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Abstract

In the models of multi-stage equilibrium with uncertain financial markets that have so
far been in extension of the classical Walrasian model with only a single stage, each state
is completely isolated in its activity. If there is production, it ends in the state in which
it begins. Goods that are not consumed within a state merely perish. Nothing can carry
over from one period to the next like money might, and comparisons between the units of
account in different states may be problematical.

This paper furnishes a two-stage model in which money assists as a special good which
agents like to retain instead of consume. Holding money influences utility through pleasures
of wealth and in safeguarding against completely unforseen events. The agents’ planning
is able in this way also to reflect continuing expectations of the future beyond the second
stage.

The ability of agents to retain money furthermore has the technical benefit that the sur-
vivability conditions needed to establish the existence of equilibrium can reduced to a very
simple and yet much more appealing form than has been discerned until now. Endogenous
transaction costs on the sellers of financial contracts help in this as well.

Keywords: general economic equilibrium, incomplete financial markets, time embedding,
retention of money, transaction costs, ample survivability.
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1 Introduction

Many conceptual hurdles must be faced in the modeling of economic equilibrium. Everyone
understands that the very idea of equilibrium is an artifical abstraction in the ongoing world of
economic activity. Nonetheless, this idea has the potential to help greatly in identifying sources
of stability and instability along with the main features of market behavior and the conditions
on which they depend. The basic goal in formulating and analyzing a mathematical model of
equilibrium is to determine the extent to which market prices exist which will balance supplies with
demands when the agents in an economy optimize their activities according to their preferences .
However, models can differ in the kinds of markets and the ranges of activites that they try to
encompass, and in their degree of success in capturing economic realities.

The celebrated Walrasian model of equilibrium, placed on a modern mathematical footing by
Arrow and Debreu [1], has yielded valuable insights but is very limited in its scope. It is isolated
in time without any past or future, and is therefore unable deal with the large component of
economic behavior concerned with making arrangements beyond the needs and incentives of the
immediate present. However, any extension to future planning must confront uncertainty. That
raises another set of touchy issues, which have affected the work in this direction by Radner [16],
Cass [4], Werner [20], Magill and Shafer [15], Magill and Quinzii [14], and others.

Financial markets can assist by furnishing agents with possibilities to buy and sell contracts
in the present which alter their circumstances in the future. Exchanges of value between different
time periods are then enabled, but it is not realistic to expect such markets to be able to hedge or
ensure precisely against all conceivable uncertainties. Thus, financial markets must be modeled as
incomplete. That leads to mathematical obstacles which preclude the straightforward approach of
Arrow and Debreu. Moreover, some of the central conclusions drawn from the classical one-stage
model, such as the capablility of market prices to achieve Pareto optimality in the distribution
of resources, are then called into question.

One of the daunting challenges in financial markets is that the promises incorporated in the
contracts to be bought and sold need to enforced somehow when they come due. But that entails,
in the first place, being sure that the promises are realistic. Future supplies and demands must be
taken into account, yet those supplies and demands will depend on the present and future actions
of the various agents. How then can there be any knowledge of that on which an individual agent
might plan? Indeed, how can prices for the contracts in a financial market be brought into line
without some grasp of future market prices for goods, which in turn ought to reflect balances in
future supply and demand?

The availability of information about the future is thus a critical consideration. But it cannot
be supposed that the agents have a common view even of likelihoods. Indeed, no representation
of the future can never deserve full trust. Too much will inevitably be unforseen. Moreover, this
deeper level uncertainty is bound to affect attitudes of the agents in a Keynesian manner. As
explained by Skidelsky [19, Chapter 4]: for Keynes, money was a “store of value” as well as a
means of transactions; it was ‘above all a subtle device for linking the present and the future.”
The model presented here tries to account for this in the modeling of equilibrium by allowing
utility of an agent to benefit from the retention of money. By treating money, even fiat money, as
a special kind of good which can store value, it skirts the customary view of the worth of goods
being tied solely to their consumption.
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2 Background

To set the stage for the new developments that are the focus of this paper, we first recall the one-
stage Arrow-Debreu model of economic equilibrium. We concentrate on a basic version in which
agents can exchange goods but firms and production activities are left out. In two-stage models
with uncertainty, such as we will come to later, the modeling of intertemporal production carried
out by “firms” is an especially difficult matter. Progress is being made, cf. [3], but production
will not be considered in this paper.

