for each N, Dy (z,y) = 0 if and only if z = y, we have the following
theorem.

Proposition 3.15. On a perfect nearmetric space (X, J), D defines a metric on
X.

When J is indeed a metric on X, then for each N, the metric Dy agrees with the
intrinsic metric induced by J. Thus, every metric space is automatically a perfect
nearmetric space. In section 4, we will discuss a family of very important perfect
nearmetric spaces, which are not metric spaces.

Theorem 3.16. Suppose (X, J) is a perfect nearmetric space, and the geodesic
problem 8.1 has solution for N large enough. Then, (X, Dj) is a length space in
the sense that for every x,y € X, there exists a curve f : [0,L] — (X, Dy) such
that f (0) =z, f(L) =y and

Dy (f(t),f(s)) =t —s|
for every t,s € [0, L] where L = Dy (z,y).
Proof. For every z,y € X, since (X, J) is a perfect nearmetric space, we have
Dy (z,y) = Dy (x,y) < oo whenever N is large enough. Now, for each large enough
N, there exists a curve f : [0, L] — (X, J) such that f is the length minimizer in
Pathy (x,y) with L(f) = Dy (z,y) = Dy (x,y). Without losing generality, we
may assume f has its arc parametrization. Now for any 0 < s < t < L, we have

t .
Dy (F(5) FO) < L(Flo) = [ |F] de=t-s
Similarly, Dy (f (0), f(s)) <sand Dy (f(t), f (L)) <L —t. Thus, we have

L = Dy(z,y) <Ds(f(0),f(s)+Dy(f(s),f({#)+Ds(f(t),f(L))
< s+({t—s)+(L—t)=L.

Therefore, all inequalities becomes equalities at every step and for any ¢, s € [0, L],
we have Dy (f(t),f(s)) =t —s|. O

Corollary 3.17. Suppose J is a complete, continuous, perfect nearmetric on X.
Then, (X, Dy) is a length space.

The curve f in the theorem 3.16 is called a geodesic from z to y in the perfect
nearmetric space (X, J).

4. OPTIMAL TRANSPORT PATHS AS GEODESICS

We now begin to introduce a family of both ideal and perfect nearmetrics on the
space of atomic probability measures.
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4.1. A family of nearmetrics on the space of atomic probability measures.

Let (Y, d) be any metric space. For any y € Y, let §,, be the Dirac measure centered
at y. An atomic probability measure in Y is in the form of

m
E : a; 6741
i=1

with distinct points y; € Y, and a; > 0 with >, a; = 1.
Given two atomic probability measures

(4.1) a= Z a;0;, and b = Z b;dy,
i=1 j=1

in Y, a transport plan from a to b is an atomic probability measure

(4.2) Y= Viib(ary)

i=1 j=1
in the product space Y x Y such that

m n
(4~3) Z’Yij = bj and Z%‘j = a;
i=1 j=1

for each i and j. Let Plan (a,b) be the space of all transport plans from a to b.
For any a < 1, we now introduce the functional H, on transport plans. For any
atomic probability measure v in Y x Y of the form (4.2), we define

Hy (v) = Z Z (vij) " d (21, 95)
i=1 j=1
where d is the given metric on Y.
Using H,,, we may define

Definition 4.1. For any two atomic probability measures a,b on'Y, and o < 1,
define
Jo (a,b) :=min {H, (7) : v € Plan(a,b)}.

For any given natural number N € N | let Ay (Y) be the space of all atomic
probability measures
m
D aida,
i=1

onY withm < N, and A(Y) = Jy An (Y') be the space of all atomic probability
measures on Y.

Proposition 4.2. J, defines a nearmetric on An (Y) with o (J,) < N.

Proof. For any a,b € Ay (Y) in the form of (4.1), clearly J, (a,b) > 0 and
Jo (aa b) = Ja (bva)'

If J, (a,b) = 0, then there exists a v € Plan (a,b) such that H, (7) = 0. Thus,
d (x;,y;) = 0 whenever 7;; # 0. Since {y;}’s are distinct, at most one of 7;; can be
nonzero for each ¢. On the other hand, by (4.3), at least one of -y;; must be nonzero
for each i. Therefore, for each 4, there is a unique j = o (i) such that z; = y; and
vij = a; = b;. This shows that a = b.
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Now, we prove that J satisfies the relaxed triangle inequality as in condition 4
in Definition 2.1. Indeed, for any

a_Z:aZ 2, D= Zb 5% andc_ch(Szk_

k=1
in Ay (Y), and any
m n
Z UikO (s, € Path(a,c) and 70 Z ZTk] (2r,y;) € Path(c,b),
i=1 k=1 j=1k=1
we denote

h
Uik Tk
Yij = Z T
k=1
for each 4, j. Note that

i=1 \k=1 k=1

and similarly Z ;i = a;.Therefore, we find a transport plan
v = Z Z%jé(%w) € Plan (a,b).
i=1 j=1
We now want to show
Ho (v) £ N (Ho (ug) + Ha (7)) -
Indeed,

