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A STOCHASTIC LINEAR PROGRAM?

min z = 〈c, x〉  such that Tx ≤ d, x ∈ +
n ,   say 4 variables, 2 constraints

    cj =  unit cost of activity j,     nonegative activities x j ≥ 0
     tij =  # units of i-resourse consumed by activity j,  random
    di =  i-resourse units available,  random

Decision problem:  choose best x!   best returns distribution z( x;T,d)

z(x1;T ,d)
z(x2;T ,d) ?
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A PRODUCT MIX PROBLEM

min 〈c, x〉  such that Tx ≤ d, x ∈ +
n ,   say 4 variables, 2 constraints

    cj = −  profit of activity x j
            per dresser production profit (manufacturer)
    tij =  per unit i-resourse consumed by activity j
            time consumed for carpentry and finishing
    di =  i-resourse units available
            # of hours availalbe for carpentry and finishing
but actually  tij  and di  are random variables ⇒  additional 'overtime'

min 〈c, x〉 +E 〈q, y〉{ }  such that y ≥ Tx − d, x ∈ +
n , y ≥ 0.

(T, d) uniformly distributed components ⇒ infinite # of variables, constraints
discretized, say each 4-values, ⇒  l.p. with ≈ 2*106  variables, constraints
     1. consistent approximation?        2. design of solution procedures
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VALUATION

environment process: ξ t ∈d{ }t=0

T
history:ξ

→ t

, ξ = ξT

price process: St (ξ
→ t

) ∈n;  numéraire (risk-free): S1
t ≡ 1

contingent claims: Gt (ξ
→ t

){ }
t=1

T

; investment strategy:  Xt (ξ
→ t

){ }
t=0

T

portfolio value at t : 〈St (ξ
→ t

),Xt (ξ
→ t

)〉
PRICING: T-bonds, options, swaps, insurace contracts, mortgages, ...

maxE 〈ST ,XT 〉{ }  such that 〈St ,Xt 〉 ≤ Gt +  〈St ,Xt−1〉, t = 1→ T

                                                 〈S0 ,X 0 〉 ≤ G0 , 〈ST ,XT 〉 ≤ GT  a.s.

What if the random vectors are not discrete? What if t ∈[0,T ]?
Associated Risk-Neutral Probabilities:  exists?,  can be approximated?
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HOMOGENIZATION

conductor: Ω⊂ 3,  composite ≥ 2 materials, 
0 ≤ a(ξ, x) ≤κ bdd ,  stationary process w.r.t. location
heat u :  with rapidly varying stochastic coefficients
∇i a(ξ, x)∇u(ξ, x( ) = h(x), x ∈Ω &  bdry conditions
homogenized equation with effective coefficient a
∇i a(x)∇u(x( ) = h(x), x ∈Ω  &  brdy cond.

such that u(x) = E u(ξ, x){ }.  

min
u∈H0

1 (Ω) g(ξ,u) = 1
2

a(ξ, x) ∇u
Ω∫

2
dx − h,u

g : L2 → (−∞],   to be minimized for all ξ
homogenization: find ghom  such that

E u(ξ, · ){ } = u ( · ) ∈argmin ghom (u) u ∈H0
1(Ω)⎡⎣ ⎤⎦

a(x) ≠ E a(ξ, x){ }
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OPTIMALITY CONDITIONS

min E f0 (ξ, x){ }   such that prob fi (ξ, x) ≤ 0,i = 1,…m{ } ≤ α
   simplifying: α = 1,  fi (ξ, x) = fi (x),  constraint qualification satisfied,  
Optimality conditions (KKT) or stationary point
x  optimal if ∃ y = (y1,…, ym ) such that 
    a)  fi (x ) ≤ 0, i = 1,…m 

b)  yi ≥ 0 and yi ⊥ fi (x ), i = 1,…m 

    c)  0 ∈∇ Ef0 (x)+ yi fi (x)
i=1

m

∑⎛
⎝⎜

⎞
⎠⎟
= E ∇f0 (ξ, x){ } + yi∇fi (x)

i=1

m

∑
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OPTIMALITY CONDITIONS

 Solving the "generalized equation":

C(ξ) = (x, y)
fi (x) ≤ 0, yi ≥ 0, yi ⊥ fi (x), i = 1→ m

0 ∈ ∇f0 (ξ, x) + yi∇fi (x)
i=1

m∑⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

C :Ξ     (n × m ),     (x , y ) ∈E C(ξ){ }
 sample ξ k , (xk , yk )∈C(ξ k ),   ? 1

ν
(xk , yk )

k=1

ν∑ →? (x , y ).

!!
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Stochastic problems get quickly unmanageably large

Approximation (discretization, sampling, ... ) is a must

Approximation “of the classical type” might or might not 
work, including the standard approx. of stochastic processes 

The presence of constraints, in particular inequality 
constraints, radically changes the paradigm.

The search for “averaged solution” doesn’t result from 
straightforward averaging.

WHAT TO REMEMBER?
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VARIATIONAL PROBLEMS

Optimization:  min f (x)  sucht that  x ∈X ⊂ X
Variational Inequality:  x ∈C   such that −G(x) ∈NC (x)
Complementarity Problems:  0 ≤ x ⊥ H (x) ≥ 0
Generalized Equations:  S(x) 0,S : X      U  (set-valued)
Economic Equilibrium:  ∀a ∈A, x ∈argmaxCa

ua (p, x)
   market equilibrium:  0 ≤ p  such that  D(p, xA ) ∈NC (p)
Nash Games:  xa ∈argmax ra (xa , x−a ), ∀a ∈A

Each one comes with applications in a stochastic environment

!!
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OPTIMIZATION PROBLEM

min f (x), x ∈S,   

   S = x ∈Rn fi (x) ≤ 0, i = 1→ s, fi (x) = 0, i = s +1→ m{ }

S 

η

x

f0
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EXTENDED-REAL VALUED FCN

min f  on n , f = f0 + ιS (x), ιS  indicator function of S

S = dom f

f

η

x

Tuesday, January 22, 13



FUNCTIONS & EPIGRAPHS
epi f = (x,α ) f (x) ≤ α{ }

S = dom f

epi f

η

x
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FUNCTIONS & EPIGRAPHS
epi f = (x,α ) f (x) ≤ α{ }

S = dom f

epi f

η

x

f  lsc ⇔  epi f  closed
lower semicontinuous
f  usc ⇔  − f  lsc
    ⇔  hypo f  closed

f  convex ⇔  epi f  convex

f  lsc at x : lim infx '→x f (x ') ≥ f (x), f  usc at x : limsupx '→x f (x ') ≤ f (x)
       f   lsc ⇔ epi f  closed                      f  usc ⇔  hypo f  closed
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LEVEL SETS & CONSTRAINTS

levα = x ∈n f (x) ≤ α{ }

S = dom f

epi f

levα f

η

α

x

f  lsc ⇔  levα f  closed ∀α f  convex ⇒  levα f  convex
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EPI-SUMS (INF-CONVOLUTION)

epi f epig = infw f (w)+g(w − x){ } eλ f (x)  with g = 1
2λ
i
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APPROXIMATION: CONVERGENCE

C1 Cν C=limνC
ν

 outer limit: LsνC
ν = x ∈  cluster-points{xν} , xν ∈Cν{ }

inner limit:  LiνC
ν = x = limν x

ν , xν ∈Cν ⊂ n{ }⊂  LsνC
ν

     limit:     Cν → C  if C =  LiνC
ν = LsνC

ν   (Painlevé)

All limit sets are closed
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CONVEX LIMIT SETS

 Cν  convex ⇒ LiνC
ν  convex ⇒  LmνC

ν  convex (if it exists)
                   /⇒  LsνC

ν  convex

C1 Cν limνC
ν

but convexity can result from taking limits
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EPI-LIMITS

f ν :n → , ν ∈{ }
lower epi-limit:  e-liν f

ν  such that epi(e-liν f
ν ) =  Lsν epi f ν

upper epi-limit:  e-lsν f
ν  such that epi(e-lsν f

ν ) =  Liν epi f ν

epi-limit: f ν →
e
f  when f =  e-liν f

ν =  e-lsν f
ν ,   f =  e-lmν f

ν

all epi-limits are lsc (closed epigraphs),     e-liν f
ν ≤ e-lsν f

ν

f ν  convex ⇒  e-lsν f
ν  is convex and so is e-lmν f

ν  (if it exists)

Convergence of level sets / constraint sets:
f ≤ e-liν f

ν ⇔  Lsν (levαν
f ν ) ⊂  levα f ∀αν →α

f ≥ e-lsν f
ν ⇔  Lsν (levαν

f ν ) ⊂  levα f for some αν →α

Operations: sums, scalar multiplication, epi-sums
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SV-CONVERGENCE
SOLUTIONS, MINIMIZERS, ...

Aν  solutions of (generalized) equations
     minimizers of a sequence of functions
     saddle points or min-sup points of bifunctions
ε-Aν :ε > 0 approximate solutions, minimizers, ....
A  solution set, minimizers, ... of corresponding limit

Definition:  Aν  sv-converge to A,  written Aν     v   A,  if

   a) x ∈  cluster-points xν ∈Aν{ }⇒ x ∈A

   b) x ∈A⇒∃ εν  0, xν ∈εν -Aν → x

!!
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CONVERGENCE OF MINIMIZERS
SV-CONVERGENCE OF MINIMIZERS

f ν →
e
f , x ∈  cluster xν ∈argmin f ν{ }⇒ x ∈argmin f

f ν →
e
f , inf f ∈, x ∈argmin f ⇒∃εν  0, xν ∈εν -argmin f ν → x

f ν →
e
f /⇒ argmin f ν → argmin f

f ν →
e
f , inf f ν → inf f ∈⇔ f ν{ }ν∈  epi-tight, i.e.

