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Abstract

The correspondence of competitive partial equilibrium with a social optimum is
well documented in the welfare theorems of economics. These theorems can be ap-
plied to single-period electricity pool auctions in which price-taking agents maximize
profits at competitive prices, and extend naturally to standard models with loca-
tional marginal prices. In hydro-thermal markets where the auctions are repeated
over many periods, agents seek to optimize their current and future profit account-
ing for future prices that depend on uncertain inflows. In this setting perfectly
competitive partial equilibrium corresponds to a social optimum when all agents
share common knowledge of the probability distribution governing future inflows.
The situation is complicated when agents are risk averse. We illustrate some of the
consequences of risk aversion on market outcomes using simple two-stage competi-
tive equilibrium models in which agents are endowed with coherent risk measures.
In this setting we show that welfare is optimized in a competitive market if there
are enough traded market instruments to hedge inflow uncertainty but might not
be if these are missing.

1 Introduction

Most industrialised regions of the world have over the last twenty years established whole-
sale electricity markets that take the form of an auction that matches supply and demand.
The exact form of these auction mechanisms vary by jurisdiction, but they typically re-
quire offers of energy from suppliers at costs they are willing to supply, and clear a market
by dispatching these offers in order of increasing cost. Day-ahead markets such as those
implemented in most North American jurisdictions, seek to arrange supply well in advance
of its demand, so that thermal units can be prepared in time. Since the demand cannot
be predicted with absolute certainty, these day-ahead markets must be augmented with
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balancing markets to deal with the variation in load and generator availability in real
time.
The market mechanisms are designed to be as effi cient as possible in the sense that

they should maximize the total welfare of producers and consumers. In a deterministic
one-shot setting in which all agents act in perfect competition, the welfare theorems of
microeconomics ensure that the auction designs lead to welfare maximization. We give a
deriviation of such a result in section 2 for a simplified model of an electricity market. That
welfare maximization can be compromised by the exercise of market power by strategic
agents is well known, and many studies (see e.g. [2]) have been carried out to estimate
the extent of the ineffi ciency caused by this.
Market ineffi ciencies can also be created by uncertainty. Each agent in an electricity

market is faced with a dynamic stochastic optimization problem, to maximize their current
and (possibly risk-adjusted) future profit. Ideally, an electricity market auction would
provide every agent with a stochastic process of electricity prices with which they can
perform this optimization, but in practice this is too diffi cult to arrange. Most markets
operate in the short term with a day-ahead auction and a balancing market that is settled
in real time. These markets are settled separately which can be ineffi cient in comparison
with a single settlement procedure using stochastic programming, at least when agents
act as price takers [11]. In some jurisdictions (like New Zealand) there is no day-ahead
market and the market dispatch is computed close to real time for the next trading period
and implemented as the day unfolds. Offers of generation and demand forecasts for future
periods are used to forecast prices for future periods. These are used to guide each agent
in what they offer. In this sense, the auction is iterating towards (but possibly never
converging to) a set of prices that represent a realization of the stochastic process that
each price-taking agent would want to have at their disposal.
A similar price discovery process occurs on a longer time scale for markets with stored

hydro electricity. Generators with hydro-electric reservoirs face an inventory problem.
They would like to optimize the release of water from reservoirs to maximize profits using
a stochastic process of prices, but this process is not known, and must be deduced by
each agent using current and future market conditions and hydrological models of future
reservoir inflows. For an agent controlling releases from a hydro-electric reservoir, the
marginal cost of supply in the current period involves some modeling of opportunity cost
that includes possible high prices in future states of the world with low inflows.
In this paper we study the possible causes of market ineffi ciency that arise from un-

certainty in reservoir inflows. To simplify this analysis, we assume that all agents are
price-takers who do not act strategically. It is well-known that competitive electricity
prices for a single trading period and single location can be computed as shadow prices
from convex economic dispatch models that maximize total social welfare. These results
remain true in the presence of a transmission network as long as the use of transmission
assets is appropriately priced [18]. In other words the market must contain enough instru-
ments to price transmission (or equivalently have locational marginal prices). Similarly
when hydro reservoirs operated by different agents form a cascade on the same river sys-
tem, as in the model studied by Lino et al [12], the market needs to be completed by an
instrument that allows agents to trade water between reservoirs in order for a competitive
equilibrium to correspond to the social optimum.
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A similar incompleteness arises from uncertainty in future inflows. If all agents share
the same view about future inflows in the sense that there is a single stochastic process
of inflows that is common knowledge, and all agents maximize expected profit using the
probability law determining these inflows then a competitive equilibrium will correspond
to the welfare-optimizing solution computed by a social planner. If agents have different
views about future inflows then such a welfare result might no longer be true. Indeed it
is not clear what probability law the social planner should use in determining a welfare
optimizing solution. This raises the question on how one might complete the market with
suitable instruments to enable a welfare maximizing competitive equilibrium.
We provide a partial answer to this problem in the setting where there is a single

stochastic process of inflows that is common knowledge, but agents have different attitudes
to risk. Following previous work of [10] and [15], we assume that agents are endowed with
coherent risk measures as defined by [1]. This means that each agent maximizes their
expected profit using a worst-case probability distribution chosen from a well-defined set
of distributions that is possibly different for each agent. As shown in [10] and [15], as
long as the agents risk sets intersect, the addition of suitable instruments can provide a
complete market for risk that yields a single probability law. In equilibrium, all agents
share this law, and so a social planner might compute a welfare maximing solution using
a stochastic optimization model.
Our paper is an important contribution to the theory of electricity market design

under uncertainty. The “standard market design” using locational marginal pricing is
now commonplace in many jurisdictions, and provides complete markets for transmission.
The theory of investment from scarcity rents earned by suppliers when consumers shed
load at price caps is now well understood, at least in a deterministic setting. However
much of this theory is called into question in a probabilistic setting when investors are
risk averse [6]. In the absence of a market to share risk, producers’investments will differ
from the social optimum, and welfare will be lost. Our computational models confirm a
similar effect for hydro releases in markets with hydro electricity. They also provide a first
step towards understanding how to provide mechanisms to share the agents risk amongst
market participants and thus get closer to an effi cient market.
Our results should also be of particular interest to market regulators who seek a per-

fectly competitive counterfactual model to serve as a benchmark for market prices. A
risk-neutral counterfactual solution is likely to incur some energy shortages and corre-
sponding high prices, as these will happen occasionally to minimize the expected cost
[14]. To avoid these shortages, offer prices are often marked up by risk premia by agents
seeking to conserve water. These markups can also be interpreted as unilateral exercise
of market power by hydro-generators [19]. Estimates of competitive risk premia (under
some assumptions about completeness and agents’ risk aversion) will go some way to
establishing an appropriate benchmark for monitoring the effi ciency of hydro-dominated
markets.
Our paper is intended to be didactic rather than formal. For this reason we demon-

strate the results in a two-stage setting with a finite number of inflow outcomes in the
second stage. For simplicity, we also focus on a particular risk measure that is a convex
combination of expectation and average value at risk, although the results are valid for
any coherent risk measure. We illustrate the results using a computational example that
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has a single hydro plant, a single thermal plant and a single consumer. While the compu-
tational results are illustrated on pedagogical models, the approaches are usable on larger
instances and available for general use [9].
The paper is laid out as follows. In section 2, to establish notation we present a

stylized model of a hydro-thermal market with deterministic inflows. Section 3 extends
this to a two-stage stochastic model with random inflows in the second stage. An example
instance of the model with one consumer, one thermal plant and one reservoir is described
to illustrate the notation. (Assuming a single hydro generator ensures that the stochastic
system optimization problem is separable by agent.) This example will serve to illustrate
the main ideas in this paper. In section 4, we turn attention to competitive equilibrium
under risk. We describe coherent risk measures as defined by [1] and derive some results
related to risk trading that we will illustrate in our model. When markets for risk are
complete we show that a system risk measure may be defined using the construction of
[10] and [15]. We then conclude the paper with some remarks about market completeness,
and the effect of this on the equilibrium.

2 Preliminaries

Consider a model of several hydro and thermal players supplying a set of consumers with
different demand curves. All agents are at the same location. The system optimization
problem is

NSP: min
∑

j∈T Cj(v(j))−
∑

c∈C Dc(d(c))− V (x)

s.t.
∑

i∈H Ui (u(i)) +
∑

j∈T v(j) ≥
∑

c∈C d(c),

x(i) = x0(i)− u(i), i ∈ H
u(i), v(j), x(i) ≥ 0.