7) = Z 'Yzj 1717 yj Z Z (Z YikThj > d (931‘7 yj)

1=1 j=1 =1 5=1 =
m n
< ZZ (ulkﬂ”) d(x;, z,) + d (zk,y;)) , because o < 1
i=1 j=1k=1
m h n «
— (Y <um7’k3> d (20, 2% +ZZ (Z <U4k7'k]> > d (21, 9;)
i=1 k=1 \j=1 j=1k=1 \i=1
m h n h
< N (ZZ win)® d (x4, 2, —|—ZZ 765)" d (21, y;) |, since 7; < ¢ and wi, < ¢
i=1 k=1 j=1k=1

= N (Ha (uQ)+ Hq (1))
Therefore, by taking infimum, we have
Jo (a,b) < N (J, (a,¢) + Ju (c,b)).
O

Note that, in general, J, may fail to be a metric on Ay (Y) as demonstrated in
the following example.
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Example 4.3. For any a < 1, let y be a positive real number. Then, we consider
three atomic measures in Y = R? :

1 1
a= 55(71,y+1) + 55(1,y+1)vb = 0(0,0) and € =0d(0,y)-
Then,
Jo (a,€) + Ja (¢, b) — Jo (a,b)

- 2<;)aﬂ+y—2(;)a I+ (y+1)°<0

whenever y is large enough. Thus, J, does not satisfy the triangle inequality.

4.2. Optimal transport paths between atomic probability measures. Now,
we want to show that the nearmetric J, is both ideal and perfect. To achieve
these results, we first recall some concepts about optimal transport paths between
probability measures as studied in [6].

Let a and b be two fixed atomic probability measures in the form of (4.1).

Definition 4.4. A transport path from a to b is a weighted directed graph G consists
of a vertex set V (QG), a directed edge set E (G) and a weight function

w: E(G) — (0,+00)
such that {z1,22,... xK} U{y1,y2, -,y } C V(G) and for any vertexv € V (G),

a;, ifv=uwx; forsomei=1,---,k
1) S we= Y wle)+{ b, ifv=uy, forsomej=1,-,1
c€E(G) c€B(G) 0, otherwise

e =v et=v
where e~ and eT denotes the starting and ending endpoints of each edge e € E (G).

Remark 4.5. The balance equation (4.4) simply means that the total mass flows
into v equals to the total mass flows out of v. When G is viewed as a polyhedral
chain or current, (4.4) can be simply expressed as

0G =b—a.
Also, when G is viewed as a vector valued measure, the balance equation is simply
div(G)=a—b
in the sense of distributions.
Let Path(a,b) be the space of all transport paths from a to b.

Definition 4.6. For any o < 1, and any G € Path(a,b), define
M, (G) := Z w (e)” length (e) .
ecE(G)

Remark 4.7. In [6], the parameter o was restricted in [0,1]. Later, the author
observed that o < 0 s also very interesting, and related to studying the dimension
of fractals. So, negative a is also allowed here.

We first recite two lemmas that were proved in [6, Proposition 2.1] and [6, Defi-
nition 7.1 and Lemma 7.1] respectively.
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Lemma 4.8. For any transport path G € Path (a,b), there exists another transport
path G € Path (a,b) such that

M, (G) < M, (G),

vertices V (é) C V(G) and G contains no cycles.

Here, a weighted directed graph G = {V (G),E(G),W : E(G) — (0,1]} con-
tains a cycle if for some k > 3, there exists a list of distinct vertices {vy,va, - ,vx}
in V (G) such that for each i = 1,--- |k, either the segment [v;, v;yr1] or [viy1, 0]
is a directed edge in E(G), with the agreement that vig41 = v;. When a directed
graph G contains no cycles, it becomes a directed tree.

Lemma 4.9. For any transport path G € Path (a,b) containing no cycles, there
exists

(1) an m x n real matriz

u = (u;;) with

m n m n
ui; > 0, g Ui; = ag, g u;; = b; for eachi,j and g E uj; =1,
i=1 j=1

i=1 j=1
(2) and an m x n matriz
9 = (i)
with each g;; is either O or an oriented polyhedral curve g;; from x; to y;,

such that
G= Z UsjGsj
i,j
as real coefficients polyhedral chains.

By means of lemma 4.8, it is easy to see that for each o < 1, there exists an
optimal transport path in Path (a,b) which minimizes the cost functional M,. To
help readers have a better understanding of optimal transport paths, we provided
some numerical simulation of optimal transport paths in the following examples,
but leaving details of generating algorithms in a forthcoming article.