Agents, indexed by i = 1, . . . ,m, will exchange goods indexed by l = 1, . . . , L at market
prices pl ≥ 0 . Agent i starts with a goods vector x0i ∈ IRL

+ with components x0il and trades it for
a goods vector xi ∈ IRL

+ with components xil subject to the budget constraint p·xi ≤ p·x0i , where
p = (p1, . . . , pL). In doing so, agent i maximizes the utility ui(xi) of xi. The function ui is taken
here to be defined on all of IRL with values in [−∞,∞) and nonempty effective domain

Ui = domui = {xi |ui(xi) > −∞} ⊂ IRL
+.

The constraint xi ∈ Ui is implicit then in the maximization; we speak of Ui as the survival set
for agent i. It is assumed that ui is nondecreasing and upper semicontinuous (usc); that requires
sets of the form {xi |ui(xi) ≥ α} to be closed for all α ∈ IR, but does not necessitate Ui itself
being closed.

Definition: classical equilibrium. A equilibrium in this setting of pure exchange is comprised
of a price vector p̄ and goods vectors x̄i for i = 1, . . . ,m such that

(a) x̄i maximizes ui under the budget dictated by p̄, and

(b) the markets clear:
∑m

i=1 x
0
i −

∑m
i=1 x̄i ≥ 0, p̄·

[∑m
i=1 x

0
i −

∑m
i=1 x̄i

]
= 0

The market clearing conditions are written in a vector form that will be convenient later.
They reflect free disposal and amount to requiring for each good l that

∑m
i=1 x

0
il =

∑m
i=1 x̄il unless

p̄l = 0, in which case
∑m

i=1 x
0
il ≥

∑m
i=1 x̄il is allowed.

An issue that comes up in connection with establishing the existence of such an equilibrium
is the extent to which the agents can, without trading anything, at least survive. Plain survival
only refers to having x0i ∈ Ui, but existence arguments generally require more than just that.
The following standard result, in which Ui is replaced by its interior intUi in the survivability
condition, provides a basis for comparisons. It also draws on the concept of insatiability of utility
in the sense of there being no goods vector at which ui attains a maximum value over Ui.

Theorem of Arrow and Debreu [1]. For utility functions ui that are insatiable, quasi-concave
and continuous relative to the sets Ui, a classical equilbrium exists under the strong survivability
assumption that

x0i ∈ intUi for all agents i.

Although strong survivability is a simple condition that suffices to obtain the existence of
equilibrium, it is distressingly restrictive. Insistence on having x0i ∈ intUi ⊂ IRL

+ entails that each
agent must start with a positive quantity of every good. Some technical ways around this were
developed in [1] and elaborated later for instance by Florig [7, 8], but they are quite complicated
and their general economic implications are not easy to fathom.
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The mathematical reason why strong survivability comes into play is usually understood
by economists in the context of properties needed in fixed-point arguments, but it is equally
understandable from the perspective of optimization theory. In problems of optimization with
constraints, such as the one faced by agent i, some “constraint qualification” is typically required.
In this setting of convexity, that would most naturally be the Slater condition: there should be
an x̂i ∈ Ui such that p·xi < p·x0i . Then too a Lagrange multiplier for the budget constraint will
be available.

The trouble with this constraint qualification, though, is that the price vector p is not fixed in
advance and will only be determined by the equilibrium. The Slater condition might seemingly
have to be guaranteed for every possible price vector p ≥ 0, p 6= 0. The only way to do that is
through strong survivability.

If some of the price components of p may be 0, and agent i happens only to start with goods
that are in that case worthless, then the Slater condition would definitely fail. But even with
positive prices, it could fail if survivability can only effected with the budget constraint tight.

Questions of about the prices that may prevail in equilibrium are significant from other angles
as well. If the price of a particular good comes out as 0, does that mean no agent has any desire
for it, or at least no marginal desire for more of it in the equilibrium state? The answer is
yes on the basis of Lagrange multiplier analysis of optimality in an agent’s utility problem, but
that leads back to the need for a constraint qualification supporting the existence of a Lagrange
multiplier for the budget constraint. In that case, anyway, the positivity of a good’s price can
be ensured by an assumption on the utility function that prevents marginal utility of that good
from ever being 0. This would only have to be true for at least one agent i. Of course, it is
desirable to keep in a mode where an agent may only be attracted to a subset of the goods.