Here d(c) is the consumption of consumer segment c ∈ C, u(i) is the water release of hydro
reservoir i ∈ H and v(j) is the thermal generation of plant j ∈ T . The production function
Ui converts water release to energy. We assume that Ui is strictly concave. The water
level reservoir i ∈ H is denoted x(i). We let Cj(v(j)) denote the cost of generation by
thermal plant j in the current period, Dc(d(c)) the welfare accrued by consumer segment
c, and V (x) to be the future value of terminating the period with storage x. Here Cj,
j ∈ T , is assumed to be strictly convex, and Dc, c ∈ C and V are assumed to be strictly
concave. Note that the derivative D′c represents the inverse demand curve for consumer
c, which is strictly decreasing by assumption.
In the model NSP, the function V (x) derives from some future system cost given

reservoir levels of x. This might not be separable by reservoir. For example, the reservoirs
might form a cascade on the same river system, as in the model studied by Lino et al
[12]. In these circumstances [12] show that there might be no set of marginal prices
for electricity that will give a welfare maximizing equilibrium. The market needs to be
completed by an instrument that allows agents to trade water between reservoirs.
In order to avoid such complexities, we will assume a future cost function that is
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separable by agent to give

SSP: min
∑

j∈T Cj(v(j))−
∑

c∈C Dc(d(c))−
∑

i∈H Vi(x(i))

s.t.
∑

i∈H Ui (u(i)) +
∑

j∈T v(j) ≥
∑

c∈C d(c),

x(i) = x0(i)− u(i), i ∈ H,
u(i), v(j), x(i), d(c) ≥ 0.

where each Vi is a strictly concave univariate function. Such an assumption would be
valid if, like in our examples, there were only one hydro generator, or hydro generators
were decoupled by transmission constraints, so that their water values are essentially
determined only by local conditions. This involves some loss of realism, but simplifies the
analysis without losing the essence of the results that we wish to discuss.
We shall assume that all optimization problems throughout this paper satisfy some

constraint qualification that guarantees the existence of Lagrange multipliers. In partic-
ular, this means that we can solve SSP by minimizing a Lagrangian with multipliers π to
give

LSSP: min π
∑

c∈C d(c)−
∑

c∈C Dc(d(c)) +
∑

j∈T (Cj(v(j))− πv(j))

−
∑

i∈H (Vi(x(i)) + πUi (u(i)))
s.t. x(i) = x0(i)− u(i), i ∈ H,

u(i), v(j), x(i), d(c) ≥ 0.

LSSP separates by agent. Here each hydro plant i ∈ H maximizes profit at prices π by
solving

HP(i): max πUi (u(i)) + Vi(x(i))

s.t. x(i) = x0(i)− u(i)
u(i), x(i) ≥ 0,

and each thermal plant j ∈ T maximizes profit at prices π by solving
TP(j): max πv(j)− Cj(v(j))

s.t. v1(j) ≥ 0,

and the consumers c ∈ C maximize their welfare by solving
CP(c): max

∑
c∈C Dc(d(c))− π

∑
c∈C d(c)

s.t. d(c) ≥ 0.

In a perfectly competitive (Walrasian) equilibrium, agents respond by optimizing pro-
duction to maximize their benefits at the price π announced by the auctioneer. The
price π that clears the market defines an equilibrium that is a solution to the following
variational problem:

CE: u(i), x(i) ∈ arg maxHP(i), i ∈ H,
v(j) ∈ arg maxTP(j), j ∈ T ,
d(c) ∈ arg maxCP(c), c ∈ C,
0 ≤ (

∑
i∈H Ui (u(i)) +

∑
j∈T v(j))−

∑
c∈C d(c) ⊥ π ≥ 0,
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Since the strict convexity assumptions guarantee a unique solution to SSP, and a unique
solution to each agent problem, the Lagrangian duality theorem gives the following result.

Proposition 1 The (unique) welfare maximizing solution to SSP is the same as the
(unique) competitive equilibrium solution to CE.

2.1 Extended Mathematical Programming

All of the computational results in this paper are solved using the Extended Mathemati-
cal Programming (EMP) [9, 7, 3] features of the GAMS modeling system [4]. The EMP
framework exists to enable formulations of problems that fall outside the standard frame-
work within the modeling system. A high-level description of these extended models,
along with tools to automatically create the different realizations or formulations possi-
ble, pass them on to the appropriate solvers, and interpret the results in the context of
the original model, makes it possible to model more easily, to conduct experiments with
formulations otherwise too time-consuming to consider, and to avoid errors that can make
results meaningless or worse.
Multiple Optimization Problems with Equilibrium Constraints (MOPEC) involves a

collection of agents A that determine their decisions xA = (xa, a ∈ A) by solving, inde-
pendently, an optimization problem,

xa ∈ argmaxx∈Rnafa(p, x, x−a), a ∈ A, (1)

where fa(p, ·, x−a) : Rna → R = R ∪ {−∞,+∞} is their criterion function, with x−a =
(xo, o ∈ A \ {a}) representing the decision of the other agents and p ∈ Rd being a
parameter that may refer to prices in an economic application, stresses in mechanical
systems, and environmental conditions in numerous other applications. This parameter
and the decisions xA satisfy a global equilibrium constraint, formulated as a geometric
variational inequality,

F (p, xA) ∈ NC(p), (2)

with NC(p) the normal cone to C at p. We refer to (1)-(2) as a MOPEC, whose solution
is a pair (p, xA) that satisfies the preceding inclusions. Even though (1) omits an ex-
plicit expression of constraints on xA, that possibility is handled herein by extended-value
functions. Note that the model CE above is a MOPEC.
EMP provides the ability to describe a variational inequality within a modeling system.

We annotate existing equations in the model, detailing which ones provide the function
F , and which ones are part of the description of the underlying feasible set C. Note that
there is no requirement that C is polyhedral, and the format generalizes both nonlinear
equations and nonlinear complementarity systems. The main formulation of interest here
is MOPEC, for example the problem described via (1) and (2). In this setting that
variables xa and p, and the functions fa and F are defined with the usual model system,
but an additional annotation is provided of the form:

equilibrium
max f_1 x_1
max f_2 x_2
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...
max f_k x_k
vi F p

This describes a problem involving k agents, each of which solve an optimization
problem whose objective function involves not only variables xk but also other agents
variables, and the price vector p. Similarly to above, the VI involving D and p nails down
the values of p. In the GAMS implementation, the VI is converted into its KKT form, and
then solved using the PATH solver [5, 8] - this allows problems of hundreds or thousands
of variables to be processed.
Other features of EMP include stochastic programming and risk measures, hierar-

chical optimization, such as bilevel programming, extended nonlinear programming and
disjunctive programming.

3 Two-stage hydro-thermal problems

We now wish to extend the analysis of the previous section to problems in which there is
some uncertainty about future reservoir inflows. For simplicity we adopt in this section
a two-stage structure, in which inflows in the first stage are known, and those in the
second stage are random. Thus in stage 1, all generators know the storage level in the
reservoirs and the inflows that will occur in this period. These are assumed to be available
for release (or spill). The generators know only the probability distribution of inflows in
the second stage, which consists of a finite number of scenarios ωm, m = 1, 2, . . . ,M ,
each with probability µm. We assume without loss of generality that µm > 0 for every
m = 1, 2, . . . ,M . The inflow realization h(ωm) is revealed to the generators at the end of
stage 1 (after they have made their release and spill decisions).
Given electricity prices π1 in the current period and random prices π2(ωm) in the next

period, each hydro generator i ∈ H maximizes expected profit by solving

HP(i, µ): min −π1Ui(u1(i))
−
∑M

m=1 µm[π2(ωm)Ui(u2(i, ωm)) + Vi(x2(i, ωm))]

s.t. x1(i) = x0(i)− u1(i) + h1(i),
x2(i, ωm) = x1(i)− u2(i, ωm) + h2(i, ωm), m = 1, 2, . . . ,M,
u1(i), x1(i) ≥ 0, u2(i, ωm), x2(i, ωm) ≥ 0, m = 1, 2, . . . ,M,

(We express this as a minimization of disbenefit for ease of notation in what follows.)
Each thermal generator j ∈ T maximizes expected profit by solving

TP(j.µ): min −π1v1(j) + Cj(v1(j))

−
∑M

m=1 µm[π2(ωm)v2(j, ωm) + Cj (v2(j, ωm))]

s.t. v1(j) ≥ 0, v2(j, ωm) ≥ 0, m = 1, 2, . . . ,M.
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The consumer group c maximizes expected welfare by solving

CP(c, µ): min −
∑

c∈C Dc(d(c)) + π
∑

c∈C d1(c)

−
∑M

m=1 µm[
∑

c∈C Dc(d2(c, ωm))− π2(ωm)
∑

c∈C d2(c, ωm)]

s.t. d1(c) ≥ 0, d2(c, ωm) ≥ 0, m = 1, 2, . . . ,M.