∀ε > 0, ∃B compact s.t. infB f
ν ≤ inf f ν + ε, ∀ν ≥ ν

f�+1
f �

�argmin f

argmin f

f
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SET-VALUED MAPPINGS

Rm

Rndom S

rge S

S(x)

S-1(u)

gph S

u

S  osc (outer semicontinuous) at x if Lsx→x S(x) ⊂ S(x )
           S  osc ⇔  gph S  closed
S  isc (inner semicontinuous) at x if Lix→x S(x) ⊃ S(x )
S  continuous if it's isc and osc
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GRAPHICAL CONVERGENCE
SV-CONVERGENCE OF SOLUTIONS

Sν →g S  when gph Sν → gph S   (as subsets of n × m )

Generalized Equations ~ Inclusions

Sν ,S :n     m , Sν (x) uν ,  S(x) u  and Sν →g S,uν → u . Then

x ∈  cluster-pts xν Sν (xν ) uν{ }⇒ S(x ) u

S(x ) u ⇒∃ûν → u  with Sν (x̂ν ) ûν  and x̂ν → x

Applications:  F(x) = b, −G(x) ∈NC (x),… variational problems

Sν → p S pointwise doesn't yield convergence of sol'ns

!!
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RATES OF CONVERGENCE

Excess distance function:
     eρ (A,B) = inf η ≥ 0 A∩ ρB⊂ B +ηB{ }, ρ > 0
Estimate of set distance:

dl̂ρ (A,B) = max[eρ (A,B),eρ (B,A)]  
Set-distance:
dlρ (A,B) = maxx∈ρB d(x,A) − d(x,B) ,

    d(x,C) = infy∈C y − x
Pompeiu-Hausdroff distance: ρ = ∞

dl̂ρ (A,B) ≤ dlρ (A,B) ≤ dl̂ρ ' (A,B),
′ρ ≥ 2ρ + max[d(0,A),d(0,B)]

Cν → C ⇔ dlρ (Cν ,C)→ 0 ⇔ dl̂ρ (Cν ,C)→ 0 ∀ρ ≥ 0

C
0

�

�

�

�

�d (C, C ) <��

IB

C� �IBU

C + IB�

A

ρ

η

B
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EPI-DISTANCE

lsc-fcns(n ) =  space of all lsc functions from n →  = [− ∞,∞ ]

dl̂ρ ( f ,g) = dl̂ρ (epi f , epig), dlρ ( f ,g) = dlρ (epi f , epig), ρ ≥ 0

                                                      Bn+1 = Bn × [−1,1]

dl( f ,g) = e−ρ
ρ≥0∫ dlρ ( f ,g) dρ,    epi-distance

f ν , f ∈lsc-fcns(n ), f ν →e f ⇔ dl( f ν , f )→ 0
           also dlρ ( f ν , f )→ 0, ∀ρ ≥ ρ > 0,…

lsc-fcns(n ) \ { f ≡ ∞}, dl( )  complete metric space
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EPI-DISTANCE

f
g

⇢

dl⇢(f, g)
f

g
dl⇢(f, g)

⇢
d(x, epi f)

d(x, epi g)
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QUANTITATIVE ESTIMATE

under ψ -conditioning for f , f ,g ∈lsc-fcns(n ), inf f , inf g ∈

minρB g − min f ≤ dlρ ( f ,g)

argminρB g ⊂ argmin f +ψ (dlρ ( f ,g))B

epi f epi f

f f(a) (b)

�
�

2� 2�

(x,f(x))
__ (x,f(x))

__
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APPROXIMATE SOLUTIONS:
QUANTITATIVE ESTIMATE

f ,g :n → ,  proper, lsc, convex functions
argmin f , argming ≠ ∅
ρ0  large enough so that ρ0B meets argmin f & argming
min f ≥ −ρ0 , min g ≥ −ρ0

Then, with ρ > ρ0 , ε > 0, η = dlρ ( f ,g)

dl̂ρ (ε-arg min f ,ε-arg min g) ≤ η 1+ 2ρ
η +  / 2

⎛
⎝⎜

⎞
⎠⎟

                                              ≤ (1+ 4ρ / )dl̂ρ ( f ,g)
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CONVEX FUNCTIONS

(Wijsman)   f ν →
e
f ⇔ ( f ν )*→

e
f * = supx v, x − f (x)( ), f ν  lsc, convex

epi f
(�,�)(x, )�

l �x,
(a) (b)

epi f*

l �v,

conjugate
functions

f ν →
e
f /⇒ f ν →

p
f (pointwise)  &   f ν →

p
f /⇒ f ν →

e
f

  f ν →
e
f ≡ f ν →

p
f ⇔ f ν{ }ν∈  is equi-lsc 

(Walkup-Wets)     dlcsm f ,g( ) =  dlcsm f *,g *( ) ≈ dl( f ,g) = dl( f *,g*)[ ]

Tuesday, January 22, 13



VARIATIONAL GEOMETRY
TANGENT CONE

w ∈TC (x), tangent to C  at x ∈C,  if xν − x / τν → w for xν →
C
x,τν  0

C

x
_

C
_

T (x)
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VARIATIONAL GEOMETRY
NORMAL CONE

C

x
_

N (x) = N (x)^_ _
C C

v ∈N̂C (x ),  regular normal at x ∈C,  if v, x − x ≤ o(| x − x |), ∀x ∈C

v ∈NC (x ), normal at x ∈C, if ∃xν →
C
x and vν → vwith vν ∈N̂C (xν )

normal cones: closed cones,  N̂C (x ) convex
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CLARKE REGULARITY

C Clarke regular at x if C locally closed & NC (x) = N̂C (x )
          which implies NC (x ) is convex if C regular at x

In general, NC (x ) = Lsx→C x
NC (x) ⊃ N̂C (x )

Smooth manifolds and closed convex set are regular  (also locally)

C

x
_

_
T (x)C

_N (x)C
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SUBGRADIENTS

v ∈∂̂f (x ) regular subgradient if f (x) ≥ f (x )+ v, x − x + o(| x − x |)

        ∂̂f (x ) = v (v,−1) ∈N̂epi f (x , f (x )){ },  closed and convex

v ∈∂f (x ) subgradient if ∃ xν → f x ,vν ∈∂̂f (xν ) with vν → v

        ∂f (x ) = v (v,−1) ∈Nepi f (x , f (x )){ },  closed

x ∂f (x) osc f -attentive convergence: ⇒ Lsx→ f x
∂f (x) ⊂ ∂f (x )

f  differentiable at x : ∂̂f (x ) = ∇f (x ) = ∂f (x )

f  regular at x : f  locally lsc with ∂f (x ) = ∂̂f (x ) ( f  locally convex, e.g)
∂ιC (x) = NC (x)  when C is convex
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OPTIMALITY

min f = f0 + ιC ,  optimality: ``0 ∈∂f (x ′′)
         generally, ∂ f + g( ) ≠ ∂f + ∂g
C.. (Constraint Qualification): − NC (x )∩ ∂∞ f0 (x ) = {0}
v ∈∂∞ f0 (x ) =  horizon subgradient if 

                         ∃ xν → f x ,vν ∈∂̂f (xν ),λν  0 & λνv
ν → v

 
with  C..  x  locally optimal ⇒∂f0 (x ) + NC (x ) 0 
f  convex ( ⇒ regular), ∂f0 (x ) + NC (x ) 0 ⇒  
                                        globally optimal (without C.)
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ATTOUCH’S THEOREM

f ν , f :n → ,  proper, convex, lsc and λ > 0
The following are equivalent:
  a) f ν →e f
  b) the mappings ∂f ν →g ∂f  and

      ∃vν ∈∂f ν (xν ),v ∈∂f (x ), xν ,vν( )→ (x ,v ), f ν (xν )→ f (x )
                    (convergence of an integration constant)

  c) Pλ f
ν → p Pλ f = argminw f (w) + 1

2λ
w − i 2⎧

⎨
⎩

⎫
⎬
⎭

 and

      ∃ x , xν → x  such that eλ f
ν (xν )→ eλ f (x )

in situation b): also f ν*(vν )→ f *(v )

(initial proof: via Moreau envelopes)
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II. MOPEC
“Multi-Optimization Problems
with Equilibrium Constraints” 
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THE MOPEC “FAMILY” ...
saddle-point problems: Lagrangians, zero-sum games, Hamiltonians

equilibrium: classical mechanics, Wardrop, economic (Walras, etc.)

variational inequalities: finance, ecological models, complementarity, PDE

non-cooperative games: pricing, generalized Nash equilibrium

finding fixed points: Brouwer-type, Kakutani-type (set-valued), MPEC  

minimal surface problems, ... , mountain pass solutions, ....

...  and the dynamic versions, and the stochastic (dynamic) versions.

solving inclusions (equivalently, generalized equations): S(x) 0
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PRIMARY OBJECTIVE:   
CONSTRUCTIVE THEORY
Exhibits and exploits the interrelation between these problems

Existence theory: (mostly, not exclusively)

Aubin & Ekeland, “Applied Nonlinear Analysis” (Chap. 6), 1984

Facchinei & Pang, “Finite Dimensional Variational Inequalities 
and Complementarity problems” (2003)

Iusem & Sosa (+ Kasay), “Existence of solutions to equilibrium 
problems” (2005-....)

Approximation theory ⇒ algorithmic strategies + existence
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SADDLE FUNCTIONS
EPI/HYPO CONVERGENCE

- Lagrangians (concave/convex) 

- zero-sum games

- Hamiltonians
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Cν × Dν

(xν , yν )

(xν , yν )

•

•

(x, y)•

•(x, y)

∀ x ∈C,∀ yν ∈Dν → x ∈D

∃yν ∈Dν

→ y ∈D

∀ y ∈D,∀ xν ∈Cν → x

limsupν K
ν (xν , yν ) ≤ K(x, y) when x ∈C

lim infν K
ν (xν , yν ) ≥ K(x, y) when y ∈D

Cν × Dν

C × D

C × D

EPI/HYPO-CONVERGENCE

∃xν ∈Cν

→ x ∈C

finite-valued bifunctions
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CONVERGENCE: SADDLE POINTS

K ν →
e /h
K :C × D→ , εν  0, xν , yν( )∈  εν -sdl(K ν )

    x , y( ) = limν∈N⊂ xν , yν( ),   N   subsequence

⇒ x , y( )∈sdl(K ) & K x , y( ) = limν∈N⊂ K
ν xν , yν( )

in the convex/concave case ⇒  convergence primal/dual solutions

ancillary tight (   y-compact): ∀ε > 0,∃ Bε  compact, νε

∀ν ≥ νε ,sup
Bε ∩D

ν K ν (xν ,i ) ≥ sup
Dν K ν (xν ,i ) − ε

e/h-convergence + ancillary tight ⇒ sv-convergence saddle points
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ZERO-SUM GAMES

x*∈argmaxx∈X u(x, y*), y*∈argminy∈Y u(x*, y)

(x*, y*) ∈  sdl u( )
if X,Y  convex, compact ( ⇒ tight) 
   ∀y, x u(x, y) concave, usc, ∀x, y u(x, y) convex, lsc
  ⇒  the zero-sum game G = X,u( ), Y ,−u( ){ }  has a solution

moreover, Xν → X,Y ν → Y , uν →
e /h
u  (with same properties)

⇒  their solutions (xν , yν ) cluster to solution of G
   also the case for approximate solutions
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47

                         ,                     non-empty, convex set

   find   

   let     

    

  C ⊂ n
   G : C → n

  u ∈C  such that − G(u ) ∈NC (u )

  
v ∈NC (u ) ⇔ v,u − u ≤ 0, ∀u ∈C

   C
ν → C, Gν: Cν → n  continuous

VARIATIONAL INEQUALITIES

Sν solution set of approximating problems 
S   solution of the limit problem. Does Sν → S?
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 Let

 then                                       if and only if

  

  

  

  

       

  
K(u,v) = G(u),v − u  on dom K = C × C

  −G(u ) ∈NC (u )

u ∈maxinf point of K  with K(u ,i) ≥ 0 

V.I.: THE GAP FUNCTION

  
K ν (u,v) := Gν (u),v − u , dom K ν = Cν × Cν

uν ∈arg max−inf K ν  with K ν (uν ,i) ≥ 0

K ν → K   and  …

  
u ∈  cluster points uν{ }⇒ ? u ∈argmin−sup K

?
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⇔ x ∈argmaxinf N , N (x ,i) ≥ 0

a ∈A , payoff: ua (xa ,x−a ) :N → , ∴includes xa ∈C(x−a )

∀a ∈A, xa ∈argmax ua (xa ,x−a )

Nikaido-Isoda function: 
N (x, y) = uaa∈A∑ (xa ,x−a ) − uaa∈A∑ ( ya ,x−a )

NON-COOPERATIVE GAMES

 