Marginal utility may seem to involve derivatives, but they might just be one-sided directional
derivatives, which would be available without any differentiability assumption if the functions ui
are concave.

Another feature of the classical model is that the price vector p only provides relative prices,
which are unscaled, instead of money prices. If the price of a particular good is positive in
equilibrium, then that good can serve as a numéraire having unit price scaled to 1. However,
that does not lead to money prices unless “money” can be viewed somehow as a “good.” Indeed,
money generally fits the picture of being limited in supply and freely tradable in markets, but if
included as a “good,” would it be able to serve as a numéraire? Not unless its price relative to
other goods turned out to be positive — that returns us to the preceding discussion of utility.

The fundamental difficulty is that the classical framework ties utility to consumption only,
and the marginal utility of “consuming money” in competition with other consuming goods is
doubtful, although perhaps salvageable through some interpretation. We see this largely as an
artifact of the peculiar nature of a one-period model of equilibrium without past or future, since
much of the economic importance of money revolves around its role in connecting past and future
with the present.

In what follows, we present a time-embedded two-period model of equilibrium which does
give value to money. It is a realization of a broader model we have put together in [12] with
many additional features. By getting to the heart of the main issues, we hope it will help in
making the innovations clearer.
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3 Incorporating an Uncertain Future

As a general principle, the future is uncertain to agents making decisions in the present, and any
two-stage model of equilibrium must reflect that. Agents need to plan for the future despite its
uncertainty. They ought to be able to do that through buying and selling contracts that promise
deliveries or exchanges of goods in the future. However, for that to make sense there must be
some way of assessing the present value of such contracts.

Especially, agents should be able to borrow and lend money in the present, settling accounts
in the future. The interest rates in that operation ought to relate to future purchasing power. On
the other hand, the future prices of goods ought to relate to future supply and demand. Thus,
future markets in goods inevitably need to be contemplated.

But how should information about the future be generated for making decisions in the present?
Can anything be learned from a model with just one stage of future? No matter how many stages,
modeling issues will arise over having a fixed time horizon. Our idea is to mitigate the difficulties
over this by an expanded view of an agent’s wishes and actions. In fact, we see the incorporation
of multiple future stages as perhaps detrimental to rather than beneficial to reality by overloading
the structure of decisions and undermining the plausibility of the information behind them.

Although contracts for the delivery of all kinds of goods would be good to include in the
model, we restrict ourselves here to money alone. That will make the pattern of our development
easier to understand. A broader model with additional features is given in our paper [12].

The model here has states s = 0, 1, . . . , S, with s = 0 standing for the present (at time 0) and
s = 1, . . . , S standing for the different futures being taken into consideration (at time 1) because
of uncertainty. The agents can buy and sell goods in all of these states, but they also have money
and can pass it from the present to the future. Money is not “consumed”; instead, agents like to
retain it.

Specifically, agent i, in each state s, consumes a goods vector xi(s) ≥ 0 and retains a money
amount mi(s) in the environment of benefiting from incoming endowments x0i (s) ≥ 0 and m0

i (s) ≥
0. The agent’s utility function has the form ui(xi,mi) for

xi = (xi(0), xi(1), . . . , xi(S)) ∈ (IRL
+)1+S, mi = (mi(0),mi(1), . . . ,mi(S)) ∈ IR1+S

+ .

We allow ui to take on −∞ and in that way focus implicitly on a survival set

Ui = { (xi,mi) |ui(xi,mi) > −∞} ⊂ (IRL
+)1+S × IR1+S

+ .

We assume that

ui is upper semicontinuous, concave and nondecreasing, moreover
continuous relative to the sets { (xi,mi) |ui(xi,mi) ≥ c} for c ∈ IR.

Those level sets are closed because of the upper semicontinuity, but Ui might not be closed.
(Utility might tend to −∞ as the boundary of o Ui is approached.) Having ui be nondecreasing
means that ui(xi,mi) ≤ ui(x

′
i,m

′
i) when (xi,mi) ≤ (x′i,m

′
i). The concavity, in contrast to quasi-

concavity, is a slight retreat from the classical setting but it simplifies and enhances the model
in many respects. In particular it assists us in working with the following key assumption:

ui(xi,mi) increases on Ui with respect to each of the components mi(s).
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In other words, retaining money is always attractive to every agent i, although it must neverthe-
less compete with consumption as represented by the components of the goods vectors xi(s).