Observe that given current prices π1 and random future price π2(ωm), the problems
TP(j, µ) and CP(c, µ) are ex-post optimal (i.e. wait-and-see problems).
In order to simplify notation in what follows we write

(u1(i), u2(i, ·), x1(i), x2(i, ·)) ∈ HP(i)

(v1(j), v2(j, ·)) ∈ TP(j)
(d1(c), d2(c, ·)) ∈ CP(c)

to denote that these sets of variables satisfy the constraints of HP(i, µ), TP(j, µ), and
CP(c, µ). (Observe that the constraints are not affected by the probability measure, and
so we drop the argument µ from the notation.)
We define the competitive equilibrium to be a solution to the following variational

problem.

CE(µ): (u1(i), u2(i, ωm), x1(i), x2(i, ωm)) ∈ arg minHP(i, µ), i ∈ H
(v1(j), v2(j, ωm)) ∈ arg minTP(j, µ), j ∈ T
(d1(c), d2(c, ωm)) ∈ arg minCP(c, µ), c ∈ C
0 ≤

∑
i∈H Ui (u1(i)) +

∑
j∈T v1(j)−

∑
c∈C d1(c) ⊥ π1 ≥ 0,

0 ≤
∑

i∈H Ui (u2(i, ωm)) +
∑

j∈T v2(j, ωm)−
∑

c∈C d2(c, ωm) ⊥ π2(ωm) ≥ 0,

m = 1, . . . ,M.

We proceed to relate this to the optimization problem of a social planner.
A social planner optimizes total welfare using the following stochastic optimization

problem.

SP(µ): min
∑

j∈T Cj(v1(j))−
∑

c∈C Dc(d1(c))

+
∑M

m=1 µm[
∑

j∈T Cj(v2(j, ωm))−
∑

c∈C Dc(d2(c, ωm))−
∑

i∈H Vi(x2(i, ωm))]

s.t.
∑

i∈H Ui (u1(i)) +
∑

j∈T v1(j)−
∑

c∈C d1(c) ≥ 0,∑
i∈H Ui (u2(i, ωm)) +

∑
j∈T v2(j, ωm)−

∑
c∈C d2(c, ωm) ≥ 0, m = 1, 2, . . . ,M,

(u1(i), u2(i, ωm), x1(i), x2(i, ωm)) ∈ HP(i), i ∈ H,
(v1(j), v2(j, ωm)) ∈ TP(j), j ∈ T ,
(d1(c), d2(c, ωm)) ∈ CP(c), c ∈ C.

Let π1 ≥ 0 and µmπ2(ωm) ≥ 0 be the Lagrange multipliers corresponding to constraints∑
i∈H

Ui (u1(i)) +
∑
j∈T

v1(j)−
∑
c∈C

d1(c) ≥ 0 (3)
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and ∑
i∈H

Ui (u2(i, ωm)) +
∑
j∈T

v2(j, ωm)−
∑
c∈C

d2(c, ωm) ≥ 0, m = 1, 2, . . . ,M. (4)

These give a Lagrangian defined by

L(u, v, d, x, π, µ) =
∑
j∈T

Cj(v1(j))−
∑
c∈C

Dc(d1(c))

+
M∑
m=1

µm[
∑
j∈T

Cj(v2(j, ωm))−
∑
c∈C

Dc(d2(c, ωm))−
∑
i∈H

Vi(x2(i, ωm))]

+π1[−
∑
i∈H

Ui (u1(i))−
∑
j∈T

v1(j) +
∑
c∈C

d1(c)]

+
M∑
m=1

µmπ2(ωm)[−
∑
i∈H

Ui (u2(i, ωm))−
∑
j∈T

v2(j, ωm) +
∑
c∈C

d2(c, ωm)].

For fixed multipliers π1 ≥ 0 and µmπ2(ωm) ≥ 0, minimizing the Lagrangian decouples into
problems HP(i, µ), TP(j, µ), and CP(c, µ). By Lagrangian duality, there exists a set of
prices π1 ≥ 0 and π2(ωm) ≥ 0 such that the solutions to HP(i, µ), TP(j, µ) and CP(c, µ)
will satisfy (3) and (4), and therefore solve SP(µ). Moreover the multipliers satisfy

0 ≤
∑
i∈H

Ui (u1(i)) +
∑
j∈T

v1(j)−
∑
c∈C

d1(c) ⊥ π1 ≥ 0, (5)

0 ≤
∑
i∈H

Ui (u2(i, ωm)) +
∑
j∈T

v2(j, ωm)−
∑
c∈C

d2(c, ωm) ⊥ π2(ωm) ≥ 0, (6)

and so the solutions solve CE(µ). Conversely any solution to CE(µ) will give multipliers
π1 ≥ 0 and π2(ωm) ≥ 0 such that the solutions to HP(i, µ), TP(j, µ) and CP(c, µ) will
satisfy (3) and (4) and therefore solve SP(µ). Thus the solutions to SP(µ) and CE(µ)
coincide. We collect these results into the following propositions.

Proposition 2 Suppose every agent is risk neutral and has knowledge of all deterministic
data, as well as sharing the same probability distribution µ for inflows. Then the solution
to SP(µ) is the same as the solution to CE(µ).

Proposition 3 Suppose for given π1 ≥ 0 and π2(ωm) ≥ 0 that (u, x, v, d) satisfies

(u1(i), u2(i, ωm), x1(i), x2(i, ωm)) ∈ arg maxHP (i, µ),

(v1(j), v2(j, ωm)) ∈ arg maxTP (j, µ),

(d1(c), d2(c, ωm)) ∈ arg maxCP (c, µ).

Moreover if (5) and (6) hold then (u, x, v, d) solves SP(µ).

Proposition 4 Suppose that (u, x, v, d) solves SP(µ) and π1 ≥ 0 and µmπ2(ωm) ≥ 0 are
the Lagrange multipliers of (3) and (4). Then (u, x, v, d, π) solves CE(µ).
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3.1 Example

Throughout this paper we will illustrate the concepts using a hydro-thermal system with
one reservoir, one thermal plant, and one consumer. We let thermal cost be C (v) = v2,
and define

U(u) = 1.5u− 0.015u2

V (x) = 10 log(0.1x+ 0.01)

D(d) = 40d− 2d2

We assume inflow 4 in period 1, and inflows of 1, 2, . . . , 10 with equal probability in each
scenario in period 2. With an initial storage level of 10 units this gives the competitive
equilibrium shown in Table 1.

stage ωm price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.336 7.590 6.410 0.668
1 1 2.539 2.865 5.725 1.269 2.057 20.417 362.283 384.758
1 2 2.053 3.590 6.000 1.027 1.500 19.418 366.863 387.781
1 3 1.696 4.387 6.203 0.848 1.165 18.809 370.264 390.238
1 4 1.431 5.236 6.355 0.716 0.958 18.514 372.809 392.281
1 5 1.231 6.121 6.470 0.616 0.825 18.445 374.746 394.016
1 6 1.076 7.031 6.559 0.538 0.735 18.529 376.252 395.516
1 7 0.953 7.961 6.629 0.477 0.673 18.716 377.446 396.835
1 8 0.855 8.904 6.686 0.427 0.629 18.969 378.411 398.008
1 9 0.774 9.857 6.733 0.387 0.596 19.264 379.204 399.064
1 10 0.706 10.818 6.772 0.353 0.571 19.585 379.866 400.022

Table 1: Competitive equilibrium (solution to CE) with initial storage of 10.

The social planner’s problem that maximizes expected welfare (by minimizing expected
generation and future cost) is shown in Table 2. One can observe that the two solutions
are identical, as predicted by Proposition 2.

4 Risk aversion

We now turn attention to a setting in which the electricity generators are risk averse. To
measure risk aversion we use a risk measure ρ defined by

ρ(Z) = (1− λ)E[Z] + λAVaR1−α[Z].