  Generalized Nash equilibrium:                            such that

 

                                      
is a Nash equilibrium

Tuesday, January 22, 13



50

 APPROXIMATING GAMES 

   

    

       

   

Nikaido-Isoda functions of approximating games
N ν (x, y) = ua

ν
a∈A∑ (xa ,x−a ) − ua

ν ( ya ,x−a )
a∈A∑

  
xν ∈arg max−inf N ν , x ∈  cluster points xν{ }

   ⇒ ? x ∈argmax−inf N   equilibrium point

N ν → N   and  …?
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Cν × Dν

(xν , yν )

(xν , yν )

•

•

(x, y)•

•(x, y)

∃xν ∈Cν → x ∈C

∃yν ∈Dν

→ y ∈D

∀ yν ∈Dν

→ y

∀ y ∈D,∀ xν ∈Cν → x

limsupν K
ν (xν , yν ) ≤ K(x, y) when x ∈C

lim infν K
ν (xν , yν ) ≥ K(x, y) when y ∈D

K ν (xν , yν )→∞ when y ∉D

Cν × Dν

C × D

C × D

LOPSIDED CONVERGENCE
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ANCILLARY-TIGHTLY ~ 
‘COMPACT IN Y’

K
Cν ×Dν
ν →

lop ancillary− tight
KC×D   if  K

Cν ×Dν
ν →

lop
KC×D  and

(b) ∀x ∈C, ∃xν → x,∀ yν ∈Dν  and yν → y :
              lim inf K ν (xν , yν ) ≥ K(x, y)  if y ∈D
               K ν (xν , yν ) →∞   if y ∉D
but also ∀ε>0, ∃Bε  compact (depends on xν → x) :

inf
Bε ∩D

ν K ν (xν ,i) ≤ inf
Dν K ν (xν ,i) + ε , ∀ν ≥ νε

THM.  K
Cν ×Dν
ν →lop. KC×D   &   ancillary-tightly, 

x ∈cluster points of {xν ∈maxinf K
Cν ×Dν
ν }ν∈ ⇒ x ∈maxinf KC×D
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... EVEN BETTER :  
CONVERGENCE 

 K
Cν ×Dν
ν → KC×D  lop. ancillary-tightly, 

  (i) xν ∈ε-maxinf K
Cν ×Dν
ν , x  cluster point of {xν}ν∈

           ⇒ x ∈ε-maxinf KC×D
   (ii) xν ∈εν -maxinf K

Cν ×Dν
ν , x  cluster point of {xν}ν∈

            & εν  0 ⇒ x ∈maxinf KC×D   (special: unique)

   (iii) x ∈maxinf KC×D ⇒∃εν  0 & xν ∈εν -maxinf K
Cν ×Dν
ν

            such that xν → x ,    

Under tight-lop:  convergence of the full εν -maxinf sets
         and convergence of values
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K :C × C→   Ky Fan function if
  (a) ∀ y ∈C: x K(x, y)  usc on C
  (b)∀x ∈C: y K(x, y)  convex on C

K  Ky Fan fcn, dom K = C × C + C  compact
⇒ argmax−inf K ≠ ∅

if K(x,x) ≥ 0 on dom K, x ∈argmax−inf K
⇒ inf y K(x , y) ≥ 0.

KY FAN FCNS & INEQUALITY

Improvements: Iusem, Kasay, Sosa (locals) 
                         Lignola, Nessah, Tian, X. Yu, ...
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  KY FAN’S INEQUALITY: 
AN EXTENSION 

& if ∀ν : argmax−inf K ν ≠ ∅
    x ∈  cluster-pts {arg max−inf K ν}
⇒ x ∈arg max−inf K  & K(x ,i) ≥ 0

  

K ν → K  lopsided tightly with Cν → C, 
K ν  Ky Fan ⇒ K  Ky Fan fcn

Application: guideline for approximation schemes
   truncations, coercivity, ...
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LINEAR COMPLEMENTARITY 
PROBLEMS

LCP:  find z ≥ 0, Mz + q ≥ 0 and (Mz + q) ⊥ z
K(z,v) = Mz + q,v − z  on  +

n ×  +
n ,   Ky Fan fcn

approx. z ∈ 0,rν⎡⎣ ⎤⎦, M νz + qν ≥ 0 and (M νz + qν ) ⊥ z

K ν (z,v) = M νz + qν ,v − z  on 0,rν⎡⎣ ⎤⎦ ×  +
n

  K
ν →lop K  when M ν → M , qν → q, rν ∞

 

 K ν →lop K  ancillary tightly when also

Pν = z ∈[0,rν ] M νz + qν ≥ 0{ }→ P = z ≥ 0 Mz + q ≥ 0{ }
⇒ cluster points of sol'ns of approx. solve LCP

note : intP ≠ ∅,  no row of [M ,q] =  0 ⇒ Pν → P( )
 K ν →lop K  tightly (study of quadratic forms)
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VARIATIONAL INEQUALITIES

−G(u) ∈NC (u),G continuous, C  convex, compact

bifunction: K(u,v) = G(u),v − u  on C × C,  Ky Fan fcn & K(u,u) ≥ 0

THM:  Cν → C⇒ Cν  compact ν ≥ ν , Gν  continuous
   Gν →cont G : Gν (xν ) → G(x), ∀xν ∈Cν → x

   K ν (u,v) = Gν (u),v − u  on dom K ν = Cν × Cν

lop-converge ancillary tightly to K⇒ sol'ns converge 

    Continuous convergence (?): 
sol'ns Sν = Gν +N

Cν  0 →  sol'ns S = G + NC  0
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 FIXED POINTS (SET-VALUED)
find x ∈C  (convex) : x ∈S(x), S :C⇒ C ⊂ n ,  osc (gph S  closed)
             K(x,v) = sup x − v, z − x z ∈S(x) ⊂ C{ }
K  a Ky Fan fcn, convex in v, usc in x (sup-projection) + K(x, x) ≥ 0

Approx. bifunctions:K ν (x,v) = sup x − v, z − x z ∈Sν (x) ⊂ Cν{ }
THM.  Cν → C , gph Sν →  gph S  (as sets),  C  compact. Then,

∀εν  0, x ∈  cluster points xν ∈εν -maxinf K ν{ }  is a maxinf point of K ,
 i.e., a fixed point of S.        (lop-convergence is tight)

an Application (J.S. Pang) - Cognitive radio multi-user game 
 f :C→ C ⊂ n continuous, C  compact, convex, x  fixed point
Pertubation (ε-enlargement): S(i;ε) :C C,  osc ,  S(i;0) = f
For ε  near 0: existence?  ∃ xε ∈S(xε ,ε) = Sε (x), xε → x ?
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LOP- & EPI/HYPO-CONVERGENCE

1.  Lν →
lop
L /⇒ Lν →

e /h
L

2. Lν →
e /h
L   & convex-concave ⇒  Lν →

lop
L  

3. epi/hypo- = hypo/epi-convergence
4. Lν →

e /h
L⇒  convergence of saddle points

               ⇒  convergence of approximate sadde points
                      (without ancillary tightness)
5. Existence requires tightness-conditions  (~coercivity, e.g.)
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UNIQUENESS OF
LOP- & EPI/HYPO LIMITS
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Lagrangians:   

Lopsided convergence (maxmin-framework) - sufficient 
conditions

    

  

  

lop-limit L is unique  

Lν (x, y) = f0
ν (x) + yi

i=1

m

∑ f νi (x) on Xν × s × 
m−s( )

f0
ν , f1

ν ,…, fm
ν  hypo-converge to f0 , f1,…, fm   on  Xν → X

fi
ν ,ν ∈{ }  is equi-usc, i = 0,…,m

Constraint Qualification: Sν = x fi
ν ≥ 0,i = 1,…,m{ }→ S

 CONVINCING EXAMPLES (?)

concave-convex case (epi/hypo): int S ≠ ∅
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 VARIATIONAL INEQUALITIES

Cν → C, Gν: Cν → n  continuous,  Cν  convex
     −Gν (x) ∈N

Cν , ν ∈

THM:  Cν → C⇒ C  compact ν ≥ ν , Gν  continuous
   Gν →cont G : Gν (xν ) → G(x), ∀xν ∈Cν → x

   K ν (u,v) = Gν (u),v − u  on dom K ν = Cν × Cν

lop-converge ancillary tightly to K⇒ sol'ns converge 

lop-limit:  −G(x) ∈NC (x) uniquely determined
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  MPEC  (GENERALIZED?)

maxg(x) such that x ∈S(x), g continuous, S :C⇒ C convex
   bifunction: K(x,v) = g(x)+ supz x − v, z − x z ∈S(x){ }
      V.I.-constraint: S(x) = NC (x)+G(x) +Ix  on  C
      LCP:  S(x) = Mx + q,v − x +Ix  on   +

n

x  ∈argmax-infK ⇒ x  solves MPEC.

approximating bifunctions:  Sν :Cν ⇒  C

K ν (x,v) = gν (x)+ supz x − v, z − x z ∈Sν (x){ }
Cν → C,   gph Sν →  gph S,  gν  hypo-converges to g
   then K ν →

lop
K & K  unique
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 K ν (x, y) ≡ yx Uniqueness fails!

Epi/hypo-limits
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 Walrasian:                                   Ky Fan fcn

 

 conditions:  

 Convergence: 

   
∀a ∈A:  da ( p) ∈argmax ua (xa ) p,xa ≤ p,ea{ }

  
s( p) = (ea − daa∑ ( p)) excess supply

  find p ∈Δ (unit simplex) so that s( p) ≥ 0

  
W ( p,q) = q, s( p)

p ∈maxinfW ,W ( p, i ) ≥ 0⇔ s( p) ≥ 0

ua
ν →hypo ua , ea

ν → ea ∈  int dom ua ⇒

  W
ν  lop-converges ancillary-tight to W

WALRAS EQUILIBRIUM
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experiments: 10 agents, 150 goods (easy!)

minimizing a linear form on a ball 

reduces to finding the largest element of s(pk)

W (p,q) = q, s(p)  on Δ × Δ

Wr (p,q) = supz W (p, z) z − q o ≤ r{ }** lop-converges

qk+1 = argmax
q∈Δ

maxz z, s(p
k ) z − q o ≤ rk⎡

⎣
⎤
⎦

pk+1 = argmin
p∈Δ

maxz z, s(p) z − qk+1 o
≤ rk+1

⎡
⎣⎢

⎤
⎦⎥

as rk ∞, pk → p   (local quad. approx. Nocedal, Powell)

AUGMENTED WALRASIAN 
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III. RANDOM SETS
AND MAPPINGS
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RANDOM CLOSED SETS

 

(Ξ,A,µ), Ξ ⊂ N          :  set-valued mapping,
C :Ξ     d , C(ξ) ⊂ d  closed set for all ξ ∈Ξ

& C−1(O) = ξ C(ξ)∩O ≠ ∅{ }∈A, ∀O ⊂ n ,open (measurability)

⇒  dom C = C−1(d ) ∈A
===============================================

c :Ξ→  sets(d ), c(ξ) ~ C(ξ),  FO = F  ⊂ d closed F∩O ≠ ∅{ }
sets(n ),E( ), E Effros field = σ − FO ∈  sets(n ),O open{ },            

       C  measurable ⇔ c measurable [c−1(FO ) ∈A]
       E = B Borel field (d  separable metric space)

!!
!!
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SET- & SINGLE-VALUED

C
C(ξ)

c(ξ)

ξ

(sets(Rn),E,P)

(Rn,B,P)

(Ξ,A,μ)
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CASTAING REPRESENTATION 
& GRAPH-MEASURABILITY

a random closed set C always admits a measurable selection!

