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How do you best move given piles y A

of sand to fill up given holes of the N \
y

same total volume? .

Pile of Sanda positive Radon measuge on a convex subset ¢ R,
Hole: another positive Radon measure on X.

Same Volume0 < u* (X) = = (X) < +oo. Usually, we normalize the
mass to 1. So, both™ andy.— are probability measures.

Move: a Borel, one-to-onemap : X — X

Bill- bt = = (i.e. p (4) = Yupt(A) = ut (v~ 1(4)).).

Best: minimum total “Work” or transport COSt.

Work or cost ofy: I (y) = [y |z — ¢ (z)|dp™ ().



Given two probability measures oq, minimize

A= [ le—v@Idi* @)

among all‘transport mapsin
A={y: X — X Borel, one-to-oney (") = p" }.

the cost
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Or in more general case, minimize

Iy = /X ¢ (% (7)) dut @)

for some given cost function: X x X — |0, +00).

Some important cases:
e linear costic(x,y) = |z — y|;

e quadratic coste(z,y) = | — y

e

.C(:va) u ‘CIZ — Y
o c(z,y) = h(|x — y|) for some convex functioh.



Both

ut = Z a;0y; andp— = Z bjoy,;
l y
are atomic measures of equal total mass. We asgume; } are distinct.

Example:
1

1 D
] 1 D
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Only one admissible transport map here. Eacls mapped tg;.



So, for nontrivial case,we may assume= b; = % That is,
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+__§: —__E:
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Each transport map is just a permutatierof {1,--- ., n}. In this case,
Monge’s problem becomes minimizing

1
E z@: C(xia ya(i))

among all permutations € §,,. It corresponds to finding an optimal match-
Ing between the source pointsand the target poinis;.



Assume both,™ and;~ are absolutely continuous with respect to Lebesgt
measure:

ut = f(x)drandy™ = g(z)dx
for some integrable density functiofisandg on X.

In this case, an one-to-one smooth mapR" — R satisfies the constraint
pup™ = p~ ifand only if

f(@) = glp(x))|det(Dp(z))|

We’'ll see later (or this afternoon) that ffandg have finite second moments,
there exists an optimal transport mafr) = Vi (z) for some convex func-
tion ¢(z) with respect to the quadratic cast:, y) = |z — y|°. Thus,y(z)
solves a particular form of Monge-Ampe’re equation

) - g<éif<>:c>>'



e Highly nonlinearstructure of
1l = [ el b (@) dit @

Letc(z, y) = |z — yl.
e ExampleX = [—1,1], u" = &y, u~ = $6_1 + 201. No transport map!
So, no splitting of mass may causen-existenc®ef transport maps.



Supposer is a transport map from™ to x—. How to know if v is optimal?
Letuw : X — R be a Lipschitz function withLip(u) < 1. (We denote
u € Lip1(X)). Then,

/X ) - /X u(p(z)) — u(@)ldut < /X (@) — ol

Thus, If the equality is achieved for some & Lip;, theny must be an
optimal transport map.



e Example (Book Shifting)
)(::IR,ﬂ+':quﬂﬂdx,u_'::XUJ%+”dx.

Both p(z) =z + 1 and
x+nOM 1)
n)

o

\ are optimal transport maps.

In fact, if we takeu(x) = z, thenu € Lip; and

/X A — p) = /1 N rdx — /O rdn ey

On the other hand,

/X (@) — oldut = /X (z) — oldut =

This example saysiinimizers are not necessarily unigue.



e Example
X =R i = 8(_1,0) + 91,0

andu~ be any mass 2 measure supported in the imaginary y-axis.



e Example
X =R i = 8(_1,0) + 91,0

andu~ be any mass 2 measure supported in the imaginary y-axis.

In this case, any admissible transport map is optimal.
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One more trouble in Monge’s problem: A limit of minimizing sequence o
mapsy; may fail to be a map.