The various goods l = 1, . . . , L can be bought and sold in markets in every state s. These
markets are governed by a money-denominated price system

p = (p(0), p(1), . . . , p(S)), where p(s) = (p1(s), . . . , pL(s)) gives the prices in state s.

In state s = 0 there is also a financial market in which the agents can participate. The
financial market revolves here around contracts in money only, as already mentioned. Such
contracts are available in pattens k = 1, . . . , K. A unit of contract k costs qk in the present and
pays dk(s) in future state s. The payout vectors

dk = (dk(1), . . . , dk(S)), assumed 6= (0, . . . , 0),

are known data, but the price vector q must be determined together with the price vectors p(s)
in the present and future markets of goods. Examples will be provided shortly.

Agent i buys a (generally fractional) amount z+

ik ≥ 0 of contract k and sells an amount z−
ik ≥ 0,

thereby putting together a portfolio

(z+

i , z
−
i ) with z+

i = (z+

i1, . . . , z
+

ik) ∈ IRK
+ , z−

i = (z−
i1, . . . , z

−
ik) ∈ IRK

+ .

Simultaneously buying and selling a contract k is not prohibited but will be eliminated in opti-
mality by a transaction cost. We introduce this endogenously by supposing that the selling of a
unit of contract k uses up a goods vector gk ∈ IRL

+ which will end up costing costing p(0)·gk. We
assume that

gk has a component > 0 in some good that is universally attractive in the present,

by which we mean that every agent’s utility ui increases on Ui with respect to that component
of xi(0). Let

d(s) = (d1(s), . . . , dK(s)), G = the matrix with columns gk.

The portfolio (z+

i , z
−
i ) of agent i

costs q·[z+

i − z−
i ] + p(0)·Gz−

i in the present, and then
pays d(s)·[z+

i − z−
i ] in the future states s = 1, . . . , S.

Precedent for such exogenous transaction costs can be seen in work of Arrow and Hahn [2]
and especially Laitenberger [13], although articulated differently. Here, of course, our attention
is limited to contracts that deliver money, but the costs enter more broadly in our paper [12]
where the contracts can involve delivery of other goods as well.

The optimization problem for agent i takes the form of choosing choosing xi, mi and (z+

i , z
−
i )

subject to the budget constraints

p(0)·xi(0) +mi(0) + q·[z+

i − z+

i ] + p(0)·Gz−
i ≤ p(0)·x0i +m0

i (0),
p(s)·xi(s) +mi(s) ≤ p(0)·x0i (s) +m0

i (s) + d(s)·[z+

i − z−
i ] +mi(0) for s > 0.

(1)
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Note the term mi(0) in the budget for the future states s. This conforms to the provision that
money retained at time 0 is available with certainty at time 1.

Here are two elementary examples of contracts in our picture. For concreteness of language,
they are expressed with dollars as money. The transaction cost will be expressed by

δk(p) = p(0)·q.

Example 1: simple lending and borrowing. As a particular case, contract k could have

dk(s) = 1 for all future states s = 1, . . . , S.

Buying a unit refers then to giving out qk dollars in the present and always getting back 1 dollar
in the future, with

interest rate =
1

qk
− 1.

Selling refers instead to getting qk − δk(p) dollars in the present in return for promising to pay
back 1 dollar in the future, with

interest rate =
1

qk − δk(p)
− 1.

The transaction cost thus induces a naturally difference in interest rates between lending and
borrowing.

Example 2: simple insurance. As a particular case, contract k could depend on a specific
future state s̄ and have

dk(s̄) = 1, but dk(s) = 0 for all future states s 6= s̄.

Buying a unit of contract k refers then to giving out qk dollars in the present but getting back
1 dollar only if the future state turns out to be s̄, otherwise nothing. Selling refers to acquiring
qk − δk(p) dollars in the present, and only having to pay out 1 dollar if s̄ occurs, otherwise
nothing..

If simple insurance as in Example 2 is not in the market as one of the contracts k, there it
the possibility that it can anyway be replicated by some linear combination of other contracts
that are in the market. If this is true for every future state s̄, the financial market is said to be
complete. But in reality, financial markets are never complete. This is observation has heavily
influenced all extensions of equilibrium theory to financial markets after the early proposals of
Arrow and Debreu, which did suppose completeness.