(with dom C measurable) C is a random closed set   ⇔           
it admits a Castaing representation: ∃ a countable family

xν :  dom C→ m , meas.-selections{ }
cl xν

ν∈ = C(ξ),∀ξ ∈  dom C ⊂ Ξ

Ξ,A( )  µ-complete for some µ,
C  random set ⇔  gph C  A⊗Bn -measurable
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MEASURABLE SELECTION

s

S

c

C
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SET-CONVERGENCE TOPOLOGY

F =  cl-sets(Rd ),  all closed subsets of d

F D =  subsets Rd  that miss D = F∩ D =∅{ }
FD =  subsets Rd  that hit D = F∩ D ≠ ∅{ }

Hit-and-miss topology (= τ f Fell topology)

     subbase: F K K  compact{ }  & FO O open{ }
B(x,ρ) closed ball, center x radius ρ,    Bo(x,ρ) open

    ~subbase F B(x,ρ ),FBo (x,ρ )   x ∈Qd ,ρ ∈Q++{ }
countable base: F B(x1 ,ρ1 )∪…∪B(xr ,ρr ) FBo (x1 ,ρ1 )∪…∪Bo (xs ,ρs ){ }
(F = cl-sets(Rd ),τ f )  compact, metrizable space

Tuesday, January 22, 13



A.S.-CONVERGENCE

Cν :Ξ    d ,ν ∈{ }  random closed sets

a.s. convergence:  Liν (Cν )  &  Lsν (Cν ) random closed sets
      Cν → C  a.s.  ⇒ C  random closed set on Ξ0 ,µ(Ξ0 ) = 1

Cν → C  µ-a.s. and dom Cν =  dom C. Then,
∃ Castaing representations of Cν →  a Castaing representation of C
If x :Ξ→ d  is a measurable selection of C,  then
∃xν :Ξ→ d  selections of Cν  converging µ-a.s. to x

'Egorov's Theorem': Cν → C µ-a.s. ⇔ Cν → C almost uniformly

✻

✻

✻

✻

!!
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CONVERGENCE IN PROBABILITY

Let ε oC = x ∈m d(x,C) < { }, Cν ,C random sets

Δε ,ν = Cν \ oC( )∪ C \ oCν( )
µ-a.s. convergence: µ ξ Cν (ξ)→ C(ξ){ } = 1

in probability: µ Δε ,ν
−1 (K )⎡⎣ ⎤⎦→ 0,∀ > 0,K ∈K

Cν converges toC  in probability 
⇔ dl(Cν ,C)→ 0 in probability
⇔ every subsequence of {Cν}ν∈  

    contains a sub-subsequence converging µ-a.s to C

 i.e., in probability ⇒  in distribution h(ξ)∫ dl(Cν (ξ),C(ξ))µ(dξ)→ 0⎡
⎣

⎤
⎦
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DISTRIBUTION OF A RANDOM SET

Borel σ -field: B = σ - F K K  compact{ }  or σ - FO O open{ }…
Distribution P,B( )  regular,      K compact subsets Rd

    determined by values on F K K ∈K{ } or FK K ∈K{ }
Distribution function (Choquet capacity): 

T :K → [0,1], T (∅) = 0 and  ∀ K ν ,ν ∈{0}∪{ }⊂K :

a) T (K ν ) T (K ) when K ν  K       (~ usc on R)
 b) Dν :K → [0,1]{ }ν∈  where  D0 (K 0 ) = 1− T (K 0 )

D1(K
0;K1) = D0 (K 0 ) − D0 (K 0 ∪ K1)  and for ν = 2,…

Dν (K 0;K1,…,K ν ) = Dν −1(K
0;K1,…,K ν −1) − Dν −1(K

0 ∪ K ν ;K1,…,K ν −1)
(~ monotonicity on R)
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EXISTENCE-UNIQUENESS T

P on B determines a unique distribution function T  on K 
T (K ) = P(FK )

Dν (K 0;K1,…,K ν ) = P(F K 0
∩F

K1 ∩∩F
Kν )

T  on K  determines a unique probability measure P.

Proof. via Choquet Capacity Theorem (Matheron)
           probabilistic arguments (Salinetti-Wets)

C :Ξ⇒ d  a random closed set
(P,B) induced probability measure:

 P(FG ) = µ C−1(G)⎡⎣ ⎤⎦ ∀G ∈B, T (K ) = µ C−1(K )⎡⎣ ⎤⎦ ∀K ∈K
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CONVERGENCE IN DISTRIBUTION

random sets Cν  converge in distribution to C  when 
induced Pν  narrow-converge to P :Pν →n P
⇔ T ν → p T  on K T -cont  (convergence of distribution functions)

what is K T -cont ?
a)∀Cν ,ν ∈N ,∃ converging subsequence  (pre-compact)
b) K ν  K =  cl K ν  

ν regularly if int K ⊂ K ν  
ν

c) distribution (fcn) continuity: limν T (K ν ) = T (cl K ν ) 
ν

d) convergence T ν → p T  on CT  continuity set ⇒ Pν →n P

e) Pν →n P⇔ T ν → p T  on CT
ub =CT ∩K ub

K ub =  finite union of rational ball, positive radius
f) ε  T (K + εB) :  countable number of distontinuities
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A DETOUR ABOUT RATES

T ν → p T  on CT ⇔ Pν →n P (Polish space (E,d))

Pν ,P defined on B
 probability sc-measures on cl-sets(E): λ
   (i) λ ≥ 0, (ii) λ λ(C1) ≤ λ(C 2 ) if C1 ⊂ C 2

   (iii) λ  is τ f -usc on cl-sets(E),  (iv) λ(∅) = 0,λ(E) = 1

   (iv) λ  modular: λ(C1) + λ(C 2 ) = λ(C1 ∪C 2 ) + λ(C1 ∩C 2 )
P and λ = Pcl-sets   define each other uniquely (E  complete ⇒  tight)

Pν ,ν ∈{ }  tight: Pν →n P⇔ λν →h λ  (~ − λν →e −λ) on cl-sets(E)

tightness ~ equi-usc of {λν}ν∈ at ∅
rates: dl(λν ,λ)→ 0 (for -valued r.v., related to Skorohod distance)
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RANDOM SET:  EXPECTATION

EC = E C(ξ){ } = x(ξ)µ(dξ) x(i) µ-summable selection
Ξ
∫

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

   ..not necessarily closed even when C  is closed-valued

Convexity.
C  µ-atom convex ⇒ EC  is convex
(certainly when P is atomless).
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EXPECTATION: BOUNDED RANDOM SETS
-4

.8 -4

-3
.2

-2
.4

-1
.6

-0
.8 0

0.
8

1.
6

2.
4

3.
2 4

4.
8

-2.4

-1.6

-0.8

0

0.8

1.6

2.4

c=(1,1), r=1

c=(3,-2), r=1

c=(-1,0), r=0.5

c=(-1,3) r=0.5

c=(0,.8) r=.25

EC

Random Sets
equal prob. 0.2

EC: c(.41,.21), r=.502
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EXPECTATION:  UNBOUNDED RANDOM SETS

EC

ray C(�1) 

ray C(�2)
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STRONG LAW OF LARGE NUMBERS
ARTSTEIN & HART

C :Ξ     m  measurable, ξν ,ν ∈{ }  iid Ξ-valued random variables

C(ξν ) iid random sets (i.e. induced Pν  independent and identical)

EC = E C(i){ } = x(ξ)µ(dξ) x µ-summable C(ξ)-selection
Ξ∫{ }

independence ⇒  all (measurable) selections are independent

C(ξν ) :Ξ     m ν ∈{ }  iid with EC ≠ ∅. Then, with 

Cν (ξ∞ ) = ν−1 C
k=1

ν

∑ (ξ k )⎛
⎝⎜

⎞
⎠⎟
→  C = cl con EC µ∞ -a.s.

LsνC
ν (ξ∞ ) ⊂  C  ⇔ limsupν σCν ≤ σC  support functions

LiνC
ν (ξ∞ ) ⊃ C  relies on LLN for (vector-valued) selections

!!

!!
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RESOURCES ALLOCATIONS
AVERAGE OF EPI-SUMS

q ∈ ++
n , q central resources allocated to ν  firms

Optimal allocation: pi  production functions
suppose k  large, pi = pi (ξ, x) with ξ ∈Ξ,

∀ξ : zν (ξ,q) = max ν−1 pi
i=1

ν

∑ (ξ, xi )  s.t.  ν−1 xi
i=1

k

∑ ≤ q

(Ξ,A,µ), pi :  usc in x, jointly measurable A⊗B
"Limit" Problem:

z(q) = max p(ξ, x(ξ))dµ   s.t.  x(ξ)dµ ≤ q∫∫
Suppose pi (ξ,·) ∈lsc-fcns(n ){ }  are iid ⇔ epi pi  iid
Then, zν (ξ,q)→ z(q) µ-a.s. where p = p1  if µ  nonatomic
or − p =  con − p1  (must not depend on ξ)

Argument: set-LLN on hypographs (~ epi − pi )
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stochastic variational problem: S (x) = E S(ξ, x){ } 0
S :Ξ × n      m  random set-valued mapping
ξ  random vector with values ξ ∈Ξ ⊂ N

solution (a 'stationary point')    x ∈S −1(0)


sample ξ
→ν

= (ξ1,…,ξν ) of ξ
1
ν

S
k=1

ν∑ (ξ k , x)( ) = Sν ( ξ
→ν

, x) 0,  approximating system?

i.e., Sν( )−1
(0)→

?
S −1(0) a.s.

SAMPLE AVERAGE APPROXIMATION

!!
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min Ef (x) = E f (ξ, x){ }   --stationary point--  ∂Ef (x) 0
assuming  E ∂f (ξ, x){ } = ∂Ef (x) (not generally correct)
     could  ∂Ef (x) 0  get replaced (?) by

               ν−1 ∂f (ξ k , x)
k=1

ν∑( ) 0 from sample ξ
→ν

dom Ef ≈ dom f (ξ,·)
ξ∈Ξ ,

unless ξ  dom f (ξ,·) constant, 
interchanging E & ∂ is only exceptionally valid

STOCHASTIC OPTIMIZATION
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STOCHASTIC V.I. 
(VARIATIONAL INEQUALITY)

ξ = (ξ1,ξ 2 ,…), Gν (·, x) σ -(ξ1,…ξν ) measurable
−Gν (ξ, x) ∈NC (x), C  compact, convex

Gν (ξ, ·)→? G(ξ, ·)

xν (ξ) solution of −Gν (ξ, x) ∈NC (x) for sample ξ ≈ ξ
→ν

does xν (ξ) →  a solution of −G(ξ, x) ∈NC (x)?  a.s.

what if C  depends on ν,ξ : sequence of random sets Cν (ξ)

C

NC (x)
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S :Ξ × E      m , E ⊂ n

A⊗Bn -jointly measurable: S−1(O) ∈A⊗Bn , O open
⇒∀ x :ξ S(ξ, x) a random set
             random closed set when S  is closed-valued
ES :E       m  with ES(x) = E S(ξ, x){ }  expected mapping
ES  convex-valued when ξ S(ξ, · ) µ-atom convex
Law of Large Numbers for random sets applies

RANDOM MAPPINGS

!!