Here Z represents the random negative profit of an agent (or random system cost of the
social planner), and AVaR1−α[Z] denotes average value at risk at level 1− α that can be
expressed as the well-known formula [16]

AVaR1−α[Z] = inf
t
{t+ α−1E[(Z − t)+]}.
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stage ωm price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 1.336 7.590 6.410 0.668
1 1 2.539 2.865 5.725 1.269 2.057 20.417 362.283 -384.758
1 2 2.053 3.590 6.000 1.027 1.500 19.418 366.863 -387.781
1 3 1.696 4.387 6.203 0.848 1.165 18.809 370.264 -390.238
1 4 1.431 5.236 6.355 0.716 0.958 18.514 372.809 -392.281
1 5 1.231 6.121 6.470 0.616 0.825 18.445 374.746 -394.016
1 6 1.076 7.031 6.559 0.538 0.735 18.529 376.252 -395.516
1 7 0.953 7.961 6.629 0.477 0.673 18.716 377.446 -396.835
1 8 0.855 8.904 6.686 0.427 0.629 18.969 378.411 -398.008
1 9 0.774 9.857 6.733 0.387 0.596 19.264 379.204 -399.064
1 10 0.706 10.818 6.772 0.353 0.571 19.585 379.866 -400.022

Table 2: Social planning solution (solution to SP) with initial storage of 10.

The value λ ∈ [0, 1] is a measure of risk aversion, where λ = 0 corresponds to a risk-
neutral agent (or system planner) and λ = 1 is the most risk averse setting in which all
the weight in the objective is placed on AVaR1−α[Z]. Observe that we assume all decision
makers are minimizing ρ(Z).
The risk measure we adopt is an example of a coherent risk measure as defined by [1].

Any coherent risk measure ρ(Z) has a dual representation expressing it as

ρ(Z) = sup
µ∈D

Eµ[Z]

where D is a convex subset of probability measures (see e.g. [1],[10]). D is called the
risk set of the coherent risk measure. The dual representation using a risk set plays an
important role in the analysis we carry out in this paper.
The duality theorem for coherent risk measures means that given any set of random

payoffs Z(ωm) defined over a finite set of outcomes m = 1, 2, . . . ,M , and a polyhedral
risk set

D=conv{(p11, p12, . . . , p1M), (p21, p
2
2, . . . , p

2
M), . . . , (pK1 , p

K
2 , . . . , p

K
M)}

we may write

ρ(Z) = max
µ∈D

M∑
m=1

µmZ(ωm) = max
k=1,..,K

M∑
m=1

pkmZ(ωm),

since the maximum of a linear function over D is attained at an extreme point. By a
standard dualization, this gives

ρ(Z) =

{
min θ

s.t. θ ≥
∑M

m=1 p
k
mZ(ωm), k = 1, 2, . . . , K.

(7)

We can use the optimization problem (7) to measure the risk of any set of random costs
when the risk measure is defined by a polyhedral risk set.
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Example 5 Suppose there are 10 scenarios with probability pm = 0.1, m = 1, 2, . . . , 10,
and

ρ(Z) = (1− λ)E[Z] + λAVaR0.9[Z].

Then we set K = M = 10, and D is the convex hull of 10 extreme points. The kth extreme
point has probability 9λ+1

10
for scenario k and 1−λ

10
for the others. Thus

ρ(Z) = max
µ∈D

M∑
m=1

µmZ(ωm)

= min{θ : θ ≥
M∑
m=1

pkmZ(ωm), k = 1, 2, . . . ,M}

where

pkm =

{
9λ+1
10

, m = k
1−λ
10
, otherwise.

We now return to the hydro-thermal scheduling problem. We first study each agent’s
risk-averse optimization problem with given prices (π1, π2(ωm)) that in the second stage
depend on the scenario ωm. Here each agent’s optimization problem can be augmented
with a risk term that models their aversion to risk. Because of translation equivariance
we can write the objective in terms of the risk measure applied to each agent’s total
disbenefit, not only its uncertain part. In our example, the thermal problem for agent
j ∈ T becomes:

RTP(j): min ρj(−π1v1 + Cjv1(j)− π2(ω)v2(j, ωm) + Cj (v2(j, ωm))
s.t. (v1(j), v2(j, ·)) ∈ TP(j), j ∈ T ,

each hydro agent i ∈ H solves

RHP(i): min ρi(−π1Ui(u1)− π2(ωm)Ui(u2(i, ωm))− Vi(x2(ωm)))
s.t. (u1(i), u2(i, ·), x1(i), x2(i, ·)) ∈ HP(i), i ∈ H,

and each consumer group solves

RCP(c): min ρc(−Dc(d(c)) + π1d1(c)−Dc(d2(c, ω)) + π2(ωm)d2(c, ωm))
s.t. (d1(c), d2(c, ωm)) ∈ CP(c), c ∈ C.

In a similar way to the risk-neutral case, we can define a risk-averse competitive equilib-
rium to be a solution to the variational problem:

RCE: (u1(i), u2(i, ωm)) ∈ arg minRHP(i), i ∈ H,
(v1(j), v2(j, ωm)) ∈ arg minRTP(j), j ∈ T ,
(d1(c), d2(c, ωm)) ∈ arg minRCP(c), c ∈ C,
0 ≤

∑
i∈H Ui (u1(i)) +

∑
j∈T v1(j)−

∑
c∈C d1(c) ⊥ π1 ≥ 0,

0 ≤
∑

i∈H Ui (u2(i, ωm)) +
∑

j∈T v2(j, ωm)−
∑

c∈C d2(c, ωm)

⊥ π2(ωm) ≥ 0, m = 1, . . . ,M.
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Finally, given a system risk measure ρ0, a risk-averse social planner solves

RSP: min
∑

j∈T Cj(v1(j))−
∑

c∈C Dc(d1(c))

+ρ0

(∑
j∈T Cj(v2(j, ωm))−

∑
c∈C Dc(d2(c, ωm))−

∑
i∈H Vi(x2(i, ωm))

)
s.t.

∑
i∈H Ui (u1(i)) +

∑
j∈T v1(j)−

∑
c∈C d1(c) ≥ 0,∑

i∈H Ui (u2(i, ωm)) +
∑

j∈T v2(j, ωm)−
∑

c∈C d2(c, ωm) ≥ 0, m = 1, 2, . . . ,M,

(u1(i), u2(i, ωm), x1(i), x2(i, ωm)) ∈ HP(i, µ), i ∈ H,
(v1(j), v2(j, ωm)) ∈ TP(j, µ), j ∈ T ,
(d1(c), d2(c, ωm)) ∈ CP(c, µ), c ∈ C.

4.1 Example

We now examine solutions to RCE and RSP in the example problem when all decision
makers use the risk measure

ρ(Z) = 0.8E[Z] + 0.2AVaR0.9[Z].

High initial storage We assume an initial storage of 15 units, inflow 4 in period 1, and
inflows of 1, 2, . . . , 10 with equal probability in each scenario in period 2. The solution to
RSP is shown in Table 3 and the competitive equilibrium under risk is shown in Table 4.

stage ωm price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 0.816 12.291 6.709 0.408
1 1 1.118 6.757 6.534 0.559 0.479 14.131 380.898 -395.508
1 2 0.987 7.681 6.610 0.494 0.410 14.291 382.175 -396.876
1 3 0.882 8.621 6.671 0.441 0.361 14.527 383.202 -398.090
1 4 0.796 9.571 6.720 0.398 0.325 14.811 384.042 -399.178
1 5 0.725 10.530 6.761 0.363 0.298 15.127 384.740 -400.164
1 6 0.665 11.495 6.796 0.333 0.277 15.460 385.328 -401.065
1 7 0.614 12.466 6.825 0.307 0.261 15.803 385.829 -401.893
1 8 0.571 13.440 6.851 0.285 0.248 16.150 386.262 -402.659
1 9 0.532 14.418 6.873 0.266 0.237 16.497 386.638 -403.372
1 10 0.499 15.399 6.892 0.249 0.229 16.842 386.968 -404.039

Table 3: Risk averse social planning solution with initial storage of 15

The solutions as before are identical. Observe that scenario 1 is the worst-case outcome
in this example. It leads to the highest system cost, as well as to the lowest profit for the
hydro generator and worst welfare for the consumer. The thermal generator has highest
profit in scenario 1, but, as shown above it is indifferent to risk in this model as it solves
a wait-and-see model.
The risk set of the social planner (with λ = 0.2) is

D=conv{(p̄, p, . . . , p), (p, p̄, . . . , p), . . . , (p, p, . . . , p̄)}.
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stage ωm price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 0.816 12.291 6.709 0.408
1 1 1.118 6.757 6.534 0.559 0.479 14.131 380.898 395.508
1 2 0.987 7.681 6.610 0.494 0.410 14.291 382.175 396.876
1 3 0.882 8.621 6.671 0.441 0.361 14.527 383.202 398.090
1 4 0.796 9.571 6.720 0.398 0.325 14.811 384.042 399.178
1 5 0.725 10.530 6.761 0.363 0.298 15.127 384.740 400.164
1 6 0.665 11.495 6.796 0.333 0.277 15.460 385.328 401.065
1 7 0.614 12.466 6.825 0.307 0.261 15.803 385.829 401.893
1 8 0.571 13.440 6.851 0.285 0.248 16.150 386.262 402.659
1 9 0.532 14.418 6.873 0.266 0.237 16.497 386.638 403.372
1 10 0.499 15.399 6.892 0.249 0.229 16.842 386.968 404.039

Table 4: Risk averse competitive equilibrium with initial storage of 15

where p̄ = 9λ+1
10

= 0.28, p = 1−λ
10

= 0.02. Since scenario 1 is the worst case, the risk-averse
social planning solution is therefore the same as a risk-neutral social planning solution
with adjusted probabilities

(µ1, µ2, . . . , µ10) = (0.28, 0.08, . . . , 0.08).