4 Existence of equilibrium

The main result about equilibrium in our model with its additional features about money will
now be formulated.
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Definition: money-supported equilibrium. This is comprised of elements x̄i, m̄i, (z̄+

i , z̄
−
i ),

for the agents i = 1, . . . ,m along with price vectors p̄ and q̄ such that
(a) (x̄i, m̄i) maximizes ui(xi,mi) under the budget constraints (1) coming from p̄ and q̄,
(b) the goods markets clear in all states s = 0, 1, . . . , S:

∑m
i=1 x

0
i (s)−

∑m
i=1 x̄i(s) ≥ 0, p̄(s)·

[∑m
i=1 x

0
i (s)−

∑m
i=1 x̄i(s)

]
= 0,

(c) the financial markets clear:
∑m

i=1 z̄
+

i =
∑m

i=1 z̄
−
i ,

(c) the money supply is respected and money is conserved:∑m
i=1 m̄i(0) =

∑m
i=1m

0
i (0) for s = 0,∑m

i=1 m̄i(s) =
∑m

i=1[m
0
i (s) +mi(0)] for s > 0.

A virtue of such a money-supported equilibrium is that existence can be ensured without
resorting to strong survivability.

Assumption: ample survivability. The agents i could, if they wished, choose elements
(x̂i, m̂i) ∈ Ui such that

x̂i(0) ≤ x0i (0) but m̂i(0) < m0
i (0) for s = 0,

x̂i(s) ≤ x0i (s) and m̂i(s) ≤ m0
i (s) for s = 1, . . . , S,∑m

i=1 x̂i(s) <
∑m

i=1 x
0
i (s) for s = 0, 1, . . . , S.

(2)

The interpretation of this condition is that the agents would be able to survive, outside of
any participation in the markets, individually without using all their money in the present, and
collectively with a surplus remaining in every good. Thus, in contrast to the situation under
strong survivability, there is no need for every agent to possess some of every good initially.
Nevertheless, a way is opened up for invoking the Slater condition for an agent’s budget con-
straints. This is evident from (2) for the intial budget, but it also follows then effectively for the
subsequent budgets because the agent can save some of the initial surplus of money to furnish a
buffer in the future.

Existence Theorem. Under ample survivability and the assumptions on the financial contracts
and the agent’s utility functions, a money-supported equilibrium exists.

Insatiability of utility is present here in the assumption that agents are always attracted to
retaining money. That attraction is deemed to have a cultural origin based on a history of how
money is valued in society and persists in usefulness because of its convenience and liquidity.

We proceed to discuss this new result, which stands as a specialization of the one in our paper
[12]. The nature of the markets and how they are viewed is a key issue.

The markets here are modeled, according to custom in the economic literature, as brought
into line by Walrasian brokers who match supply with demand. This avoids having to view
transactions as one-on-one and goes back to Walras himself. Radner [16] in 1972 initiated having
separate markets in the present and the future. His agents could promise delivery of goods (in
so-called real contracts), but not “money” (unless that referred only to a numéraire good). An
arbitrary number of uncertain future stages were envisioned, not just one, as here. Artificial
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(exogenous) bounds on contract sales were needed in order to establish the existence of an
equilibrium.

In an influencial development in 1985, Cass [4] and Werner [20] independently obtained the
existence of an equilibrium in a model in which prices and contracts were all in terms of “money”
(so-called nominal contracts), but they did not include bounds on money supply. As noted by
Magill and Shafer [15], that introduced indeterminancy in which there was no way to relate
the money in any one state with the money in another. A proposal of Magill and Quinzii [14]
to remedy this required putting the money into a multi-layered scheme of transactions quite
different from it behaving as a good like here.

In the models of Radner, Cass and Werner, even though they incorporate an uncertain and
potentially multi-stage future, each state s is still isolated, just as in the Walrasian formulation
that was the focus of Arrow and Debreu. All the goods that become available in a state s, through
endowments or in some versions production, must be consumed in that same state. There is no
carry-over of goods whatsoever, not to speak of there being money that might be saved.

An important question concerns information. How are the agents supposed to know, at time
0, what will happen in the markets at a later time? The models implicitly require some such
knowledge, because it is in the initial state s = 0 that the agents already have to plan their buying
and selling of goods in the future states s > 0, and their budgets for such planning depend on
the prices of goods in those states as well on the prices in the financial market.

