A basic result of enumerative combinatorics is that there is a bijection between the even-sized subsets and odd-sized subsets of a given set. In this paper, we give a generalization of this result to multisets, which we will treat as nonincreasing words. Depending on the given multiset, there may or may not be a bijection. Afterwards, we further generalize this result to arbitrary words, which are not necessarily nonincreasing.

Let w be a nonincreasing word in the alphabet $[n]$. Then we have the following

Theorem 1. The following hold

1. If some letter of w has odd multiplicity, then there is a one-to-one correspondence between the subwords of w with even length and the subwords of w with odd length.

2. If every letter of w has even multiplicity, then we still have such a one-to-one correspondence except that exactly one even-length subword cannot be paired with an odd-length subword (in other words, there is one even-length subword more than the odd-length subwords).

We prove this theorem by constructing an explicit permutation ϕ of order 2 of the subwords of w that swaps the even and odd lengthed subwords. For each letter of w and b a letter of w, let $m_w(b)$ denote the multiplicity of b in w. We introduce a certain multiplicity pairing for each letter of w: $(0,1)$, $(2,3)$, $(4,5)$, $(6,7)$, and so on. Let $\max(w)$ and $\min(w)$ denote the greatest and least letter of w, respectively. For v a subword of w, we define $\phi(v)$ in the following way:

Start by letting $c := \min(w)$, and apply the following procedure which utilizes this multiplicity pairing

1. If $m_v(c)$ is odd, then define $\phi(v)$ to be the subword obtained by removing one copy of c from v.

2. If $m_v(c)$ is even and $m_v(c) < m_w(c)$, then define $\phi(v)$ to be the subword obtained by adding one copy of c to v.

3. If $m_v(c) = m_w(c)$ is even and $c < \max(w)$, then set c to be the next smallest letter and repeat the procedure.

4. If $m_v(c) = m_w(c)$ is even and $c = \max(w)$, then define $\phi(v) = v$.

Remark 2. Here is a more concise description of the above procedure: Pick the smallest letter x of w such that $m_v(x) < m_w(x)$ or $m_v(x)$ is odd. If $m_v(x)$ is odd, then remove a copy of x from v. If $m_v(x)$ is even, then add a copy of x to v. If no such letter x exists, then fix v.

We see that $\phi(v) = v$ if and only if every letter of w has even multiplicity and $v = w$, in which case w is the only even-lengthed subword that cannot be paired with an odd-lengthed subword.
In fact, we can generalize Theorem 1. Let u be a word of length r, not necessarily nondecreasing. Then we have

Theorem 3. There is an involution of the subwords of u that maps the odd-lengthed subwords injectively to the even-lengthed subwords, and fixes those even-lengthed subwords that cannot be paired.

We prove this theorem by explicitly constructing the required involution $\hat{\phi}$. Label the segments of u composed of copies of a single letter as z_1, z_2, \ldots, z_l. For example, if $u = 44353353$, then the segments are $z_1 = 4, z_2 = 3, z_3 = 5, z_4 = 33, z_5 = 5, z_6 = 3$. We order the segments as $z_1 < z_2 < \ldots < z_l$; we will use this order in the following procedure. For each segment z_i denote the letter of z_i by z_i^*, then the length of z_i is the multiplicity of z_i^* in z_i. We introduce this multiplicity pairing for each segment of w: $(0,1)$, $(2,3)$, $(4,5)$, $(6,7)$, and so on. Let u' be a subword of u. Label the segments of u' composed of copies of a single letter as z'_1, z'_2, \ldots, z'_l. Notice that $z_i \cap z'_i$ can only be \emptyset, z_i, z'_i. We define $\hat{\phi}(u')$ in the following way:

Start by letting $d := z_1$ and $g := z'_1$ (d will always be a segment of u, and g will always be a segment of u'), and apply the following procedure which utilizes this multiplicity pairing

1. If the multiplicity of d^* in g is odd and no larger than $|d|$, then define $\hat{\phi}(u')$ to be the subword obtained from u' by removing a copy of d^* from g.
2. If the multiplicity of d^* in g is even and less than $|d|$, then define $\hat{\phi}(u')$ to be the subword obtained from u' by adding a copy of d^* to g.
3. If the multiplicity of d^* in g is even and equal to $|d|$, then set d to be the next smallest segment of u, set g to be the next smallest segment of u', and repeat the procedure.
4. If the multiplicity of d^* in g is greater than $|d|$, then

 (a) If $|d|$ is even, let \tilde{d} be the next smallest segment of u and then define $\hat{\phi}(u')$ to be the subword obtained from u' by adding a copy of d^* right after the segment \tilde{d} in g.

 (b) If $|d|$ is odd, pick the smallest $k \geq 2$ such that the concatenation of the k smallest (again, using our ordering above) d^*-segments in u has length $L \geq |g|$. Label these segments as h_1, h_2, \ldots, h_k; L is the total number of copies of d^* in these k segments. Apply the multiplicity pairing to $m_d(d^*) = |g|$:

 i. If $|g|$ is odd, then define $\hat{\phi}(u')$ to be the subword obtained from u' by removing a copy of d^* from g.

 ii. If $|g|$ is even and less than L, then define $\hat{\phi}(u')$ to be the subword obtained from u' by adding a copy of d^* to g.

 iii. If $|g| = L$ is even, then set d to be the next segment of u after h_k, set g to be the next smallest segment of u' (set g to be the empty word if u' has no next segment), and repeat the procedure.

If the above procedure does not terminate at $\raggedright{1. 2. 4(a) 4(b)(ii)\ 4(b)(ii)}$, then define $\hat{\phi}(u') = u'$.

Example 4.

1. If $u = 44333553$, then $\hat{\phi}$ acts by $\emptyset \rightarrow 4, 44 \rightarrow 443, 4433 \rightarrow 4433, 443353 \rightarrow 443353$, and so on. The only subword fixed by $\hat{\phi}$ is 4433353.

2. If $u = 445353$, then $\hat{\phi}$ acts by $\emptyset \rightarrow 4, 44 \rightarrow 445, 4455 \rightarrow 44553, 5533 \rightarrow 5533$, and so on. The only subword fixed by $\hat{\phi}$ is 44553.

3. If $u = 4433553$, then $\hat{\phi}$ acts by 443353 $\mapsto 44333$, 443353 $\mapsto 443333$, and so on. The only subword fixed is 4433553.
4. If \(u = 44355335 \), then \(\hat{\phi} \) acts by \(4455 \mapsto 44355, 4433 \mapsto 44333 \), and so on.

5. If \(u = 353454323 \), then the subwords 3333 and 334433 are fixed by \(\hat{\phi} \).