This corresponds to a risk-neutral competitive equilibrium in which all players maximize
expected profit assuming these probabilities. The consumer will solve RCP, the hydro
agent will solve RHP and the thermal agent will solve RTP. Therefore by Proposition
2 we get the same solutions in the social planning solution as we do in the competitive
equilibrium, as confirmed by Table 3 and Table 4.

Low initial storage We now assume initial storage of 10 units, inflow 4 in period 1,
and inflows of 1, 2, . . . , 10 with equal probability in each scenario in period 2. The risk-
neutral results in equilibrium are the same as the social planning solution as predicted by
Proposition 2 and demonstrated in Table 1 and Table 2. When we include risk aversion,
we obtain the results shown in Table 5 and Table 6. Table 5 shows a solution to RSP when
the social planner uses a risk measure ρ0 with λ = 0.2, and Table 6 shows the solution to
RCE when all agents use this measure.

Low initial storage - elastic demand The solutions above assume a consumer welfare
measured by D(d) = 40d− 2d2 which corresponds to a linear inverse demand function

P (d) = 40− 4d.

We can see the effect of a more elastic inverse demand function by solving RSP and RCE
using D(d) = 20d− 0.5d2, still with initial storage of 10. This gives the results shown in
Table 7 and Table 8. Table 7 shows a solution to RSP when the social planner uses a risk
measure ρ0 with λ = 0.2, and Table 8 shows the solution to RCE when all agents use this
measure.
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stage ωm price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 1.545 7.710 6.290 0.773
1 1 2.472 2.948 5.763 1.236 2.125 21.918 360.888 -384.931
1 2 2.004 3.682 6.028 1.002 1.601 20.968 365.307 -387.876
1 3 1.660 4.486 6.224 0.830 1.286 20.401 368.589 -390.276
1 4 1.404 5.340 6.370 0.702 1.090 20.138 371.050 -392.277
1 5 1.210 6.229 6.482 0.605 0.963 20.090 372.927 -393.980
1 6 1.060 7.142 6.568 0.530 0.878 20.189 374.390 -395.457
1 7 0.940 8.073 6.637 0.470 0.818 20.385 375.553 -396.756
1 8 0.844 9.018 6.692 0.422 0.775 20.644 376.495 -397.914
1 9 0.765 9.972 6.738 0.382 0.743 20.944 377.270 -398.957
1 10 0.699 10.934 6.776 0.349 0.719 21.267 377.919 -399.905

Table 5: Risk averse social planning solution with initial storage of 10

stage ωm price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.317 7.580 6.420 0.658
1 1 2.545 2.858 5.722 1.272 2.053 20.280 362.407 384.740
1 2 2.057 3.582 5.998 1.029 1.492 19.277 367.002 387.771
1 3 1.700 4.378 6.202 0.850 1.156 18.664 370.413 390.233
1 4 1.434 5.226 6.353 0.717 0.948 18.366 372.965 392.279
1 5 1.233 6.111 6.469 0.616 0.814 18.295 374.908 394.017
1 6 1.077 7.022 6.558 0.539 0.724 18.378 376.418 395.520
1 7 0.955 7.951 6.629 0.477 0.661 18.564 377.615 396.840
1 8 0.856 8.894 6.686 0.428 0.617 18.816 378.582 398.015
1 9 0.775 9.847 6.733 0.387 0.584 19.111 379.377 399.071
1 10 0.707 10.808 6.772 0.353 0.559 19.432 380.040 400.031

Table 6: Risk averse competitive equilibrium with initial storage of 10

In these examples the worst case profits for the hydro and thermal producers both oc-
cur in scenario 10 when water is plentiful. By releasing large amounts of water the (elastic)
price decreases to levels that erode their profits. The consumer welfare is maximized in
this scenario. The worst-case overall welfare occurs in scenario 1.
In both examples with low storage one can see that the risk-averse social planning

solution and the risk-averse competitive equilibrium are different. The social planning
solution has highest system cost in scenario 1. In contrast the lowest hydro profit in
the risk-averse competitive equilibrium is in scenario 5 in the inelastic case and scenario
10 in the elastic case. Since the hydro generator and the system do not agree on a
worst-case outcome, the probability distributions that correspond to an equivalent risk
neutral decision will not be common. This means that the competitive equilibrium differs
from the plan maximizing total risk-adjusted welfare. We can attempt to construct some
agreement on what would be the worst-case outcome by trading risk. This the subject of
the next section.
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stage ωm price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 5.637 5.598 8.402 2.819
1 1 7.917 0.851 5.746 3.959 23.614 105.874 176.144 -305.633
1 2 7.149 0.975 6.623 3.575 20.721 109.091 185.720 -315.532
1 3 6.416 1.122 7.476 3.208 18.236 110.626 195.407 -324.269
1 4 5.722 1.297 8.301 2.861 16.129 110.722 205.082 -331.932
1 5 5.069 1.507 9.090 2.535 14.369 109.636 214.610 -338.614
1 6 4.463 1.760 9.838 2.232 12.924 107.638 223.844 -344.406
1 7 3.907 2.062 10.536 1.954 11.761 105.006 232.633 -349.400
1 8 3.406 2.421 11.177 1.703 10.844 102.014 240.831 -353.689
1 9 2.961 2.844 11.754 1.480 10.136 98.914 248.314 -357.363
1 10 2.573 3.333 12.265 1.286 9.599 95.915 254.997 -360.511

Table 7: Risk averse social planning solution with elastic demand and initial storage of
10

5 Risk trading with polyhedral risk sets

We now turn our attention to the situation where each agent a ∈ H ∪ T ∪ C is endowed
with a polyhedral risk set denoted

Da= conv{(pa11 , pa12 , . . . , pa1M), (pa21 , p
a2
2 , . . . , p

a2
M), . . . , (paKa

1 , paKa
2 , . . . , paKa

M )}.

We also assume that the agents can trade risk with each other using instruments that
pay a certain amount contingent on a given scenario occurring. Trading risk involves each
agent a making a payment in the first stage of the amount

∑M
m=1 µmWa(ωm) to receive

contingent payments Wa(ωm) in each outcome ωm, m = 1, 2, . . . ,M . (By an abuse of
notation we have denoted the price µm. In fact µ turns out to be a probability measure,
so this notation is consistent with the previous section.) We assume that the number
(M) of traded instruments equals the number of uncertain outcomes. In other words we
assume that the market for risk is complete [15].
The contingent payments can be used to offset high disbenefits Z(ωm) for some out-

comes ωm. The net disbenefit in outcome ωm is then Z(ωm)−W (ωm). Using (7) the risk
of the net disbenefit is

ρ(Z −W ) = max
k=1,..,K

M∑
m=1

pkm(Z(ωm)−W (ωm))

=

{
min θ

s.t. θ ≥
∑M

m=1 p
k
m(Z(ωm)−W (ωm)), k = 1, 2, . . . , K.
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Given prices (π1, π2(ωm), µ) agent i solves the following optimization problem.

R(i, π, µ): min θi +
∑M

m=1 µmWi(ωm)

s.t. θi +
∑M

m=1 p
ik
mWi(ωm) ≥

∑M
m=1 p

ik
mZi(ωm), k = 1, . . . , Ki,

Zi(ωm) = −(π1Ui(u1(i)) + π2(ωm)Ui(u2(i, ωm))− Vi(x2(i, ωm)))

(u1(i), u2(i, ·), x1(i), x2(i, ·)) ∈ HP(i).

