An Optimal Control Framework for First Order Methods

Robert Bassett

UC Davis Department of Mathematics

March 2015
Introduction

Problem: Analyzing first order methods is hard!

Question: Is there a unified framework for investigating these algorithms?
A Linear Dynamical System is a set of recursive linear equations

\[\xi_{k+1} = A\xi_k + Bu_k \]

\[y_k = C\xi_k + Du_k. \]

\(u_k \) in the input, \(y_k \) is the output, and \(\xi_k \) is the state at time \(k \).

We can connect this linear system in feedback with a nonlinearity \(\Delta \) by including

\[u_k = \Delta(y_k) \]

in the rules above.

For our purposes, the nonlinearity has the form \(\Delta(y) = \nabla f(y) \).
Some Basics

Definition

\(S(m, L) \) is the set of continuously differentiable, strongly convex with parameter \(m \) and have Lipschitz gradients with parameter \(L \). In other words,

\[
m \| x - y \|^2 \leq (\nabla f(x) - \nabla f(y))^T (x - y) \leq L \| x - y \|^2.
\]

All the functions we consider will be in this class.
First Order Methods

Gradient Descent

\[x_{k+1} = x_k - \alpha \nabla f(x_k) \]

Nesterov’s Accelerated Gradient Descent

\[x_{k+1} = y_k - \alpha \nabla f(y_k) \]
\[y_k = (1 + \beta)x_k - \beta x_{k-1} \]

Heavy-Ball Method

\[x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta(x_k - x_{k-1}) \]

Each of the above methods can be written as a linear dynamical system in feedback for choice of \(A, B, C, D \).
Cast a first order method as a linear dynamical system in feedback.

Use *Integral Quadratic Constraints* to overcome non-linear feedback.

Convergence rates can be found by establishing feasiblity of a certain *Semi-Definite Program*.
Quadratic Problems

Assume that \(f \) is a convex, quadratic function

\[
f(x) = \frac{1}{2} x^T Q x - p^T x + r.
\]

- \(\nabla f(x) = Q x - p \)
- The optimal solution is \(x^* = Q^{-1} p \).

We assume that \(D = 0 \), as is the case in GD, NAGD, and HBM.

\[
\begin{align*}
\xi_{k+1} &= A \xi_k + B u_k \\
y_k &= C \xi_k + D u_k \\
u_k &= Q y_k - p
\end{align*}
\]

\[
\xi_{k+1} = A \xi_k + B Q y_k - p \rightarrow \xi_{k+1} = (A + B Q C) \xi_k - c
\]

If \(\xi^* \) is a fixed point of the dyn. sys. then \(\xi^* = (A + B Q C) \xi^* - c \).
\[\xi_{k+1} - \xi_* = (A + BQC)(\xi_k - \xi_*) \]

A necessary and sufficient condition for \(\xi_k \to \xi_* \) is that \(T := A + BQC \) has spectral radius strictly less than one.

FACTS:

- \(\rho(M) \leq \|M^K\|^{1/k} \) for all \(k \)
- \(\rho(M) = \lim_{k \to \infty} \|M^K\|^{1/k} \)

So for any \(\epsilon \) and \(k \) large enough, we can bound the convergence rate

\[\|\xi_k - \xi_*\| = \|T^K(\xi_0 - \xi_*)\| \leq \|T^k\| \|\xi_0 - \xi_*\| \leq (\rho(T) + \epsilon)^k \|\xi_0 - \xi_*\|. \]
The following theorem connects the spectral radius to the feasibility of an SDP.

Theorem

\[\rho(T) < \rho \text{ if and only if there exists a } P > 0 \text{ satisfying} \]

\[T^T P T - \rho^2 P < 0. \]
Integral Quadratic Constraints cope with the nonlinearity of the gradient in the non-quadratic case.

Idea: Replace nonlinear component by a quadratic constraint on its inputs and outputs that is known to be satisfied by all possible instances of the component.

There are different types of IQCs

\[\{ \text{Pointwise IQCs} \} \subset \{ \rho - \text{Hard IQCs} \} \subset \{ \text{Hard IQCs} \} \subset \{ \text{all soft IQCs} \}. \]
Main Theorem

Suppose ϕ satisfies a certain ρ-hard IQC and $0 \leq \rho \leq 1$. If

$$
\begin{bmatrix}
\hat{A}^T P \hat{T} - \rho^2 P & \hat{A}^T P \hat{B} \\
\hat{B}^T P \hat{A} & \hat{B}^T P \hat{B}
\end{bmatrix} + \lambda \begin{bmatrix}
\hat{C} & \hat{D}
\end{bmatrix}^T M \begin{bmatrix}
\hat{C} & \hat{D}
\end{bmatrix} \preceq 0
$$

is feasible for some $P \succ 0$ and $\lambda \geq 0$, then for any ξ_0

$$
\|\xi_k - \xi_*\| \leq \sqrt{\text{cond}(P)} \rho^k \|\xi_0 - \xi_*\|
$$

for all k, where $\text{cond}(P)$ is the condition number of P

\hat{A}, \hat{B}, \hat{C}, \hat{D}, and M all come from the IQC.
My Experiments

I confirmed the results for Gradient Descent myself.

- Pointwise IQC (suffices for the GD case)
- Used Convex in Julia, which is a frontend for solving convex problems in julia (open source).
- Solver: SCS = splitting conic solver (open source, developed by Stanford Univeristy Convex Optimization Group).
- I computed the best ρ and compared it with the theoretical rate of $\frac{L-m}{L+m}$.
Convergence Rates for G.D.

julialang.org