“‘Relax!” said Kantorovich, more than 150 years later.
tGraphs” of maps can be viewed as positive mea
sures in the product space. Limits of maps may fail to be maps, but limits
measures will still be measures.
ldea: associate with each transport mathe measure

Y = (Id X @) up™
In the product spac&X x X. Let w; be the projection map fronX x X
to its i-th coordinates. Them; () = p* andmou(yy) = Yup™ = p.

Moreover,
N +
/X el - /X (o))



Transport Plan
Transport map

! S
/'“/ Relaxation //J ‘

NN o
N A

Y wt

Minimize
J () == / c(z,y)dy (z,y)
X xX
In the class ofransport plans
M(p" ) ={y € P(X x X)|myy=p" mupy=p}.

Existence: from a simple compactness argument of probability measures
simplicity, assumeX Is compact here.)



L

Then, any transport plan from™ to .~ can be represented as a bistochasti
n X n matrixw = (m;;). Here by bistochasticity we mean that all the are
nonnegative and that

Vj, Z?TZ] —\ andw, Zﬂw —\R
l J



So, in this case, the Kantorovich problem reduces to minimize
1
~ Z (T, Y5)
0,J

among all bistochastie x n matricesr.

This is a linear minimizing problem on a bounded convex set. By Choque
theorem and Birkhoff's theorem, its solutions are given by permutation m
tricesm, (.e. m; = d;,(; for some permutatiom.) Thus, In this case,
optimal transport plans in Kantorovich’s problem coincide with solutions ¢
Monge’s problem

1
inf{— P2 U,(1)): 0 € Sn)-



Since every transport map determines a transport plan of the same cost,

bin )< /|:c— o) du (z).
YEN TR /X x X Yyt =p"

In general, when will solutions to the Kantorovich and Monge problems ¢
iIncide? Will an optimal transport plan come from an optimal transport maj
Let X = R" c(z,y) = |z — y[P,0 < p < +o0, andu™, u~ are compactly
supported. Then,



o If p > 1, thestrictly convexityof c(z,y) = |x — y|P guarantees that, if
u .~ are absolutely continuous with respect to Lebesgue measure, tl
there Is auniquesolution to the Kantorovich problem, which turns out to
be also the solution to the Monge problem. The same result holds ti
when i is nonatomic(i.e. contains no atomicsu™ ({z}) = 0 for all
reX.)

e In the case of a quadratic cage= 2, these optimal maps are the (restric-
tions of) gradients of convex functioriR™.

e Sometimes, optimal transport plans may have to split mass and solutiot
the Monge problem may falil to exist.

olf p=1,u", n— are absolutely continuous with respect to Lebesgue me
sure, then there are solutions of the Monge problem which are also sc
tions of the Kantorovich problem. Howevenigueness may fakiere.

o If 0 < p < 1, there Is in generalo solutionof the Monge problem, except
if ™ andy~ are concentrated on disjoint sets.



Let X = |a,b] be aclosed interval iR. Letc(x,y) = |x—y|P for somep > 1.

If 1" is nonatomic(i.e. u™({z}) = 0, for all z), then there exists a unique
(modulo countable setsjpndecreasinfunctiony : spt(u™) — X such that

s —
This functiony is given by

Y(s) = sup{t € [a,8] : g~ ([a,¢]) < " ([a, 8])}-

The functiony Is an optimal transport map. When> 1, it is the unique
optimal transport.

This is a sharp result in the one-dimensional casehas atoms may cause
non-existence of maps. Dropping monotonicity may cause non-uniquene



For anyp > 0, let P,(X) be the set of all probability measures with finite
moments of ordep. I.e. those measuressuch that for some (and thus any)
g € X,

/ |z — xolPdu(z) < +o0.
X

Of course, ifX is bounded, the®,(X) coincides with the sef(X) of all
probability measures oX .

