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Monge’s Transport Problem
How do you best move given piles
of sand to fill up given holes of the
same total volume? � � � � � �
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Mathematical Formulation:
Pile of Sand:a positive Radon measureµ+ on a convex subsetX ⊂ Rm.
Hole: another positive Radon measureµ− onX.
Same Volume:0 < µ+ (X) = µ− (X) < +∞. Usually, we normalize the
mass to 1. So, bothµ+ andµ− are probability measures.
Move: a Borel, one-to-one mapψ : X → X
Fill: ψ#µ

+ = µ− (i.e. µ−(A) = ψ#µ
+(A) = µ+(ψ−1(A)).).

Best:minimum total “work” or transport cost.
Work or cost ofψ: I (ψ) =

∫
X |x− ψ (x)| dµ+ (x).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Monge’s problem (1781):Given two probability measures onX, minimize
the cost

I [ψ] :=

∫
X
|x− ψ (x)| dµ+ (x)

among all“transport maps”in

A =
{
ψ : X → X Borel, one-to-one,ψ#

(
µ+)

= µ−
}
.
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Monge’s problem (1781):Given two probability measures onX, minimize
the cost

I [ψ] :=

∫
X
|x− ψ (x)| dµ+ (x)

among all“transport maps”in

A =
{
ψ : X → X Borel, one-to-one,ψ#

(
µ+)

= µ−
}
.

Or in more general case, minimize

I [ψ] :=

∫
X
c (x, ψ (x)) dµ+ (x)

for some given cost functionc : X ×X → [0,+∞).
Some important cases:

• linear cost:c(x, y) = |x− y|;
• quadratic cost:c(x, y) = |x− y|2;
• c(x, y) = |x− y|p, for 0 < p <∞;

• c(x, y) = h(|x− y|) for some convex functionh.
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Discrete Cases:
Both

µ+ =
∑
i

aiδxi andµ− =
∑
j

bjδyj

are atomic measures of equal total mass. We assume{xi, yj} are distinct.
Example:

µ+ =
1

3
δx1 +

1

4
δx2 +

5

12
δx3

µ− =
1

3
δy1 +

1

4
δy2 +

5

12
δy3

Only one admissible transport map here. Eachxi is mapped toyi.
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So, for nontrivial case,we may assumeai = bj = 1
n. That is,

µ+ =
1

n

n∑
i=1

δxi andµ− =
1

n

n∑
j=1

δyj.

Each transport map is just a permutationσ of {1, · · · , n}. In this case,
Monge’s problem becomes minimizing

1

n

∑
i

c(xi, yσ(i))

among all permutationsσ ∈ Sn. It corresponds to finding an optimal match-
ing between the source pointsxi and the target pointsyj.
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Continuous Cases:
Assume bothµ+ andµ− are absolutely continuous with respect to Lebesgue
measure:

µ+ = f (x)dx andµ− = g(x)dx

for some integrable density functionsf andg onX.
In this case, an one-to-one smooth mapϕ : Rn→ Rn satisfies the constraint
ϕ#µ

+ = µ− if and only if

f (x) = g(ϕ(x))|det(Dϕ(x))|.

We’ll see later (or this afternoon) that iff andg have finite second moments,
there exists an optimal transport mapϕ(x) = ∇ψ(x) for some convex func-
tion ψ(x) with respect to the quadratic costc(x, y) = |x − y|2. Thus,ψ(x)
solves a particular form of Monge-Ampe’re equation

det(D2ψ(x)) =
f (x)

g(∇ψ(x))
.
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Difficulties in solving Monge’s problem

•Highly nonlinearstructure of

I [ψ] =

∫
X
c (x, ψ (x)) dµ+ (x)

Let c(x, y) = |x− y|.
• ExampleX = [−1, 1], µ+ = δ0, µ− = 1

2δ−1 + 1
2δ1. No transport map!

So, no splitting of mass may causenon-existenceof transport maps.
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Optimality test forc(x, y) = |x− y|
Supposeϕ is a transport map fromµ+ to µ−. How to know ifϕ is optimal?
Let u : X → R be a Lipschitz function withLip(u) ≤ 1. (We denote
u ∈ Lip1(X)). Then,∫

X
u(x)d(µ− − µ+) =

∫
X

[u(ϕ(x))− u(x)]dµ+ ≤
∫
X
|ϕ(x)− x|dµ+.

