The definition of optimal transport paths

Let X be a compact convex subset of a Euclidean space \mathbb{R}^{m}. Suppose

$$
\begin{equation*}
\mathbf{a}=\sum_{i=1}^{k} a_{i} \delta_{x_{i}} \text { and } \mathbf{b}=\sum_{j=1}^{l} b_{j} \delta_{y_{j}} \tag{0.1}
\end{equation*}
$$

are two atomic probability measures on X. A transport path from a to b is a weighted directed graph \mathbf{G} consists of a vertex set $V(\mathbf{G})$, a directed edge set $E(\mathbf{G})$ and a weight function

$$
w: E(\mathbf{G}) \rightarrow(0,+\infty)
$$

such that $\left\{x_{1}, x_{2}, \cdots, x_{k}\right\} \cup\left\{y_{1}, y_{2}, \cdots, y_{l}\right\} \subset V(\mathbf{G})$ and for any vertex $v \in V(\mathbf{G})$,

$$
\sum_{\substack{e \in E(\mathbf{G}) \tag{0.2}\\
e^{-}=v}} w(e)=\sum_{\substack{e \in E(\mathbf{G}) \\
e^{+}=v}} w(e)+\left\{\begin{array}{cc}
a_{i}, & \text { if } v=x_{i} \text { for some } i=1, \cdots, k \\
-b_{j}, & \text { if } v=y_{j} \text { for some } j=1, \cdots, l \\
0, & \text { otherwise }
\end{array}\right.
$$

where e^{-}and e^{+}denotes the starting and ending endpoints of each edge $e \in E(\mathbf{G})$.
The balance equation (0.2) simply means that the total mass flows into v equals to the total mass flows out of v. When \mathbf{G} is viewed as a polyhedral chain or current, (0.2) can be simply expressed as $\partial \mathbf{G}=\mathbf{b}-\mathbf{a}$. Also, when \mathbf{G} is viewed as a vector valued measure, the balance equation is simply $\operatorname{div}(\mathbf{G})=\mathbf{a}-\mathbf{b}$ in the sense of distributions.

Let $\alpha \leq 1$ be a parameter. The \mathbf{M}_{α} cost function on a transport path \mathbf{G} is defined by

$$
\mathbf{M}_{\alpha}(\mathbf{G}) \equiv \sum_{e \in E(\mathbf{G})}[w(e)]^{\alpha} \text { length }(e)
$$

for any transport path \mathbf{G} from \mathbf{a} to \mathbf{b}. Any \mathbf{M}_{α} minimizer in the family of all transport paths from \mathbf{a} to \mathbf{b} is called an optimal transport path.

Now, we can talk about transport paths between general probability measures. Let μ^{+}, μ^{-}be any two probability measures on X. Extending the above definition, we say a vector measure \mathbf{T} on X is a transport path from μ^{+}to μ^{-}if there exist two sequences $\left\{\mathbf{a}_{i}\right\},\left\{\mathbf{b}_{i}\right\}$ of atomic probability measures on X with a corresponding sequence of transport paths \mathbf{G}_{i} from \mathbf{a}_{i} to \mathbf{b}_{i} such that

$$
\mathbf{a}_{i} \rightharpoonup \mu^{+}, \mathbf{b}_{i} \rightharpoonup \mu^{-}, \mathbf{G}_{i} \rightharpoonup \mathbf{T}
$$

weakly as probability measures and vector measures. Note that for any such \mathbf{T}, $\operatorname{div}(\mathbf{T})=\mu^{+}-\mu^{-}$in the sense of distributions. Also, given any $\alpha \in[0,1]$, for any transport path \mathbf{T} from μ^{+}to μ^{-}, we define its \mathbf{M}_{α} cost to be

$$
\mathbf{M}_{\alpha}(\mathbf{T}):=\inf \lim \inf _{i \rightarrow \infty} \mathbf{M}_{\alpha}\left(\mathbf{G}_{i}\right)
$$

where the infimum is over the set of all possible approximating graph sequence $\left\{\mathbf{a}_{i}, \mathbf{b}_{i}, \mathbf{G}_{i}\right\}$ of \mathbf{T}.