!!
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SAMPLE AVERAGE APPROXIMATIONS

ξ = (ξ1,ξ 2 ,…)   iid,     sample ξ
→ν

= (ξ1,…,ξν )

SAA-mapping: given S :Ξ × E      m  random mapping
                         Sν :Ξ∞ × E⇒ m  with

   ∀ξ ∈Ξ∞ , x ∈E :Sν (ξ, x) = 1
ν

S
k=1

ν

∑ (ξ k , x) = Sν ( ξ
→ν

, x)

Sν  depends only on ξ
→ν

SAA-mappings Sν  are random mappings 
    not necessarily closed-valued 
    (the sum of closed sets is not necessarily closed)

!!
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POINTWISE LIMITS: SAA-MAPPINGS

ES(x) = E S(ξ, x){ } ≠ ∅,  then
∀x ∈X : Sν (ξ, x)→ cl con ES(x) =:S (x) µ∞ -a.s.

If S( ·, x) is P-atom convex, Sν (ξ, · )→ cl ES(x) =:S (x) µ∞ -a.s.

Proof: LLN for random sets. 
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CONSISTENT APPROXIMATIONS?

Sν (ξ, · )→
point

S µ∞ -a.s.⇒ ? Sν (ξ, · )−1(0)    aS
−1(0)

   sometimes!
graphical rather than pointwise convergence is required
Sν (ξ, · )→

gph
S µ∞ -a.s. is needed

relationship between graphical and pointwise convergence?

!!

Tuesday, January 22, 13



GRAPHICAL & POINTWISE

D,Dν : X      m .  Then, Dν→
point

D and Dν→
gph
D (at x)

⇔ Dν ,ν ∈{ }  are equi-osc (asymptotically) (at x)
~ Arzela-Ascoli Theorem for set-valued mappings

S  random mapping, µ∞ -a.s., Sν (ξ, · )→
point

clconES = S

then Sν→
gph
S ⇔ Sν ,ν ∈{ }  are equi-osc (asymptotically)

!!
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EQUI-OSC MAPPINGS

D : X     m ,X ⊂ n  is osc if gph S  is closed
osc at x  if D(x ) ⊃  Ls

xν →x
D(xν )

~  given any ρ > 0, ε > 0

∃V ∈N(x ) : eρ(D(x),D(x )) < ε, ∀ x ∈V

Dν : X      m{ }  are equi-osc at x
~  given any ρ > 0, ε > 0

∃V ∈N(x ) : eρ(Dν (x),Dν (x )) < ε, ∀ x ∈V
V = V (ρ, ε) doesn't depend on ν.

A

ρ

η

B

!!

!!
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GRAPHICAL CONVERGENCE
OF SAA-MAPPINGS

S  Ξ × X      m random mapping, Ξ,A,µ( )
µ∞ -a.s.: Sν (ξ, · )→

gph
S  at x ⇔ SAA-mappings Sν (ξ, · ){ }  equi-osc at x

⇒ sol'ns of Sν (ξ, · ) 0 vsol'ns of S ( · ) 0

Sufficient conditions: µ∞ -a.s.

S(ξ, · ) stably osc & steady under averaging ⇒  Sν (ξ, · ){ }  equi-osc

Law of large Numbers for Random Mappings
S  random osc mapping: Ξ × n      m

   stably osc & steady under averaging  
ξ1,ξ 2 ,…,  iid random variables (values in Ξ),  distribution µ

Then, ν−1 S(ξ k , · )→gph S = clconE S(ξ 0 , · ){ }k=1

ν∑ µ∞ -a.s.

!!

!!

!!
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STABLY OSC

0

D(.) @
 0

not stably osc

0

D(.) @
 0

stably osc

S  stably osc near x  if µ-a.s., 
∀ρ > 0,ε > 0, ∃W ∈N(x ) & ηB (η > 0) :

eρ(S(ξ, ′x ),S(ξ, x)) < ε,∀ ′x ∈x +ηB, x ∈W

x
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STEADY UNDER AVERAGING

S(ξ¹, ⋄)

S(ξ2, ⋄)

S(ξν, ⋄)

u ∈Sν ( ξ
→ν

, x)∩ ρB⇒∃ ρ̂ ≥ ρ, uk ∈S(ξ k , x)∩ ρ̂B such that 

u = ν−1(u1 ++ uν ); Sν ( ξ
→ν

, x)∩ ρB⊂ 1
ν

S(ξ k , x)∩ ρ̂B
k=1

ν

∑⎡
⎣⎢

⎤
⎦⎥
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STEADY UNDER AVERAGING
& STABLY OSC

rge S  ⊂ B bounded ⇒  steady under averaging
S  cone-valued and rge S ⊂  pointed cone K . Then,
S = ES  and ⇒ steady under averaging.

S,R steady under averaging ⇒  so is S + R
R(ξ, x) = R(x) ⇒ R steady under averaging
rge S bounded + R constant ⇒  steady under averaging
G(ξ, x)+ NC (x) ⇒  steady under averaging (V.I.)

        G :Ξ × X→ n  is bounded

S,R stably osc ⇒ S + R stably osc
although D1,D2 osc /⇒ D1 + D2osc
B closed, convex    x NB(x) osc
    but not stably osc (xν ∈  int B → x ∈  bdry B)
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IMPLEMENTING SAA ** LOCALLY

EG(x) = E G(ξ, x){ }∈S(x)   
(V.I.: S = NC , applied to option pricing, ...)

Gν ( ξ
→ν

, · ) = ν−1 G(ξ k , x).
k=1

ν∑    Assume Gν ( ξ
→ν

, · ), EG ∈C1(n;n ),

x  strongly regular solution [Robinson] of EG(x) ∈S(x),
∃V ∈N(x ), ρ > 0 such that ∀z ∈ρB :

z + EG(x ) +∇EG(x ) x − x( )∈S(x)
has a unique solution x (z) ∈V ,  Lipschitz continuous on ρB, and

Gν ( ξ
→ν

, · ) − EG → 0 µ-a.s.  Then, for ν  sufficiently large

on a neighborhood of x , Gν ( ξ
→ν

, · ) ∈S(x) has a unique solution

x ( ξ
→ν

)→ x µ-a.s.
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IMPLEMENTING SAA ** EXAMPLE

stochastic program with recourse (simple): ξ  uniform on [1,2]

minx,yξ
E −x x + yξ ≤ ξ, x ∈ 0,2[ ], yξ ≥ 0{ } = min Ef (x) = E f (ξ, x){ }( )

f (ξ, x) = −x + ι[0,2] + ι(−∞,ξ ] = −x + ι[0,ξ ]

to solve 0 ∈∂Ef (x) gets replaced by 0 ∈ν−1 S(ξ k , x)
k=1

ν∑ = Sν ( ξ
→ν

, x)

S(ξ, x) = ∂f (ξ, x) = −1+N[0,ξ ](x),      dom S(ξ, · ) = [0,ξ]

              =
(−∞,−1]  when x = 0,
−1            for x ∈(0,ξ),
[1,∞)        when x = ξ

⎧

⎨
⎪

⎩⎪

Solution of  0 ∈Sν ( ξ
→ν

, x) :  xν = min ξ1,…,ξν{ }→a.s. x = 1 (opt. sol'n)

but xν  is never a feasible solution, 
/∃yξ ≥ 0 such that xν + yξ ≤ ξ  when ξ ∈[1, xν )

Problem: ∂Ef (x) ≠ E ∂f (ξ, x){ }  *** interchange is not valid.

-1

ξ
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IV. RANDOM 
LSC FUNCTIONS
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STOCHASTIC PROGRAM WITH RECOURSE 

f (ξ, x) = f10 (x)+ infy∈Y f20 ξ; x, y( ) f2i (ξ; x, y)≤ 0, i = 1,.,m2{ }  
                      when  f1i (x)≤ 0, i = 1,…,m1,
           = ∞ otherwise
2-stage stochastic program with recourse: minx∈nE f (ξ, x){ }

f ξ, x(i)( ) = f0 ξ, x(i)( )  if x(ξ) ∈C(ξ, x(ξ)) a.s
∞ otherwise

⎧
⎨
⎩

.

   with ξ x(ξ) & ξ C(ξ, x(ξ)) ∈N ∞  (non-anticipative)
(dynamic) stochastic programs with recourse
                                 min

x∈N a E f (ξ, x(ξ)){ }
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SOLVING VIA APPROXIMATION

Pν →n P     usually a discretization (Pν )
   say, generated via taking conditional expectation, …

min
x∈n

 Eν f = Eν f (ξ, x){ } = f (ξ, x)Pν (dξ)
Ξ∫

approximates min
x∈n

 E f = f (ξ, x)P(dξ)
Ξ∫  ?

If Ef ν →e Ef  then "arg minEf ν → argminEf "
& "ε-argminEf ν → ε-arg minEf " (confidence intervals)

holds if Pν ,ν ∈{ }  is f -tight: for all x ∈  dom Ef ,

∀ε > 0,∃ compact Kε  such that f (ξ, x)
Ξ \Kε
∫ Pν (dξ) < ε

certainly the case when supp Pν  is bounded
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SOLVING VIA SAMPLING

ξ1,ξ2 ,... iid samples of ξ  (or p.iid)

argminx∈X
1
ν

f (ξ k , x)
k=1

ν∑ ?⎯→⎯ arg minx∈X E f (ξ , x){ }

Set: Ef (x) = E f (ξ , x){ } = f (ξ, x)P(dξ)
Ξ
∫ ,   

(random) empirical measure Pν ,  prob ξ = ξ k⎡⎣ ⎤⎦ = ν−1

ξ∞ = (ξ1,ξ 2 ,…), "Eν f (ξ∞ , x)" = Eν f (x) = f (ξ, x)Pν∫ (dξ)

              Eν f
?

→ Ef µ∞ -a.s.  (arg minν     a argmin)!!
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STATISTICAL ESTIMATION
FUSION OF HARD & SOFT INFORMATION

Observation (hard data): 

Soft data (non-data knowledge):
Support: (un)bounded 
density or discrete distribution, 
bounds on expectation, moments,
heavy tails
shape: unimodal, decreasing, parametric class

Softer data (modeling assumptions): 
see above + …
level of smoothness,  `Bayesian’ neighborhood, ..