Thus, if the equality is achieved for someu ∈ Lip1, thenϕ must be an
optimal transport map.
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• Example (Book Shifting)

X = R, µ+ = χ[0,n]dx, µ
− = χ[1,n+1]dx.

Bothϕ(x) = x + 1 and

φ(x) =

{
x + n on [0, 1)
x on [1, n]

are optimal transport maps.

In fact, if we takeu(x) = x, thenu ∈ Lip1 and∫
X
u(x)d(µ− − µ+) =

∫ n+1

1
xdx−

∫ n

0
xdx = n.

On the other hand,∫
X
|ϕ(x)− x|dµ+ =

∫
X
|ψ(x)− x|dµ+ = n.

This example saysminimizers are not necessarily unique.
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• Example
X = R2, µ+ = δ(−1,0) + δ(1,0)

andµ− be any mass 2 measure supported in the imaginary y-axis.
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• Example
X = R2, µ+ = δ(−1,0) + δ(1,0)

andµ− be any mass 2 measure supported in the imaginary y-axis.

In this case, any admissible transport map is optimal.
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One more trouble in Monge’s problem: A limit of minimizing sequence of
mapsψi may fail to be a map.
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One more trouble in Monge’s problem: A limit of minimizing sequence of
mapsψi may fail to be a map.

Well, Monge’s problem is not easy to deal with. What shall we do ??????!!!
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One more trouble in Monge’s problem: A limit of minimizing sequence of
mapsψi may fail to be a map.

Well, Monge’s problem is not easy to deal with. What shall we do ??????!!!
“Relax!” said Kantorovich, more than 150 years later.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

One more trouble in Monge’s problem: A limit of minimizing sequence of
mapsψi may fail to be a map.

Well, Monge’s problem is not easy to deal with. What shall we do ??????!!!
“Relax!” said Kantorovich, more than 150 years later.
Kantorovich’s relaxation:“Graphs” of maps can be viewed as positive mea-

sures in the product space. Limits of maps may fail to be maps, but limits of
measures will still be measures.
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One more trouble in Monge’s problem: A limit of minimizing sequence of
mapsψi may fail to be a map.

Well, Monge’s problem is not easy to deal with. What shall we do ??????!!!
“Relax!” said Kantorovich, more than 150 years later.
Kantorovich’s relaxation:“Graphs” of maps can be viewed as positive mea-

sures in the product space. Limits of maps may fail to be maps, but limits of
measures will still be measures.

Idea: associate with each transport mapψ the measure

γψ = (Id× ψ)#µ
+

in the product spaceX × X. Let πi be the projection map fromX × X
to its i-th coordinates. Thenπ1#(γψ) = µ+ andπ2#(γψ) = ψ#µ

+ = µ−.
Moreover, ∫

X×X
c(x, y)dγψ =

∫
X
c(x, ψ(x))dµ+.
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Kantorovich (1940’s)
Transform it into a linear problem on a convex set.

µ−

µ+

Transport map

µ+

µ−

Transport Plan

Relaxation

Minimize

J (γ) :=

∫
X×X

c (x, y) dγ (x, y)

in the class oftransport plans

Π(µ+, µ−) = {γ ∈ P (X ×X) |π1#γ = µ+, π2#γ = µ−}.

Existence: from a simple compactness argument of probability measures (for
simplicity, assumeX is compact here.)
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The discrete case.

Let

µ+ =
1

n

n∑
i=1

δxi andµ− =
1

n

n∑
j=1

δyj.