Since R(i, π, µ) is a convex optimization problem, there exist multipliers λik so that
R(i, π, µ) is equivalent to

L(i, π, µ): min θi +
∑M

m=1 µmWi(ωm)

+
∑Ki

k=1 λik

(∑M
m=1 p

ik
mZi(ωm)− θi −

∑M
m=1 p

ik
mWi(ωm)

)
s.t. Zi(ωm) = −(π1Ui(u1(i)) + π2(ωm)Ui(u2(i, ωm))− Vi(x2(i, ωm)))

(u1(i), u2(i, ·), x1(i), x2(i, ·)) ∈ HP(i).

The boundedness of the value of R(i, π, µ) implies that
∑Ki

k=1 λik = 1, λik ≥ 0, and
µm =

∑Ki

k=1 λikp
ik
m, so R(i, π, µ) is bounded only when µ ∈ Di.

The prices µ in the market for risk must be the same for each agent. So thermal
generator j can pay

∑M
m=1 µmWj(ωm) to receive contingent payments Wj(ωm) in each

outcome ωm. Given prices (π1, π2(ωm), µ) agent j has the following risk-averse optimiza-
tion problem.

R(j, π, µ): min θj +
∑M

m=1 µmWi(ωm)

s.t. θj +
∑M

m=1 p
jk
mWj(ωm) ≥

∑M
m=1 p

jk
mZj(ωm), k = 1, . . . , Kj,

Zj(ωm) = −π1v1(j) + Cj(v1(j))− π2(ωm)v2(j, ωm) + Cj(v2(j, ωm))

(v1(j), v2(j, ·)) ∈ TP(j).

Similarly to the above, we can show that R(j, π, µ) is bounded only if µ ∈ Dj. Finally
suppose consumer c can pay

∑M
m=1 µmWc(ωm) to receive contingent payments Wc(ωm) in

each outcome ωm. Their risk-averse problem given (π1, π2(ωm), µ) is the following.

R(c, π, µ): min θc +
∑M

m=1 µmWc(ωm)

s.t. θc +
∑M

m=1 p
ck
mWc(ωm) ≥

∑M
m=1 p

ck
mZc(ωm), k = 1, . . . , Kj,

Zc(ωm) = π1d1(c)−Dc(d1(c)) + π2(ω)d2(c)−Dc(d2(c))

(d1(c), d2(c, ·)) ∈ CP(c).
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As before R(c, π, µ) is bounded only if µ ∈ Dc. The payoffs from risk trading cannot be
net positive in each outcome, so

−
∑
i∈H

Wi(ωm)−
∑
j∈T

Wj(ωm)−
∑
c∈C

Wc(ωm) ≥ 0. (8)

In other words the agents cannot swap positions in such a way to create extra benefit in
any scenario. If there is no opportunity at the margin for decreasing risk from the trades
W then the price µm will be zero. A risk-averse competitive equilibrium with risk trading
then solves the variational problem:

RCET: (θi, u1(i), u2(i, ωm), x2(i, ωm), Zi(ωm),Wi(ωm)) ∈ arg minR(i, π, µ), i ∈ H,
(θj, v1(j), v2(j, ωm), Zj(ωm),Wj(ωm)) ∈ arg minR(j, π, µ), j ∈ T ,
(θc, d1(c), d2(c, ωm), Zc(ωm),Wc(ωm)) ∈ arg minR(c, π, µ), c ∈ C,

0 ≤ −
∑

i∈HWi(ωm)−
∑

j∈T Wj(ωm)−
∑

c∈CWc(ωm) ⊥ µm ≥ 0, m = 1, . . . ,M,

0 ≤
∑

i∈H Ui (u1(i)) +
∑

j∈T v1(j)−
∑

c∈C d1(c) ⊥ π1 ≥ 0,

0 ≤
∑

i∈H Ui (u2(i, ωm))
+
∑

j∈T v2(j, ωm)−
∑

c∈C d2(c, ωm) ⊥ π2(ωm) ≥ 0, m = 1, . . . ,M.

Clearly, any solution to RCET requires that µ ∈ D0 = (∩i∈HDi) ∩ (∩j∈TDj) ∩ (∩c∈CDc).
Now, given the set D0, consider solving the risk averse social planning problem

RSP: min
∑

j∈T Cj(v1(j))−
∑

c∈C Dc(d1(c))

+ maxµ∈D0
∑M

m=1 µm[
∑

j∈T Cj(v2(j, ωm))−
∑

c∈C Dc(d2(c, ωm))−
∑

i∈H Vi(x2(i, ωm))]

s.t.
∑

i∈H Ui (u1(i)) +
∑

j∈T v1(j)−
∑

c∈C d1(c) ≥ 0,∑
i∈H Ui (u2(i, ωm)) +

∑
j∈T v2(j, ωm)−

∑
c∈C d2(c, ωm) ≥ 0, m = 1, 2, . . . ,M,

(u1(i), u2(i, ωm), x1(i), x2(i, ωm)) ∈ HP(i, µ), i ∈ H,
(v1(j), v2(j, ωm)) ∈ TP(j, µ), j ∈ T ,
(d1(c), d2(c, ωm)) ∈ CP(c, µ), c ∈ C,

This seeks a plan of generation that maximizes the total welfare of the agents by min-
imizing total fuel cost and value of unserved load. Let the optimal solution to RSP be
(u∗, v∗, x∗, d∗, µ∗), and let the shadow prices of the market clearing constraints be π∗1, and
µ∗mπ

∗
2 (ωm). We know that (u∗, v∗, x∗, d∗) solves SP(µ∗), and so (u∗, v∗, x∗, d∗, π∗1, π

∗
2 (ωm))

is a solution to CE(µ∗). We proceed to show that this defines a solution to RCET.
Consider fixing the solution (u∗, v∗, x∗, d∗, π∗). This defines disbenefits for each agent

in each scenario by

Z∗i (ωm) = −(π∗1Ui(u
∗
1(i)) + π∗2(ωm)Ui(u

∗
2(i, ωm)) + Vi(x

∗
2(i, ωm))) (9)

Z∗j (ωm) = −π∗1v∗1(i)− π∗2(ωm)v∗2(i, ωm) + Cj(v
∗
1(j)) + Cj(v

∗
2(j, ωm)) (10)

Z∗c (ωm) = π∗1d
∗
1(c) + π∗2(ωm)d∗2(c, ωm)−Dc(d

∗
1(c))−Dc(d

∗
2(c, ωm)). (11)
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The total disbenefit of this solution in scenario ωm is∑
i∈H

Z∗i (ωm) +
∑
j∈T

Z∗j (ωm) +
∑
c∈C

Z∗c (ωm)

= Cj(v
∗
1(j)) + Cj(v

∗
2(j, ωm))−Dc(d

∗
1(c))−Dc(d

∗
2(c, ωm))− Vi(x∗2(i, ωm)),

because π∗ satisfies (5) and (6). The optimal value of RSP is

Eµ∗ [Cj(v
∗
1(j)) + Cj(v

∗
2(j, ωm))−Dc(d

∗
1(c))−Dc(d

∗
2(c, ωm))− Vi(x∗2(i, ωm))]

= max
µ∈D0

Eµ [Cj(v
∗
1(j)) + Cj(v

∗
2(j, ωm))−Dc(d

∗
1(c))−Dc(d

∗
2(c, ωm))− Vi(x∗2(i, ωm))]

= max
µ∈D0

M∑
m=1

µm(
∑
i∈H

Z∗i (ωm) +
∑
j∈T

Z∗j (ωm) +
∑
c∈C

Z∗c (ωm)).

For fixed (u∗, v∗, x∗, d∗, π∗) (and hence Z∗i (ωm), Z∗j (ωm), Z∗c (ωm)) let us define the problem

DTP: maxµ∈D0
∑M

m=1 µm(
∑

i∈H Z
∗
i (ωm) +

∑
j∈T Z

∗
j (ωm) +

∑
c∈C Z

∗
c (ωm)),

that we have just shown has the same optimal solution and value as RSP. Now consider
the trading problem:

RTP: min
∑

i∈H θi +
∑

j∈T θj +
∑

c∈C θc

s.t. −
∑

i∈HWi(ωm)−
∑

j∈T Wj(ωm)−
∑

c∈CWc(ωm) ≥ 0, [µm]

θi +
∑M

m=1 p
ik
mWi(ωm) ≥

∑M
m=1 p

ik
mZ
∗
i (ωm), k ≤ Ki, i ∈ H,

θj +
∑M

m=1 p
jk
mWj(ωm) ≥

∑M
m=1 p

jk
mZ

∗
j (ωm), k ≤ Kj, j ∈ T ,

θc +
∑M

m=1 p
ck
mWc(ωm) ≥

∑M
m=1 p

ck
mZ

∗
c (ωm), k ≤ Kc, c ∈ C.