ξ1,ξ2 ,…,ξν
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POTENTIAL APPLICATIONS

•  Estimating (cum.) distribution functions 
•  Estimating coefficient of time series 
•  Estimating coefficients of stochastic differential 

equation (SDE) 
•  Estimating financial curves (zero-curves) 
•  Kalman filtering 
•  Dealing with lack of data: few observations 
•  Estimating density functions hest (non-parametric)  
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KERNEL ESTIMATES

“frequentist” viewpoint: observations
optimal bandwith: kernel support
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KERNEL ESTIMATES: LOW DATA 

ν=5 samples
exponential distribution
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... AS STOCHASTIC OPTIMIZATION

max Eν lnh(x){ } = 1
ν

lnh(xll=1

ν∑ )

such that h(x)dx∫ = 1,

            h(x) ≥ 0, ∀x ∈n

            h∈Aν ⊂ H

Eν lnh(x){ } ~ max  h(xll=1

ν∏ )  maximum likelihood

Aν   soft information (constraint set)
H:  density functions space, C 2 (n ),HRKS(supp h), H 1(supp h)
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NUMERICAL PROCEDURES

1. h  ukk=1

q∑ ϕk i( ) ϕk  basis-functions

         Fourier coefficients, wavelets, kernel-like functions

2.  h(x) = e−s(x ) , s epi-spline of order n (cubic, quadratic, ...)

s(x) = s0 + v0x + dr
0

x

∫ dt z(t)
0

r

∫ , z(t) ≡ zk  on xk ,xk+1( ⎤⎦

       = s0 + v0x + akjj=1

k∑ zk  when x ∈ xk ,xk+1( ⎤⎦
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ESTIMATION PROBLEM X = R

max Eν lnh(x){ }  min
1
ν

s(xl
l=1

ν

∑ )

such that  e−s(x )

"supp" h∫ dx ≤ 1, (h ≥ 0)

              zk ∈ −κ l ,κ u⎡⎣ ⎤⎦  'constrained'-spline

             unimodal: κ l = 0

s(x) = s0 + v0x + akjj=1

k∑ zk  when x ∈ xk ,xk+1( ⎤⎦
constraints on zk :   on curvature of s
                  on "supp h" :   bounds on support of h
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NORMAL DISTRIBUTION
KERNEL & EPI-SPLINE ESTIMATES
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NORMAL DISTRIBUTION
KERNEL & EPI-SPLINE ESTIMATES
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KERNEL & EPI-SPLINE ESTIMATED
SAMPLES FROM EXPONENTIAL DISTRIBUTION
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FUNCTIONAL LLN

Kolmogorov, Mourier ('53)[ ] X  separable Banach space

f ν :Ξ × X→ ,ν ∈{ },   iid and E f (ξ, · ){ } < ∞. Then,

∀x ∈X, 1
ν

f k (ξ, x
k=1

ν∑ ) → Ef k (x) = E f k (ξ, x){ } µ-a.s.

For our purposes:

   a) E f (ξ, · ){ } < ∞ but f  is -valued!
   b) convergence is pointwise /⇒ argmin  convergence
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LLN FOR RANDOM LSC FUNCTIONS

ξ1,ξ2 ,... iid samples of ξ  (or p.iid)

(random) empirical measure Pν ,  prob ξ = ξ k⎡⎣ ⎤⎦ = ν−1

ξ∞ = (ξ1,ξ 2 ,…), "Eν { f (ξ∞ , x)}" = Eν f (x)

                         = f (ξ, x)Pν∫ (dξ) =
1
ν

f (ξ k , x)
k=1

ν∑
LLN (# 1): Eν f→

epi
Ef   µ∞ -a.s.

         "argminx∈X E
ν f → argminx∈X Ef " µ∞ -a.s.

f  random lsc convex function, f (ξ, · ) convex
⇒∂Eν f→

gph
∂Ef µ∞ -a.s.  (Attouch's Theorem)

solutions of ∂Eν f  0    a solutions of ∂E f  0 µ∞ -a.s.
∂Eν f = Eν∂f ?  sometimes but not always

ξ infx∈X f (ξ, x)  summable

!!
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LLN (#2) RANDOM LSC FUNCTIONS

(X,d) Polish (also, a linear space, for convenience)
∀λ > 0,ρ ≥ 0 : dλ ,ρ ( f ,g) = supx∈ρB eλ f (x) − eλg(x) , f ,g proper lsc-fcns(X)

metric: mλ ( f ,g) = e−ρ
0

∞

∫ dλ ,ρ ( f ,g)dρ,   topologically ≡ dl, τ aw  topology

                   λ > 0 sufficiently small,  mλd( f ν , f )→ 0 ⇔ f ν→
epi
f

ξ 0 ,ξ1,…( )  iid values in Ξ ⊂ N ,  support of µ

f :Ξ × X→  random lsc function such that

S = f (ξ, · ) ξ ∈Ξ{ }  separable subspace of (proper lsc-fcns(X),τ aw )

    dλ ,ρ Eν f ,eηE
ν f( ) 0 µ∞ -a.s. as η 0,   ∀ samples ξ

→ν

    dλ ,ρ E f ,eηE f( ) 0 µ∞ -a.s. as η 0.

Then, Eν f →
aw-epi

E f µ∞ -a.s

f  random lsc convex function
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AUTO-REGRESSIVE TIME SERIES

Yt = a0 + a1Yt−1 ++ apYt− p+ ζ t , t =…,0,1,…
data: η1− p ,…,ην ,    non-data info: a1 ≥ a2 ≥ ≥ ap ,

f (ξ t ,a) = ηt − a0 −ηt−1a1 −−ηt− pap
2

 if a1 ≥ ≥ ap ,

∞ otherwise

⎧
⎨
⎪

⎩⎪

f :Ξ ×  p+1 →,    ξ t{ }  stationary

a0
ν ,a1

ν ,…,ap
ν( )∈argmin 1

ν
f

t=1

p∑ (ξ t ,a)

→
?
a0 ,a1,…,ap( )∈argmin E f (ξ,a) I{ } (invariant field)

Ergodic Theorem: f :Ξ × X→  random lsc fcn,
ϑ:Ξ→ Ξ ergodic measure preserving transformation
1
ν

f (ϑ k
k=1

ν∑ (ξ),i) epi⎯ →⎯ Ef a.s., infX f (i, x) summable
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HOMOGENIZATION

conductor: Ω⊂ 3,  composite ≥ 2 materials, 
≠  conductivity spatial location: a(ξ, x) dependend
0 ≤ a(ξ, x) ≤κ bdd ,  stationary process w.r.t. location
heat u :  with rapidly varying stochastic coefficients
∇i a(ξ, x)∇u(ξ, x( ) = h(x), x ∈Ω

             u(ξ, x) = 0, x ∈  bdry Ω
homogenized equation with effective coefficient a
∇i a(x)∇u(x( ) = h(x), x ∈Ω

             u(ξ) = 0, x ∈  bdry Ω
such that u(x) = E u(ξ, x){ }.  a(x) ≠ E a(ξ, x){ }
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HOMOGENIZATION
A “NUMERICAL” METHODOLOGY

min
u∈H0

1 (Ω) g(ξ,u) = 1
2

a(ξ, x) ∇u
Ω∫

2
dx − h,u

g : L2 → (−∞],   to be minimized for all ξ
homogenization: find ghom  such that

E u(ξ, · ){ } = u ( · ) ∈argmin ghom (u) u ∈H0
1(Ω)⎡⎣ ⎤⎦

  conjugate duality

ghom (u) = epi- g(ξ, · )  P(dξ)
Ξ∫( )(u) on H0

1(Ω)

epi- g(ξ, · )  P(dξ)
Ξ∫( )(x) =                           epi-integral

infz(·) g(ξ, z(ξ))P(dξ) z(ξ)P(ξ) = x
Ξ∫Ξ∫{ }

approximation: θ  f ( · ) = θ f (θ−1 · )

u ν ∈argmin ν−1  g(ξ1, · )## g(ξν , · )( ) u ∈H0
1(Ω{ }

Ergodic
Theorem
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RANDOM LSC FUNCTIONS
[ROCKAFELLAR: NORMAL INTEGRANDS]

f :Ξ × X→  a random lsc function
   X,d( )  Polish space, Borel field B
   Ξ,A,P( )  probability space
(a) f (ξ,i )   lsc ∀ξ ∈Ξ

(b) (ξ, x) f (ξ, x)   A ×Bn -measurable (jointly)

(a & b) imply ξ epi f (ξ,i ) = epi f (ξ) is a closed random set
epi f :Ξ    X ×  (⇒  all properties can be trasferred)
epi f (ξ) ⊂  X ×  closed epigraph for all ξ ∈Ξ

& (epi f )−1(O) = ξ epi f (ξ) ∈O{ }∈A, ∀O ⊂ X × , open 

⇒  dom epi f = (epi f )−1(X × ) ∈A (measurable set)

!!
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EXAMPLES: RANDOM LSC FCNS

f :Ξ × X→ ,  A-measurable in ξ,  continuous in x
f and − f  are random lsc functions
f  is a Carathéodory random lsc function

f (ξ, x) ≡ g(x), g lsc
Ξ Borel subset of d , f  lsc ⇒  random lsc function
f (ξ, x) = ιC (ξ ) (x) with C  random closed set
f (ξ, x) = f0 (ξ, x) + ιC (ξ ) (x) is a random lsc function

when f0  random lsc function, C  random closed set
Proof.    epi f (ξ) = epi f0 (ξ)∪ C(ξ) × [ ]
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RANDOM LSC FCNS: PROPERTIES

 f  random lsc function 
⇒  levα f (ξ,i ) random closet set
⇒ξ p(ξ) = infX f (ξ, i ) is A-measurable

p(ξ) = infν αν (ξ) with 
{(xν ,αν )}ν∈  Castaing representation of epi f

⇒ξ argmin f (ξ,i) = x f (ξ, x) ≤ p(ξ){ }is A-measurable 
⇒∃ A-measurable selections: f (ξ, x (ξ)) = minX f (ξ,i)

Moreau envelopes: eλ (ξ ) f (ξ, · ) are random lsc functions
λ(ξ) > 0 sufficiently small 

            eλ (ξ ) f   Carathéodory random lsc function

t
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RANDOM CONSTRAINT SYSTEMS

C :Ξ    n  random closed set
fi :Ξ × n →  random lsc function,  i ∈I1

fi :Ξ × n →  Carathéodory random lsc fcn,  i ∈I2

α i :Ξ→  random variable i ∈I1 ∪ I2  (countable index)
Then, S :Ξ    n  is a random closed set where

S(ξ) = x ∈C(ξ)
fi (ξ, x) ≤ α i (ξ), i ∈I1

fi (ξ, x) = α i (ξ), i ∈I2

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

!!