Example 4.10. Let {z;} be 50 random points in the square [0,1] x [0,1]. Then,

{z;} determines an atomic probability measure
1
a= — 0, -
iz:; 50 T4

Let b = 6o where O = (0,0) is the origin. Then an optimal transport path from a
to b looks like the following figures with o = 1,0.75,0.5 and 0.25 respectively:
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o=1 a=0.75
1 1
0.8
0.6
0.4
0.2
) 0 . , . ,
1 0 02 0.4 0.6 0.8 1
a=0.25
1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 * * - - 0 - - : !
0 02 04 06 08 1 0 0.2 0.4 0.6 0.8 1

Example 4.11. Let {z;} be 100 random points in the rectangle [—2.5,2.5] x [0, 1].
Then, {x;} determines an atomic probability measure a = lei(i 6502, Let b = 6o
where O = (0,0) is the origin, and let « = 0.85. Then an optimal transport path
from a to b looks like the following figure.

05

0

05+

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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4.3. Relation between optimal transport paths and nearmetrics J,. We
now start to investigate the relationship between optimal transport path and the
nearmetric J, on Ay (Y). We first observe that any transport plan v € Plan (a, b)
in the form of (4.2) determines a transport path G, € Path(a,b). Indeed, we
consider the weighted directed graph G, with

V(G’Y) = {1’1,'” y Tms Y1, ayn}a

E (G’Y) = {a pair [in, y]] if Yij 7é O} y
and setting the weight W ([x;,y;]) = 7s; for each i, j with 7;; # 0. Moreover,

M., (G,) = Z w (e)” length (e) = Z (vij)* d(zi,y;) = Ha (7) -

ecE(Gy) .7

Proposition 4.12. For any atV,a® ... a®) ¢ A(Y), there exists a transport
path G € Path (a(1)7a(k)) such that

e

M. (@) <3 (a9, a0)

=1

and G contains no cycles.

Proof. Let 7; be an optimal transport path from a® to alitD, fo_r each i =
1,2,--- ,k — 1. Each v; determines a transport path G,, € Path (a(l), a(i“'l)) as
above. Then, viewed as real coefficients polyhedral chains,

k—1
G= Z G’Yi
=1

is a transport path from a™ to a(*). Moreover, we have
k-1 k—1 k—1
M, (G) <Y Mo (Gy) =Y Ho(vi) = Ja (a(z),a(”l)) .
i=1 i=1 i=1
By lemma 4.8, there exists a transport path G from a(®) to a®) such that G contains

no cycles, V (é) C V(G@), and

k—1

M., (@) <M, (GQ) < Z I (a(i),a(iJrl)) _

i=1

Theorem 4.13. J, is an ideal nearmetric on Ay (V) with 0 (Jo) < N2.

Proof. For any k € N and any points {a(l),a@)7 e ,a(k)} C Ay (Y), by proposi-
tion 4.12, there exists a transport path G € Path (a(l), a(k)) such that

k-1
M., (G) < Z I (a(z‘)7a(i+1))
=1

and G contains no cycles. Moreover, by lemma 4.9, there exists a matrix (u;;) of
real numbers and a matric (g;;) of polyhedral curves such that

G= Z UsjGij
ij
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as real coefficients polyhedral chains. Let
Y= D wiiSa )
ij
be any transport plan in Plan (a(l)7 a(k)). Then,

Ho(v) = Z (uig)® d (i, y5) < Z (uij)* length (gij)

%] ij

> > (uij)* | length (e)

e€E(G) \gi;j contains e

[e3%

< Z N? Z Uij length (e)
e gij contains e
= N? Z (w (e))* length (e)
e€E(G)

— N2M <N22J ( (4) a(z+1)
Therefore,

Ja (a(l ) < NQZJ ( () a(lﬂ))
and thus J, is an ideal nearmetric on Ay ( ) with oo (Jo) < N2 O

Suppose (Y, d) is a geodesic metric space. That is, for any x,y € Y, there exists
a Lipschitz curve I'y ,, : [0,1] — (Y,d) with I'; , (0) = z, 'y, (1) = y and length
LT,y =d(z,y).
Lemma 4.14. Suppose (Y,d) is a geodesic metric space. Let G € Path (a,b)
for some a,b € An (Y). If each edge of G is a geodesic curve between its end-
points in the metric space Y, then there exists a piecewise Lipschitz curve g €

Pne ([0,1], (An (YY), Jo)) such that
L, (9) =Ma (G),
where N¢g is total number of edges in the graph G.
Proof. We may prove it using the mathematical induction on Ng. When Ng = 1,