The linear programming dual of RTP is

RTP*: max
∑M

m=1

∑
i∈H

(∑Ki

k=1 λikp
ik
m

)
Z∗i (ωm)

+
∑M

m=1

∑
j∈T

(∑Kj

k=1 σjkp
jk
m

)
Z∗j (ωm)

+
∑M

m=1

∑
j∈C

(∑Kc

k=1 ηckp
jk
m

)
Z∗c (ωm)

s.t.
∑Ki

k=1 λikp
ik
m − µm = 0,∑Kj

k=1 σjkp
jk
m − µm = 0,∑Kc

k=1 ηckp
ck
m − µm = 0,∑Ki

k=1 λik = 1, λik ≥ 0 i ∈ H∑Kj

k=1 σjk = 1, σjk ≥ 0 j ∈ T∑Kc

k=1 ηck = 1, ηck ≥ 0 c ∈ C

which is easily seen to be equivalent to DTP, when µm is substituted for
∑Ki

k=1 λikp
ik
m,∑Kj

k=1 σjkp
jk
m , and

∑Kc

k=1 ηckp
ck
m .
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By the duality theorem of linear programming this means that there exists an optimal
solution to RTPwith the same value as DTP. Thus RTP has a solution (θi, θj, θc,Wi,Wj,Wc)
that clears the market for risk trading, so for each m = 1, 2, . . . ,M ,

0 ≤ −
∑
i∈H

Wi(ωm)−
∑
j∈T

Wj(ωm)−
∑
c∈C

Wc(ωm) ⊥ µm ≥ 0,

and has the same value as DTP (and therefore RSP). With prices µm, such a solution to
RTP minimizes a risk-trading problem for each agent, namely (θ,W ) solves

R(i, µ): min θi +
∑M

m=1 µmWi(ωm)

s.t. θi +
∑M

m=1 p
ik
mWi(ωm) ≥

∑M
m=1 p

ik
mZ
∗
i (ωm), k = 1, . . . , Ki,

R(j, µ): min θj +
∑M

m=1 µmWj(ωm)

s.t. θj +
∑M

m=1 p
jk
mWj(ωm) ≥

∑M
m=1 p

jk
mZ

∗
j (ωm), k = 1, . . . , Kj,

R(c, µ): min θc +
∑M

m=1 µmWc(ωm)

s.t. θc +
∑M

m=1 p
ck
mWc(ωm) ≥

∑M
m=1 p

ck
mZ

∗
c (ωm), k = 1, . . . , Kj.

This gives the following result.

Proposition 6 Suppose the market for risk trading is complete, and D0 = (∩i∈HDi) ∩
(∩j∈TDj) ∩ (∩c∈CDc) is nonempty. Let the optimal solution to RSP be (u∗, v∗, x∗, d∗, µ∗),
and let the shadow prices of the market clearing constraints be π∗1, and µ

∗
mπ
∗
2 (ωm). Finally

let Z∗ denote the vector with components

Z∗i (ωm) = −(π∗1Ui(u
∗
1(i)) + π∗2(ωm)Ui(u

∗
2(i, ωm))− Vi(x∗2(i, ωm)))

Z∗j (ωm) = −π∗1v∗1(i)− π∗2(ωm)v∗2(i, ωm) + Cj(v
∗
1(j)) + Cj(v

∗
2(j, ωm))

Z∗c (ωm) = π∗1d
∗
1(c) + π∗2(ωm)d∗2(c, ωm)−Dc(d

∗
1(c))−Dc(d

∗
2(c, ωm)).

Then there exists W ∗ = (W ∗
i ,W

∗
j ,W

∗
c ) so that (u∗, v∗, x∗, d∗, µ∗, Z∗,W ∗, π∗) solves RCET.

The proposition shows that under an assumption of a complete market for risk, we
may construct a competitive equilibrium with risk trading from a social planning solution.
This entails identifying the set D0 defined by the intersection of the agents’risk sets. The
trading in risk to give this equilbrium is not unique, since if (θi, W̄i(ωm)) is feasible for
R(i, µ∗), then so is (θi + 1, W̄i(ωm)− 1) with the same objective. In other words we can
add a constant a to every payout from the risk contract, and improve the risked position
θ, as long as we pay a back in stage 1 with the contract payment

∑M
m=1 µma = a. Thus

there is a linear manifold of possible risk trades that will solve RCET.
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5.1 Examples

The risk-trading analysis of the previous section can be applied to our example problem.
Suppose we first assume that the thermal generator is risk-neutral (i.e. λ = 0). This
seems reasonable without risk trading since given electricity prices he will act the same
irrespective of his choice of λ. (The same is true of the consumer, although we need only
one risk-neutral agent for the following example.) Any risk neutral agent has risk set

D= {(0.1, 0.1, . . . , 0.1)}.

It follows that the intersection of D and the other agent’s risk sets (which contain
(0.1, 0.1, . . . , 0.1)) is D0 = D. A complete market for trading risk will then result in
an equilibrium that has risk measure

sup
µ∈D0

Eµ[
N∑
i=1

Zi] = E[
N∑
i=1

Zi].

Adding risk trading to the risked competitive equilibrium will then give the optimal risk-
neutral social planning solution.
To illustrate this, suppose that the initial storage in the hydro reservoir is 10. Table

9 shows the competitive equilibrium when risk trading is allowed in a complete market.
Since the thermal generator is risk neutral, the intersection of risk sets for the agents is
the singleton {0.1, 0.1, . . . , 0.1}. Agents in a competitive equilibrium with risk trading
will optimize using the worst-case measure in this set. Thus the solution shown in Table
9 is the same as the risk neutral competitive equilibrium shown in Table 1 (which is
reproduced for convenience as Table 10).
This result depends on the assumption that λ = 0 for the thermal generator. In section

3, where risk trading was not included, we argued that the thermal generator solves a
wait-and-see optimization problem, and so he is indifferent to the choice of λ. We can
then assume λ = 0 for the thermal generator with no loss in generality. However, once
the thermal plant can trade risk the choice of λ makes a difference to his actions.
To see this consider the equilibrium with risk trading where both agents choose risk

measures with λ = 0.2. The equilibrium solution is shown in Table 11. Observe that the
risk-averse competitive equilibrium differs from the risk-neutral social planning solution
in Table 10. The thermal agent, faced with the possibility of trading risk, is no longer
indifferent to his choice of λ and now wishes to reduce his exposure to low profits. In the
absence of risk trading he could not change his exposure by any actions at all, and so we
could assume that he was risk neutral. Now we assume that he is endowed with the same
risk measure as the hydro generator. The intersection of the risk sets of all three agents
is non-empty, but is not a singleton: it is the risk set shared by each agent.
The risk trading that occurs is shown in Table 12. Risk trading produces the equilib-

rium shown in Table 11 that corresponds to a social planning solution that maximizes
total expected profit with the worst-case probability distribution in this risk set. We can
verify this by examining the total welfare of all agents in the risk-averse equilibrium. This
is shown in the last column of Table 11. The smallest welfare occurs in scenario 1. This
is the riskiest from the perspective of all agents objectives summed together, and they
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trade risk to give a minimum risk solution for the sum of their positions. The probability
distribution in the intersection of risk sets that corresponds to this equilibrium assigns
0.28 to scenario 1 and 0.08 to the other scenarios.
The social planning solution that maximizes total social welfare with this risk set is

the same as the the risked equilibrium with risk trading. The risk-neutral social planning
solution computed with the probabilities defined by the risk price is shown in Table 13.
One can observe that the generation levels are the same in each solution but the agents
profits differ from those in the equilibrium with trading. Their total is however the same
as the total welfare in the equilibrium with trading. The trades have enabled each agent
to use the same risk measure, and agree on a worst-case probability distribution.