We now assume both™ and~ are in P,(X). This condition ensures that
the cost of any transport planc II(x ™, 1) is always finite. Indeed,

/ BN dylz,y) < / 22(|z P + |y|P)dy(z, g =S
XxX XxX

Sincell(u™, ™) is compact with respect to weak * convergence of prok
ability measures, the Kantorovich minimization problemy J(v) : ~ &€
I[I(p™, u~} admits a minimizer.



Definition. Givenp € (0,+o00) (usually |1, +00)), for any two probability
measures, u~ € P, (X), define

) = min / z — ylP dy (z, )LD,
yE(pt,u™) JX x X
distance between measures= minimal dostuitable powers

Proposition. W), is a distance ornP), (X ) and metrizes the weak * topology
of P (X).



Kantorovich problem is a linear minimization problem with convex con
straints, so it also admits a dual formulation:

int / c\x, U daiteNy
yEl(pt,pn™) JX x X = V.

—~ Sjgf[ /X p(z)du™ + /X thdu].

Here,

e = {(i0, 1) € L' (dp™) x L'(dp™) with o(z) +(y) < c(=,y)}.
How to understand it? Here, we quoted a paragraph from Villani’s book:



“The shipper’'s problem.Here is an informal way of interpreting Kan-
torovich duality principle, which we learnt from Caffarelli. Suppose for in
stance that you are an industrial willing to transfer a huge amount of c«
from your mines to your factories. You can hire trucks to do this transport
tion problem, but you have to pay them c(x; y) for each ton of coal which
transported from place x to place y. Both the amount of coal which you ¢
extract from each mine, and the amount which each factory will receive, «
fixed. As you are trying to solve the associated Monge-Kantorovich pro
lem in order to minimize the price you have to pay, another mathematici
comes to you and tells you “My friend, let me handle this for you: | will shig
all your coal with my own trucks and you won’t have to care of what goe
where. | will just set a priceo(z) for loading one ton of coal at place x, and a
pricew(y) for unloading it at destination y. | will set the prices in such a wa:
that your financial interest will be to let me handle all your transportation
Indeed, you can check very easily that for all x and all y, the g + ) (y)
will always be less that the cost c(x; y) (in order to achieve this goal, | a



even ready to give financial compensations for some places, in the forrmr
negative prices !)”. Of course you accept the deal. Now, what Kantorovicl
duality tells you is that if this shipper is clever enough, then he can arran
the prices in such a way that you will pay him (almost) as much as you wol
have been ready to spend by the other method.”



Want:

inf / c(z, yfdaitaal
yell(pt,u™) J X xX

= chf[ /X p(z)dp™ + /X dp|.

ldea: Rewrite the constrained infimum problem as an inf sup problem, a
exchange the two operations by formally applyinghenimax principlei.e.
replacing an “inf sup” by a “sup inf”.

Let M4 (X x X) be the space of all nonnegative Borel measureX on X .
Then,



int / clx, U daite
YEM(p™u™) JX x X = .

. 0 if veIl(pt,pu)
— f , U ) Ay, S, ’
T MRS s

— int clx,y)dy(z,y
%MNXX)Q{ XxX( )dv(z,y)

i N T X
- / e / oy / o(c) + B(y)

= nf d
. 501,15)[ /X & )dv(e, )

+ / pdp™ + / dp~ — / o(z) + P(y)ldy(z, y)]



Taking for granted that a minimax principle can be invoked, we rewrite th
as

= . f Y d Y,
501715) N X){ /X XXC(I y)dy(z,y)

" / e+ / A / () + Py
o / . / ez, y) — o(z) — P(w)ldv}

(0,0) YEML (X xX)
_ o — Oa If (%W S (I)C
= <§£§>[/ pdp +/¢du a0 { = ol

= chf[ /X p(z)dpu™ + /X thdu”].



Applications: Monge-Kantorovich problem has many applications in Ecc
nomic (Nobel Prize in 1975)Fluid Mechanics; PDE; Optimization; meteo-
rology and oceanography; surface reconstruction;

Many experts will attend this workshop!
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