An alternative model of temporary equilibrium, as explained by Grandmont [9], sets aside
decisions about trading goods in future markets. Agents, in their financial planning, act only
on “anticipations” of future prices. This is an interesting proposal, but in getting down to
serious mathematical details, such as the specifics of “antipations,” it appears to run into thorny
difficulties. Fundamentally there is a lack of feedback about future supplies and demands of
goods and therefore no way for agents, through some interchange, to tune their “anticipations”
to an approximation of reality.

The point we believe should be kept in mind is that the future markets in the models of
Radner, Cass and Werner, as well as here, cannot truly be claimed to take place in the future.
This is an inevitable consequence of the notion of a Walrasian broker for those markets. That
broker is entrusted with matching future supply and demand for goods on the basis of plans for
buying and selling goods that the agents fix in the present . This broker operation must therefore
be in the present as well, not in the future! We see it as a model of information exchange in
which an agent can gain insights into what other agents may be hoping to do. That exchange
generates feedback about prices, allowing the agents to get a better handle on how to plan for
the future.

As a matter of fact, in our view there is no need even to think that, when the real future arrives,
the agents will definitely carry out these plans. Circumstances may have changed beyond those
taken into account with the plans were made. Our interpretation of equilibrium modeling with an
uncertain future is thus a compromise between the traditional “sequential market” approach and
that of “temporary equilibrium,” and even a total acceptance of “rational expectations.” It brings
skepticism about the virtues of incorporating more than just a few stages of the future. That
would require a further proliferation of Walrasian brokers trying to glean planning information
in the present, which would stretch the information-gathering concept too far.
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5 Pattern of development

The model laid out here fits mathematically as a special case of a much more extensive model in
our paper [12], and the existence theorem here follows essentially as a corollary of the existence
theorem there. Although for that reason the details of its proof are superfluous for the present
paper, an indication of the main ideas and their articulation in a nontraditional context may be
illuminating.

The strategy is to characterize the existence of equilibium as a so-called variational inequality
problem. Such formulations have gained in importance areas of application related to optimiza-
tion, as in the book of Facchinei and Pang [6]. They rely on many advances in variational analysis,
available for example in [18], as an enlargement of convex analysis [17]. Variational inequalities
have previously been utilized in general economic equilibrium only in the one-stage models in
our papers [10, 11]. But in that work, as here, the formulations intrinsically lie outside the
category of so-called monotone variational inequalities which have received the most attention
in computation.

Along with providing support for existence arguments, variational inequalities have other
properties worthy of attention from economists. A variational inequality problem constitutes a
paradigm of analysis that can be compared with the classical paradigm of “n equations in n
unkonwns” but is able to cover vastly larger territory. An advanced theory is now available for
studying perturbations and stability of their solutions [5]. Furthemore, they offer prospects of
computational support which could lead to numerical experimentation with econometric models
of equilibrium.

In order to proceed from a money-supported equilibrium, as defined above, to a variational
inequality formulation, it is crucial to introduce auxiliary variables which complete the picture
of “an n-dimensional condition in n unknowns.” These variables are the Lagrange multipliers
associated with the agents’ budget constraints in optimality. Their values become part of the
solution along with the prices and plans for market transactions; we speak then of a completed
equilibrium.

The first step in arguing toward the existence of such an equilibrium is obviously then to make
sure that Lagrange multipliers will be on hand. This follows from the concavity of utility and
the assumption of ample survivability, which guarantees applicability of the Slater condition as a
constraint qualification. The next step is to use the Lagrange multipliers in expressing necessary
and sufficient conditions for optimality in an agent’s maximization problem. The expression is
achieved in the form of a saddle point condition on the associated Lagrangian function (which,
by the way, would not be possible if utility were merely quasi-concave).

The saddle point condition can be translated in turn to a variational inequality of functional
type. The market clearing condition in equilibrium can, on the other hand, be expressed through
complementary slackness as a variational inequality of geometric type concerning the cones of
normal vectors to a nonnegative orthant. These variational inequalities, as subconditions, can
then be combined into a single composite variational inequality.

The composite variational inequality obtained in this way fully stands for a completed equi-
librium, but it suffers from unboundedness which prevents immediate application of a criterion
for the existence of a solution. An appeal to truncations must then be made, as is familiar in
virtually all theory about the existence of economic equilibrium, even it if has to be carried out
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in a different way than in the past.
Again, all this is developed much more fully in our paper [12], both in concept and technique,

and we refer the reader to that for the additional details.
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