!!
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EPI-TOPOLOGY: REVIEW

f ν :n → , ν ∈{ }
epi(e-liν f

ν ) =  Lsν epi f ν , epi(e-lsν f
ν ) =  Liν epi f ν

epi-limit: f ν →
e
f  when f =  e-liν f

ν =  e-lsν f
ν ,   f =  e-lmν f

ν

Hit-and-Miss topology translated to lsc-fcns(n ) : τ epi

subbase: hit open sets, miss compact sets

g ∈  lsc-fcns(n ) infO g <α{ } g ∈  lsc-fcns(n ) infK g >α{ }
(lsc-fcns(n ),τ epi ) compact, metrizable space -- dl  a metric

f ≥ e-lsν f
ν ⇔ limsupν (infO f

ν ) ≥ infO f , ∀O open  (inf
O
usc)

f ≤  e-liν f
ν ⇔ lim infν (infK f

ν ) ≤ infK f , ∀ K  compact (infK  lsc)
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SCALARIZATION 

Effrös field for lsc-fcns(n ) : E (=BX ,X  Polish)

generated by AD,α = f ∈ infD f ≤ α{ }, D closed or open

distribution of a random lsc function f :Ξ × n → 

Pf (A) = µ ξ ∈Ξ f (ξ, i ) ∈A{ }, A ∈E

πD (ξ) = infx∈D f (ξ, x) with f :Ξ→ lsc-fcns(X), X  Polish
then f  random lsc fcn ⇔ξ πD (ξ) measurable for all D ∈D
where D  is anyone of the following:
   a) all closed (or open) sets
   b) all open rational balls, centers at R dense subset of X
   c) if X  is σ -compact, all closed rational balls, …

π x,ρ , x ∈R,ρ ∈+{ }  countable collection -valued r.v.

inherit independence, identically distributed
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ERGODICITY

f ν :Ξ × X→ , ν ∈{ }  random lsc functions

π x,ρ
ν = infB(x,ρ ), x ∈R,ρ ∈+{ }  countable collection -valued r.v.

f ν  independent: ν1,ν2 ,…,νk{ }⊂ , α1,α2 ,…,α k ∈∪ {∞}

                           x1, x2 ,…, xk ∈R, ρ1,ρ2 ,…,ρk ∈++

P ξ ∈Ξ πB(xi ,ρi )
νi (ξ) <α i , i = 1→ k{ } = P ξ ∈Ξ πB(xi ,ρi )

νi (ξ) <α i{ }i=1

k∏
stationarity:  joint distributions of f ν1 ,…, f νk  invariant under shift
ϕ :Ξ→ Ξ meas. preserving transformation: P(ϕ−1(A)) = P(A),∀A ∈A

I  invararian σ -field: P(ϕ−1(A)A) = 0
ϕ  ergodic if I  is trivial P(A) ∈{0,1}∀A ∈I

f ν , ν ∈{ }  ergodic ⇔ f ϕν ,ν ∈{ }  for ϕ  associated meas. p. transform.

⇒∀O open πO ϕ
ν ,ν ∈{ }  ergodic sequence of -valued r.v.

Tuesday, January 22, 13



ERGODIC THEOREM

(X,d) Polish, (Ξ,A,µ) probability space
ϕ:Ξ→ Ξ a measure preserving transformation

I  its invariant σ -field
f :ξ × X→  random lsc function,  inf-locally summable: 

∀x ∈X,∃V ∈Nclosed (x) :  E π X (ξ) = infV f (ξ, x){ } > −∞

⇒R ⊂ A, ∃ER f (ξ, · ) random lsc fcn
∃ countable dense subset of epi EI f (ξ, · ) µ-a.s.

epi f (ξ, · ) solid set, cl( int(epi g)) = epig (cont. on dom g)
Then,

1
ν

f (ϕν (ξ), · )
k=1

ν∑ →
epi
EI f (ξ, · ) µ-a.s.

                                 →
epi
Ef µ-a.s. when ϕ  is ergodic
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LSC STOCHASTIC PROCESSES

f ν :n → , ν ∈{ }  stochastic process with lsc-paths (n )

(lsc-fcns(n ),τ epi ) compact metrizable space -- dl  a metric

τ epi  can be generated by    x ∈Qn ,ρ ∈Q++ ,α ∈Q

g ∈  lsc-fcns(n ) infBo (x,ρ ) g <α{ } g ∈  lsc-fcns(n ) infB(x,ρ ) g >α{ }
 a.s.-, in probability, in distribution convergence ~ as for their epigraphs

process f ν :n → , ν ∈{ }  converges in distribution in 
'classical' sense (i.e., pointwise) ⇒ epi-converge in distribution
if the paths x f ν (ξ, x)  are equi-lsc µ-a.s.:

∀x, ε > 0, ∃V ∈N(x) : inf f ν (ξ, x) x ∈V{ } > min ε−1, inf f ν (ξ, · ) − ε⎡⎣ ⎤⎦

t
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DISTANCE & INDICATOR FUNCTIONS 

Cν :Ξ⇒ m ,ν ∈{ }  random closed sets
(set-)converge in distribution to C ⇔

processes d(Cν (x, · ),ν ∈{ }  convergerve 

      in distribution to d(C(x, · ) for all x ∈m

Cν (ξ) =  ray through (1, ν−1)
C(ξ) = {(0,0)}, C(ξ) = ray through (1,0)

Cν  converges in distribution to C  (clearly)
but ι

Cν  converges in distribution to ιC   (exercise)
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... IN DISTRIBUTION OF SELECTIONS

Cν :Ξ⇒ m ,ν ∈{ }  random closed sets
converge in distribution to C. Then, 

∃ measurable selections xν  of Cν

converging in distribution to a seclection of C.
(also holds for Castaing representations)

f ν :Ξ × X→ , ν ∈{ }  random lsc functions
    epi-converge in distribution to f   
ξ argmin f ν (ξ, · ) are random sets ⇒  

selections (minimizers) converge in distribution if 
    (argmin f ν ) converge in distribution
1. f ν → f + epi-tightness ⇒ inf f ν → inf f  in distribution
2. + under µ-a.s. convergence, argmin f ν (ξ, · )    v argmin f (ξ, · )!!
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V. EXPECTATION 
FUNCTIONALS ⚀⚀ CALCULUS
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EXPECTATION FUNCTIONALS

f :Ξ × X → , random lsc function, 
           X ⊂ M(Ξ,A;n ) : Lp(Ξ,A,µ;n ),…

           others: C (Ξ,τ );n( ),Orlicz, Sobolev, lsc-fcns(n )

Ef (x) = f (ξ, x(ξ))µ(dξ) = E f (ξ, x(ξ)){ }
Ξ∫

         = ∞ whenever f+ (ξ, x(ξ))µ(dξ) = ∞
Ξ∫

Ef :X →  always defined

Regression: (X  is not a linear space)

min φ(y − h(x))P(dx,dy) h ∈  lsc-fcns()∩H
x∈[0,1]n∫y∈∫{ }

           H   shape restrictions (convex, unimodal, ...)

Tuesday, January 22, 13



DECOMPOSABILITY

X ⊂M  decomposable (w.r.t. µ) when
∀x0 ∈X, A ∈A and x1 :A→ n ∈M,  bounded

          x(ξ) =
x0 (ξ)   for ξ ∈Ξ \ A
x1(ξ)   for ξ ∈A

⎧
⎨
⎪

⎩⎪
⇒ X is a linear space (0 ∈X )
Lp (Ξ,A,µ;n ),   M   are decomposable
C (Ξ,A;n ),  constant-fcns(Ξ) not decomposable

f  random lsc function, Ef /≡ ∞ on X. Then,

inf
x∈X

f (ξ, x(ξ))µ(dξ) = inf
x∈n

f (ξ, x)⎡
⎣⎢

⎤
⎦⎥Ξ∫Ξ∫ µ(dξ)

x ∈arg minx∈X Ef (x) ⇔ x (ξ) ∈argmin
x∈Rn f (ξ, x) µ-a.s. (inf ES > −∞)
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INTERCHANGE OF
SUBDIFFERENTIATION AND INTEGRATION

f :Ξ × n → ∪ {∞},  random convex lsc function, 
Ef :X → ,     here X = L ∞(Ξ,A,µ;n )

G  subfield of A  (possibly the trivial field = ∅,Ξ{ })

    f G :Ξ × n →  with f G (ξ, x) = f (ζ , x)PG (dζ ξ)
Ξ∫

E f G : X → ,     here X = L∞ (Ξ,G,µ;n )
assume Ef  & Ef * finite for some G-measurable functions x(i)

∂*Ef ⊂ (L n
∞)* = L 1(Ξ,A,µ;n )⊕S(Ξ,A,µ;n )

∂*Ef (x) = ∂Ef (x) + Ndom Ef
S (x), ∂Ef (x) = v ∈L 1 v(ξ) ∈∂f (ξ, x(ξ)) µ-a.s.{ }

∂*Ef G (x) = ∂Ef G (x) + Ndom EfG
S (x), ∂Ef G (x) =… in L n

1(G)

                      x ∈L n
∞, ∂Ef G (x) = EG ∂f (ξ, x(ξ)){ } µ-a.s. ?
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VALIDATING THE INTERCHANGE

f :Ξ × n → ∪ {∞},  random convex lsc fcn, Ef :L n
∞→ ,     G  ⊂ A,

suppose ξ D(ξ)= cl dom f (ξ, · ) G-measurable 
             Ef (x) < ∞ :∀G-measurable selection of D (+ summ. condition)
Then, ∀x ∈L n

∞(G) : ∂Ef G (ξ, x(ξ)) = EG ∂f (ξ, x(ξ)){ } µ-a.s.
i.e., the closed-valued G-measurable mappings  ∂Ef G = EG∂f µ-a.s.

inf E f (ξ, x1(ξ), x2 (ξ)){ }, x1 ∈L n
∞(G), x2 ∈L n

∞(A )

∃ h ∈L 1(A ) such that (x1, x2 ) ∈  dom f (ξ, ·, · ) ⇒ f (ξ, x1, x2 ) < ∞

ξ D1(ξ) = cl x1 ∈n ∃x2 : f (ξ, x1, x2 ) < ∞{ } G-measurale

inf Eg(x1) on x1 ∈L n
∞(G) with g(ξ, x1) = EG inf

x2 ∈n
f ( ·, x1, x2 )⎡⎣ ⎤⎦(ξ)

     is "equivalent" to given problem.  [ Consider G = ∅,n{ } ]

minx,yξ
−x1 x1 + x2

ξ ≤ ξ, x1 ∈ 0,2[ ], x2
ξ ≥ 0{ } = min Ef (x) = E f (ξ, x){ }( )

f (ξ, x) = −x1 + ι[0,2] + ι(−∞,ξ ] = −x1 + ι[0,ξ ]

G = ∅,[1,2]{ }, D(ξ) =  [0,ξ] is not G-measurable!
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PRICING A CONTINGENT CLAIM

environment process: ξ t ∈d{ }t=0

T
history:ξ

→ t

, ξ = ξT

price process: St (ξ
→ t

) ∈n;  numéraire (risk-free): S1
t ≡ 1

contingent claims: Gt (ξ
→ t

){ }
t=1

T

; investment strategy:  Xt (ξ
→ t

){ }
t=0

T

portfolio value at t : 〈St (ξ
→ t

),Xt (ξ
→ t

)〉

PRICING: T-bonds, options, swaps, insurace contracts, mortgages, ...

maxE 〈ST ,XT 〉{ }  such that 〈St ,Xt 〉 ≤ Gt +  〈St ,Xt−1〉, t = 1→ T

(T+1)-stage linear stoch. opt.     〈S0 ,X 0 〉 ≤ G0 , 〈ST ,XT 〉 ≤ GT  a.s.

feasible if G0 ++GT ≥ 0 ∀ξ,   with arbitrage when unbounded
prob[ξ = ξ] = pξ  & finite support: max pξξ∈Ξ∑ 〈ST (ξ),XT (ξ)〉…
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RISK NEUTRAL PROBABILITIES:
DUALITY

pricing via risk-neutral probabilities  (obtained from dual variables)

f (ξ, x(ξ)) =
−〈ST (ξ),XT (ξ)〉   when x(ξ) ∈C(ξ)
∞                         otherwise

⎧
⎨
⎩

x(ξ) = X 0 (ξ0 ),…,XT ( ξ
→T

)⎛
⎝

⎞
⎠ , C(ξ) = x(ξ)  satisfies the constraints a.s.{ }

minx∈N ⊂M E f (ξ, x(ξ)){ }, f  random convex lsc function
L 1-"Perfect" duality: (1) C.Q. (M= L n