Then, any transport plan fromµ+ to µ− can be represented as a bistochastic
n× n matrixπ = (πij). Here by bistochasticity we mean that all theπij are
nonnegative and that

∀j,
∑
i

πij = 1; and∀i,
∑
j

πij = 1.
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So, in this case, the Kantorovich problem reduces to minimize
1

n

∑
i,j

πijc(xi, yj)

among all bistochasticn× n matricesπ.
This is a linear minimizing problem on a bounded convex set. By Choquet’s

theorem and Birkhoff’s theorem, its solutions are given by permutation ma-
tricesπ, (i.e. πij = δj,σ(i) for some permutationσ.) Thus, in this case,
optimal transport plans in Kantorovich’s problem coincide with solutions of
Monge’s problem

inf{1

n

∑
i

c(xi, yσ(i));σ ∈ Sn}.
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Relations between Monge and Kantorovich
Since every transport map determines a transport plan of the same cost,

min
γ∈Π(µ+,µ−)

∫
X×X

c (x, y) dγ (x, y) ≤ inf
ψ#µ

+=µ−

∫
X
|x− ψ (x)| dµ+ (x) .

In general, when will solutions to the Kantorovich and Monge problems co-
incide? Will an optimal transport plan come from an optimal transport map?
Let X = Rn, c(x, y) = |x − y|p, 0 < p < +∞, andµ+, µ− are compactly
supported. Then,
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• If p > 1, thestrictly convexityof c(x, y) = |x − y|p guarantees that, if
µ+, µ− are absolutely continuous with respect to Lebesgue measure, then
there is auniquesolution to the Kantorovich problem, which turns out to
be also the solution to the Monge problem. The same result holds true
whenµ+ is nonatomic(i.e. contains no atomics:µ+({x}) = 0 for all
x ∈ X.)

• In the case of a quadratic case,p = 2, these optimal maps are the (restric-
tions of)gradients of convex functionsRn.

• Sometimes, optimal transport plans may have to split mass and solution to
the Monge problem may fail to exist.

• If p = 1, µ+, µ− are absolutely continuous with respect to Lebesgue mea-
sure, then there are solutions of the Monge problem which are also solu-
tions of the Kantorovich problem. However,uniqueness may failhere.

• If 0 < p < 1, there is in generalno solutionof the Monge problem, except
if µ+ andµ− are concentrated on disjoint sets.
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One dimensional case
LetX = [a, b] be a closed interval inR. Letc(x, y) = |x−y|p for somep ≥ 1.

If µ+ is nonatomic(i.e. µ+({x}) = 0, for all x), then there exists a unique
(modulo countable sets)nondecreasingfunctionψ : spt(µ+) → X such that
ψ#µ

+ = µ−.

This functionψ is given by

ψ(s) := sup{t ∈ [a, b] : µ−([a, t]) ≤ µ+([a, s])}.

The functionψ is an optimal transport map. Whenp > 1, it is the unique
optimal transport.

This is a sharp result in the one-dimensional case.µ+ has atoms may cause
non-existence of maps. Dropping monotonicity may cause non-uniqueness.
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Finite moments (in caseX is unbounded)
For anyp > 0, let Pp(X) be the set of all probability measures with finite
moments of orderp. i.e. those measuresµ such that for some (and thus any)
x0 ∈ X, ∫

X
|x− x0|pdµ(x) < +∞.

Of course, ifX is bounded, thenPp(X) coincides with the setP (X) of all
probability measures onX.
We now assume bothµ+ andµ− are inPp(X). This condition ensures that
the cost of any transport planγ ∈ Π(µ+, µ−) is always finite. Indeed,∫

X×X
|x− y|pdγ(x, y) ≤

∫
X×X

2p(|x|p + |y|p)dγ(x, y) < +∞.

SinceΠ(µ+, µ−) is compact with respect to weak * convergence of prob-
ability measures, the Kantorovich minimization probleminf{J(γ) : γ ∈
Π(µ+, µ−} admits a minimizer.
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Wassenstein distances onP (X)

Definition. Givenp ∈ (0,+∞) (usually [1,+∞)), for any two probability
measuresµ+, µ− ∈ Pp (X), define

Wp
(
µ+, µ−

)
:= [ min

γ∈Π(µ+,µ−)

∫
X×X

|x− y|p dγ (x, y)]min(1,1/p).

distance between measures= minimal costto suitable powers

Proposition.Wp is a distance onPp (X) and metrizes the weak * topology
of Pp (X).
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Kantorovich Duality
Kantorovich problem is a linear minimization problem with convex con-
straints, so it also admits a dual formulation:

inf
γ∈Π(µ+,µ−)

∫
X×X

c(x, y)dγ(x, y)

= sup
Φc

[

∫
X
ϕ(x)dµ+ +

∫
X
ψdµ−].