G itself is a geodesic in Y. Then, it is clearly true in this case. Now, assume
Ng > 1. Pick an edge e of G with its starting endpoint e~ being a vertex in a. Let

a=a+tw(e)(0er —de-),

where et is the targeting endpoint of the directed edge e, and w (e) is the as-
sociated weight on e. Removing edge e from G, we get another transport path
G € Path (a,b). Then, Nsz = Ng —1 > 1. By the principle of the mathemati-
cal induction, we may assume that G corresponds to a piecewise Lipschitz curve
g € Pn. ([0,1], (An (Y), Ja)) such that

L (§) =M, (é)
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Now, let
g(%), <t< A
0=\ (2), asest
where A = Nf\;,;l, and T', is the associated geodesic in Y from e~ to e'. Then,

g € Pne ([0,1], (An (V) , Ja)) and
Ly, (9) =1Ly, (3)+ Ly, (Te) =M, (G‘) +w (e)* length (e) = Mg (G).
O

Remark 4.15. From this lemma, we see that for any transport path G € Path (a,b)
in a geodesic metric space (Y, d), we have a simple formula for the transport cost:

1
muxerzﬁ 9(8)] dt.

On the other hand, in [3], the authors studied another kind of ramified transporta-
tion in which the cost of a path is given by

A|MMWJ@@»m

where W is the Wasserstein distance on probability measures, and J is some func-
tion on the space of atomic probability measures. It is interesting to see this differ-
ence between these two different approaches.

Theorem 4.16. Suppose (Y,d) is a geodesic metric space. Then, J, is a perfect
nearmetric on Ax (Y), and thus it induces a metric Dy, on An (Y).

Proof. Suppose a, b are two points in Ay (Y'). Forany f € Py ([0,1], (An (Y), Jo))
with f(0) = a and f (1) = b, there exists a partition P = {0 =a¢ < --- < a, = 1}
of [0, 1] such that J, is a metric on f ([a;, a;11]) and f|[4,,q,,,] is Lipschitz for each
i =0,1,--- ,k—1. Let x; = f(a;) for each i, by proposition 4.12, there exists a
transport path G from f (0) = a to f (1) = b such that

M, (G) < ZJa ('ri’xi-‘rl) < ZL (fl_[ai,ai+1]) =L (f)

and G contains no cycles.When (Y, d) is a geodesic metric space, each edge of G is
realized by a geodesic curve between its endpoints. By lemma 4.14, G determines
a curve g € Png ([0,1], (An (Y), Jo)) with L(g) = M, (G) < L(f). Since a,b €
An (Y) and G € Path (a,b), the total number of vertices of G with degree one is
no more than 2/N. Since G contains no cycles, the total number Ng of edges of G
is no more than 4N — 3. Thus, g € Pan—3([0,1],(An (Y),Jo)). Hence, for any
a,be Ay (Y),
Dk (a, b) = D4N73 (a, b)

for any k > 4N — 3. This shows that J, is a perfect nearmetric on Ay (Y). O

Corollary 4.17. Suppose (Y, d) is a geodesic metric space. Then, for anya,b € Ay (Y)
and a < 1, we have

Dj. (a,b) =min{M, (G) : G € Path(a,b)}.

o
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Proof. Let G be any optimal transport path from a to b. From the proof of the
above theorem, we see D (a,b) < M, (G) < L(f) forany f € Py ([0,1],(An (Y), Ja))
with £ > 4N — 3. Hence, D, (a,b) =M, (G). O

Corollary 4.18. Suppose (Y,d) is a geodesic metric space. Then, (Anx (Y),Dy.)
is a length space.

Proof. By corollary 4.17, each optimal transport path G determines a solution g
to the geodesic problem (3.1). Then, by theorem 3.16, (Ax (Y), Dy, ) becomes a
length space. O

Since 41 (V) C Ay (Y) C--- C An(Y) C -+, and (An (Y), Dy, ) is a length
space for each IV, we have

Proposition 4.19. Suppose (Y,d) is a geodesic metric space. Then, Dy is a
metric on the space A(Y) of all atomic probability measures on Y. Moreover,
(A(Y),Dy,) is a length space.

We now give some conclusive remarks:

Remark 4.20. In [6], we defined d, (a,b) := min {M, (G) : G € Path (a,b)} for
0 < a <1 and showed that d,, defines a metric on the space of (atomic) probability
measures. Moreover, we showed (A(Y'),d,) is a length space. Now, from corollary
4.17, we see that do, = Dy . That is, the metric do is just the intrinsic metric on
A (Y) induced by the nearmetric J,. Proposition 4.19 simply gives another proof of
(A(Y),ds) being a length space. Furthermore, an optimal transport path studied
in [6] is simply a geodesic in the length space (A(Y),Dy.).

Remark 4.21. Suppose (Y, d) is a geodesic metric space, and P, (Y') is the comple-
tion of the metric space (A(Y'),Dy,). Then, (Py (Y),D;,) is also a length space.
A geodesic in the length space (Po (Y),Dy,) is also called an optimal transport
path between its endpoints.
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