6 Conclusions

The comparison of competitive market equilibrium with social planning solutions is not
straightforward when these markets involve uncertain inflows into hydro reservoirs. Even
in the risk neutral setting we need to ensure that there are suffi ciently many traded instru-
ments (pricing water exchanges between reservoirs on the same river chain for example)
to make a competitive equilibrium coincide with a social planning solution. We have
presented a simple class of models for which this result is true in the risk-neutral case.
In a setting with risk-averse agents, further sets of traded instruments are needed to

ensure that a social planning solution and a risked equilibrium coincide. Although our
results are restricted to a two-stage model, they extend naturally to a multi-stage sto-
chastic equilibrium. The conditional risk measures in this case need to be time-consistent,
and so have a nested structure as described by [17]. When the inflow distributions have
a finite number (M) of outcomes per stage then this enables a social planning solution
to be computed using the scenario-tree methods outlined in [13] (which are really only
tractable when the inflow distributions are stagewise independent). We assume that in
each possible node of the scenario tree there are suffi cient risk trading instruments to cover
the M positions of each agent at that stage. A multi-stage competitive equilibrium with
different risk trades in each node of the scenario tree will then correspond to a risk-averse
social planning solution in this scenario tree.
Even allowing for stagewise independence, finding the appropriate social planning

problem to solve is not straightforward since it requires that the social planner have
knowledge of the risk sets of each agent (which is private information). However we
show that given this information, the planner can in principle solve a risk-averse dynamic
optimization problem with an appropriate coherent risk measure (using e.g. the methods
discussed in [13]) to yield a stochastic process of energy prices that correspond to the
outcomes of a competitive equilibrium with risk trading.
This result raises some interesting questions for regulators who are seeking competitive

benchmarks with which to monitor the competiveness of electricity markets with hydro-
electric reservoirs. A risk-neutral social planning solution is likely to incur some energy
shortages and corresponding high prices, as these will happen occasionally to minimize
the expected cost. A hydro-thermal market that avoids these shortages is preferable, but
prices in periods without shortages will incur risk premiums that are often attributed

22



to unilateral exercise of market power by hydro-generators. The models we develop in
this paper are a first step towards estimating perfectly competitive risk premia for these
markets, and will assist regulators to diagnose strategic behaviour by generators.
A further question raised by this work is the effect on hydro-firming investment. This

requires high prices in dry periods to cover its long-run marginal cost of supply. This
raises the possibility of devising an investment model that incorporates risk premia from
a risk-averse competitive hydro-thermal model to cover these costs. This would provide
an interesting comparison to observed investment in hydro firming plant.
Finally we remark that the RCETmodels we solve assume market completeness, which

is unrealistic in practice. However in many circumstances, these models admit equilibrium
solutions in incomplete markets as well (as we have demonstrated in solving RCE). This
provides regulators and market analysts with a methodology to test the welfare gains that
might be realized by introducing practical hedging instruments into markets in which these
are absent.
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stage ωm price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 5.004 4.829 9.171 2.502
1 1 8.530 0.770 5.060 4.265 24.448 99.555 178.230 302.233
1 2 7.736 0.878 5.951 3.868 21.222 104.221 187.644 313.087
1 3 6.976 1.007 6.823 3.488 18.426 107.028 197.256 322.710
1 4 6.252 1.160 7.670 3.126 16.031 108.208 206.951 331.190
1 5 5.567 1.342 8.487 2.783 14.006 108.007 216.605 338.619
1 6 4.925 1.562 9.267 2.462 12.322 106.686 226.079 345.086
1 7 4.330 1.825 10.004 2.165 10.946 104.516 235.223 350.685
1 8 3.786 2.140 10.690 1.893 9.843 101.777 243.888 355.508
1 9 3.298 2.513 11.316 1.649 8.978 98.739 251.930 359.646
1 10 2.866 2.951 11.878 1.433 8.312 95.645 259.234 363.191

Table 8: Risk averse competitive equilibrium with elastic demand and initial storage of
10

stage ωm price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.336 7.590 6.410 0.668
1 1 2.539 2.865 5.725 1.269 -8.123 19.067 373.814 384.758
1 2 2.053 3.590 6.000 1.027 -5.100 19.067 373.814 387.781
1 3 1.696 4.387 6.203 0.848 -2.643 19.067 373.814 390.238
1 4 1.431 5.236 6.355 0.716 -0.600 19.067 373.814 392.281
1 5 1.231 6.121 6.470 0.616 1.135 19.067 373.814 394.016
1 6 1.076 7.031 6.559 0.538 2.635 19.067 373.814 395.516
1 7 0.953 7.961 6.629 0.477 3.954 19.067 373.814 396.835
1 8 0.855 8.904 6.686 0.427 5.127 19.067 373.814 398.008
1 9 0.774 9.857 6.733 0.387 6.183 19.067 373.814 399.064
1 10 0.706 10.818 6.772 0.353 7.142 19.067 373.814 400.023

Table 9: Risk averse competitive equilibrium with initial storage of 10 and risk trading
with λ = 0 for the thermal generator. The equilibrium price of risk is P (ω) = 0.1.
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stage ωm price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.336 7.590 6.410 0.668
1 1 2.539 2.865 5.725 1.269 2.057 20.417 362.283 384.758
1 2 2.053 3.590 6.000 1.027 1.500 19.418 366.863 387.781
1 3 1.696 4.387 6.203 0.848 1.165 18.809 370.264 390.238
1 4 1.431 5.236 6.355 0.716 0.958 18.514 372.809 392.281
1 5 1.231 6.121 6.470 0.616 0.825 18.445 374.746 394.016
1 6 1.076 7.031 6.559 0.538 0.735 18.529 376.252 395.516
1 7 0.953 7.961 6.629 0.477 0.673 18.716 377.446 396.835
1 8 0.855 8.904 6.686 0.427 0.629 18.969 378.411 398.008
1 9 0.774 9.857 6.733 0.387 0.596 19.264 379.204 399.064
1 10 0.706 10.818 6.772 0.353 0.571 19.585 379.866 400.022

Table 10: Risk neutral competitive equilibrium with initial storage of 10.

stage ωm price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.545 7.710 6.290 0.773
1 1 2.472 2.948 5.763 1.236 -1.232 18.320 367.842 384.931
1 2 2.004 3.682 6.028 1.002 -0.039 19.568 368.347 387.876
1 3 1.660 4.486 6.224 0.830 0.700 20.309 369.267 390.276
1 4 1.404 5.340 6.370 0.702 1.405 21.045 369.826 392.277
1 5 1.210 6.229 6.482 0.605 1.999 21.663 370.319 393.980
1 6 1.060 7.142 6.568 0.530 2.510 22.189 370.758 395.457
1 7 0.940 8.073 6.637 0.470 2.956 22.647 371.153 396.756
1 8 0.844 9.018 6.692 0.422 3.353 23.050 371.511 397.914
1 9 0.765 9.972 6.738 0.382 3.708 23.410 371.838 398.957
1 10 0.699 10.934 6.776 0.349 4.031 23.735 372.139 399.905

Table 11: Risk-averse competitive equilibrium with risk trading.

stage ωm price trade trade trade
(T) (H) (C)

0
1 1 0.280 1.658 0.768 -2.426
1 2 0.080 3.375 2.966 -6.341
1 3 0.080 4.429 4.274 -8.703
1 4 0.080 5.330 5.274 -10.604
1 5 0.080 6.051 5.938 -11.989
1 6 0.080 6.647 6.366 -13.013
1 7 0.080 7.153 6.627 -13.781
1 8 0.080 7.593 6.772 -14.364
1 9 0.080 7.980 6.832 -14.813
1 10 0.000 8.327 6.834 -15.161

Table 12: Risk trading between three agents in equilibrium
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stage ωm price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 1.545 7.710 6.290 0.773
1 1 2.472 2.948 5.763 1.236 2.125 21.918 360.888 -384.931
1 2 2.004 3.682 6.028 1.002 1.601 20.968 365.307 -387.876
1 3 1.660 4.486 6.224 0.830 1.286 20.401 368.589 -390.276
1 4 1.404 5.340 6.370 0.702 1.090 20.138 371.050 -392.277
1 5 1.210 6.229 6.482 0.605 0.963 20.090 372.927 -393.980
1 6 1.060 7.142 6.568 0.530 0.878 20.189 374.390 -395.457
1 7 0.940 8.073 6.637 0.470 0.818 20.385 375.553 -396.756
1 8 0.844 9.018 6.692 0.422 0.775 20.644 376.495 -397.914
1 9 0.765 9.972 6.738 0.382 0.743 20.944 377.270 -398.957
1 10 0.699 10.934 6.776 0.349 0.719 21.267 377.919 -399.905

Table 13: Risk-neutral social planning solution with probabilities defined by risk prices
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