Here,

Φc = {(ϕ, ψ) ∈ L1(dµ+)× L1(dµ−) with ϕ(x) + ψ(y) ≤ c(x, y)}.

How to understand it? Here, we quoted a paragraph from Villani’s book:
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“The shipper’s problem.Here is an informal way of interpreting Kan-
torovich duality principle, which we learnt from Caffarelli. Suppose for in-
stance that you are an industrial willing to transfer a huge amount of coal
from your mines to your factories. You can hire trucks to do this transporta-
tion problem, but you have to pay them c(x; y) for each ton of coal which is
transported from place x to place y. Both the amount of coal which you can
extract from each mine, and the amount which each factory will receive, are
fixed. As you are trying to solve the associated Monge-Kantorovich prob-
lem in order to minimize the price you have to pay, another mathematician
comes to you and tells you “My friend, let me handle this for you: I will ship
all your coal with my own trucks and you won’t have to care of what goes
where. I will just set a priceϕ(x) for loading one ton of coal at place x, and a
priceψ(y) for unloading it at destination y. I will set the prices in such a way
that your financial interest will be to let me handle all your transportation !
Indeed, you can check very easily that for all x and all y, the sumϕ(x)+ψ(y)
will always be less that the cost c(x; y) (in order to achieve this goal, I am
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even ready to give financial compensations for some places, in the form of
negative prices !)”. Of course you accept the deal. Now, what Kantorovich’s
duality tells you is that if this shipper is clever enough, then he can arrange
the prices in such a way that you will pay him (almost) as much as you would
have been ready to spend by the other method.”
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Idea of a formal proof:
Want:

inf
γ∈Π(µ+,µ−)

∫
X×X

c(x, y)dγ(x, y)

= sup
Φc

[

∫
X
ϕ(x)dµ+ +

∫
X
ψdµ−].

Idea: Rewrite the constrained infimum problem as an inf sup problem, and
exchange the two operations by formally applying aminimax principle,i.e.
replacing an “inf sup” by a “sup inf”.
LetM+(X ×X) be the space of all nonnegative Borel measures onX ×X.
Then,
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inf
γ∈Π(µ+,µ−)

∫
X×X

c(x, y)dγ(x, y)

= inf
γ∈M+(X×X)

[

∫
X×X

c(x, y)dγ(x, y) +

{
0, if γ ∈ Π(µ+, µ−)
+∞ else

]

= inf
γ∈M+(X×X)

{
∫
X×X

c(x, y)dγ(x, y)

+ sup
(ϕ,ψ)

[

∫
ϕdµ+ +

∫
ψdµ− −

∫
[ϕ(x) + ψ(y)]dγ(x, y)]}

= inf
γ∈M+(X×X)

sup
(ϕ,ψ)

[

∫
X×X

c(x, y)dγ(x, y)

+

∫
ϕdµ+ +

∫
ψdµ− −

∫
[ϕ(x) + ψ(y)]dγ(x, y)]
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Taking for granted that a minimax principle can be invoked, we rewrite this
as

= sup
(ϕ,ψ)

inf
γ∈M+(X×X)

{
∫
X×X

c(x, y)dγ(x, y)

+

∫
ϕdµ+ +

∫
ψdµ− −

∫
[ϕ(x) + ψ(y)]dγ(x, y)}

= sup
(ϕ,ψ)

{
∫
ϕdµ+ +

∫
ψdµ− + inf

γ∈M+(X×X)

∫
[c(x, y)− ϕ(x)− ψ(y)]dγ}

= sup
(ϕ,ψ)

[

∫
ϕdµ+ +

∫
ψdµ− +

{
0, if (ϕ, ψ) ∈ Φc
−∞ else

]

= sup
Φc

[

∫
X
ϕ(x)dµ+ +

∫
X
ψdµ−].
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Applications:Monge-Kantorovich problem has many applications in Eco-
nomic(Nobel Prize in 1975); Fluid Mechanics; PDE; Optimization; meteo-
rology and oceanography; surface reconstruction;· · · .
Many experts will attend this workshop!
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