∞), (2) ξ C(ξ) nonanticipative

∀ t :E C(ξ) ξ
→ t⎧

⎨
⎩

⎫
⎬
⎭
ξ
→ t

-measurable (depend only on past history)

Pricing a contingent claim doesn't satisfy (2) ⇒  no "perfect" duality
Full duality requires: dual variables ∈L n

1⊕Sn ,  but ...
i.e.,the risk-neutral probabilities are in L n

1⊕Sn !
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SOLUTION PROCEDURES 
FOR STOCHASTIC

VARIATIONAL PROBLEMS
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INFORMATION-DECISION PROCESS

↝↝↝↝

More specifically,
(dynamic) Stochastic Programs with Recourse:
                     min

x∈N a E f (ξ, x(ξ)){ }
time scale: t = 0,1,2,…,T , x(ξ) = (x1(ξ),…, xT (ξ))

ξ = (ξ0 ,ξ1,…,ξT )
information (observation) available at time t: A t−1

filtration :A 0⊂A 1⊂⊂A T=A, A 0 trivial

x ∈N a if xt A t−1-measurable ≈ σ -field( ξ
→ν−1

)  
    here ξ 0  deterministic, x1(ξ) ≡ x1

ξ0 x1(ξ0 ) = x1 ξ1 x2 (ξ0 ,ξ1) ξ2
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DISCRETE SCENARIO TREE

ξ0

ξ1

ξ2

ξ3
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DETERMINISTIC EQUIVALENT

min
x∈N a E f (ξ, x(ξ)){ } = E E E f (ξ, x(ξ)) A TA 1 A 0{ }{ }{ }

"time-staged objective":

= f1(x
1) + E f2 (ξ; x1, x2 (ξ) +E f3(ξ; x1, x2 (ξ), x3(ξ) A2{ }A1{ } 

= f1(x
1) + E f2 (ξ; x1, x2 (ξ)) + EQ2 (ξ; x1, x2 (ξ)) A1{ }

             EQ2 (ξ; x1, x2 (ξ)) = E inf
x3 ∈n3 f3(ξ; x1, x2 (ξ), x3) A 2{ }

= f1(x
1) + E EQ1(ξ; x1, x) A1{ }

             EQ1(ξ; x1) = E inf
x2 ∈n2 f2 (ξ; x1, x2 ) + EQ2 (ξ; x1, x2 ) A1{ }

= f1(x
1) + EQ1(x

1)
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SOLUTION PROCEDURES 

min
x∈N a E f (ξ, x(ξ)){ } = min

x1∈n1
f1(x

1) + EQ1(x
1)

             EQ1(ξ; x1) = E inf
x2 ∈n2 f2 (ξ; x1, x2 ) + EQ2 (ξ; x1, x2 ) A1{ }

             EQ2 (ξ; x1, x2 (ξ)) = E inf
x3 ∈n3 f3(ξ; x1, x2 (ξ), x3) A 2{ }

deterministic optimization!  convex when f  random lsc convex function 
   in theory:   any algorithmic procedure!
hurdles: values, (sub)gradients, "Hessians" of f1(x

1) + EQ1(x
1)

             are either not acessible or at best, computationally EXPENSIVE
Approaches: µν ~ µ ⇒ approximating stochastic process ξt , t ≤ T{ }
       sampling:  a) same as approximation except µ s  random measure

                        b) SAA-strategy for ∂ E f (ξ, x(ξ)){ } + NN a (x(ξ))( )
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SEQUENTIAL L.P. STRATEGY

min f0 (x), x ∈X ∈n , f0  linear (not essential)
fi (x) ≤ 0, i = 1,…, s, fi (s) = 0, i = s +1,…,m  (affine)

in the s +1 first constraints: fi (x) = supt∈T fi,t (x), fi ≥ fi,t  affine

0. ν = 0,  pick polytope (box) K 0  xopt

1. xν ∈argmin f0  on K ν ,  set iν : fiν (xν ) = max1≤i≤s fi (x
ν )

    if fiν (xν ) ≤ 0, xν  optimal, otherwise go to 2.

2. return to 1. with K ν+1 = K ν ∩ ∇fiν (xν ), x − xν + fiν (xν ) ≤ 0{ }
when f0  is not linear (but convex): minθ  such that f0 (x) −θ ≤ 0
convergence: finite # of steps or iterates cluster to optimal sol'n
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SLP FOR STOCHASTIC PROGRAMS

min f1(x) + EQ1(x) s.t. Ax = b, x ≥ 0  (x = x1)

    EQ1(x) = plQ1(ξ
l , x)

l=1

L∑ L  large

Q1(ξ
l , x) = inf

x2 ∈X2
f2 (ξ l ; x, x2 ) + (EQ2 (){ }

dom EQ1 = dom
l=1

L  Q1(ξ
l ,⋅) = x ∃x2 ∈X2 , f2 (ξ l ; x, x2 ) < ∞{ }l=1

L

0.ν = r = s = 0
1.ν = ν +1,  solve:  min f1(x) +θ, Ax = b, x ≥ 0 such that
 (feasibility cuts)          Ek , x ≥ ek , k = 1→ r

 (optimality cuts)          Fk , x +θ ≥ fk , k = 1→ s
2. generate feasibility cuts: check if x ∈dom EQ1. 
     No: Ek  separates x from dom EQ1,  go to 1.  Yes, go to 3.
3. generate optimality cuts: Fk ∈∂EQ1(x

k ),  go to 1.
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GENERATING CUTTING HYPERPLANES

IR
dom EQ

IR

 < Ek,x > ≥ ek

dom EQ
IR

 < Ek,x > ≥ ek

dom EQ

< Fk,x > ≥ fk

xν
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STOCHASTIC QUASI-GRADIENTS
(~ SAA-APPROACH)

minEf (x) = E f (ξ, x){ }   on  X ⊂ n ,
    X  convex (compact), f  :Ξ × n → 
    f (ξ, · ) convex (gen. semi-smooth)

xν+1 =  prjX (xν − λνd
ν ),  descent direction,  step size

dν :  stochastic quasi-gradient

E dν x0 ,…, xν{ }∈∂Ef (xν ) +ην

for example: dν ∈∂f (ξν , xν ) sample ξν

              or   dν ∈∂ f (ξ l , xν )
l=1

L∑( )  sample ξ1,…,ξL

convergence: ρν ≥ 0, ρνν=0

∞∑ = ∞, ρν
2

ν=0

∞∑ < ∞
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HERE-&-NOW VS. WAIT-&-SEE

Basic Process: decision --> observation --> decision

Here-&-now problem!
    not all contingencies available at time 0
                    can’t depend on ξ!

Wait-&-see problem
    implicitly all contingencies available at time 0
    choose                after observing ξ

 incomplete information to anticipative information ?

x1 ξ xξ
2↝ ↝

x1

(xξ
1, xξ

2 )
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Fundamental Theorem
of Stochastic Optimization

A here-and-now problem can be “reduced” to a 
wait-and-see problem by introducing the

appropriate ‘information’ costs
(price of non-anticipativity)
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PRICE OF NON-ANTICIPATIVITY

    Here-&-now

min E f (ξ, x1, xξ
2 ){ }

       x1 ∈C1 ⊂ n ,
     xξ

2 ∈C 2 (ξ, x1), ∀ξ.

Explicit non-anticipativity
minE f (ξ, xξ

1, xξ
2 ){ }

       xξ
1 ∈C1 ⊂ n ,

     xξ
2 ∈C 2 (ξ, xξ

1 ), ∀ξ.

xξ
1 = E xξ

1{ } ∀ξ

wξ ⊥ cste  functions

⇒ E wξ{ } = 0
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ADJUSTED HERE-&-NOW

min E f (ξ, x1, xξ
2 ){ } such that x1 ∈C1 ⊂ n , xξ

2 ∈C 2 (ξ, x1), ∀ξ

x1  must be G-measurable, G = σ -{∅,Ξ}
x2  is A-measurable, A ⊃G, 

in general, interchange E & ∂ is not valid
required:∀ξ, x1 ∈C1, C 2 (ξ, x1) ≠ ∅  G-measurability of constraints

Now, suppose wξ are the (optimal) non-anticipativity multipliers (prices)

min E f (ξ, xξ
1, xξ

2 ) − 〈wξ , xξ
1 〉 + 〈wξ ,E{xξ

1}〉{ }
such that xξ

1 ∈C1 ⊂ n , xξ
2 ∈C 2 (ξ, xξ

1 ), ∀ξ

Interchange is now O.K. ,  E 〈wξ ,E{xξ
1}〉{ } = 〈E{wξ},E{xξ

1}〉 = 0,  yields

∀ξ,  solve: min f (ξ, x1, x2 ) − 〈wξ , x1〉 s.t.   x1 ∈C1, x2 ∈C 2 (ξ, x1)

a collection of deterministic optimization problems in n1 +n2
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FINDING wξ

Progressive Hedging Algorithm
0. w0 ( · ) such that E w0 (ξ){ } = 0, ν = 0.  Pick ρ > 0
1.  for all ξ :
              (xξ

1,ν , xξ
2,ν ) ∈argmin f (ξ; x1, x2 ) − 〈wξ

ν , x1〉

                    x1 ∈C1 ⊂ n1 , x2 ∈C 2 (ξ, x1) ⊂ n2

2. x1,ν = E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              othersie wξ
ν+1 = wξ

ν + ρ xξ
1,ν − x1,ν⎡⎣ ⎤⎦,  return to 1. with ν = ν +1

Convergence:  add a proximal term

    f (ξ; x1, x2 ) − 〈wξ
ν , x1〉 −

ρ
2
x1 − x1,ν 2

linear rate in (x1,ν ,wν ) ...  eminently parallelizable
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PH: IMPLEMENTATION

implementation: choice of ρ ... scenario (×), decision (+) dependent
(heuristic) extension to problems with integer variables
non-convexities:  e.g. ground-water remediation with non-linear PDE recourse

asynchronous

partitioning (= different information feeds)
minE f (ξ, x){ }   such that x ∈C = Cξ

ξ∈Ξ


S = Ξ1,Ξ2 ,…,ΞN{ }  a partitioning of Ξ, pn = µ(Ξn )

E f (ξ, x){ } = pnE f (ξ, x) Ξn{ }n∑    (Bayes)

defining g(n, x) = E f (ξ, x) Ξn{ } if x ∈Cn = Cξ
ξ∈Ξn


solve the problem as: min png(n, x)
n=1

N∑
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MULTISTAGE STOCHASTIC PROGRAMS

min
x∈N a E f (ξ, x(ξ)){ }, x(ξ) = (x1(ξ),…, xT (ξ))

filtration :A 0⊂A 1⊂⊂A T=A, A 0 trivial

x ∈N a if xt A t−1-measurable ≈ σ -field( ξ
→ν−1

)  
    (here ξ 0  deterministic, x1(ξ) ≡ x1)

under usual C.Q. (convex case): x ∈X  optimal if
∃ w ⊥ N a ,w ∈X *  such that x ∈argminx∈X Ef (x) − E 〈w, x〉{ }
w ⊥ N a ⇔ E w(ξ) A t−1{ } = 0, ∀t = 1,…,T

w non-anticipativity prices 
    at which to buy the right to adjust decision (after observation)
    can be viewed as insurance premiums, ....
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PROGRESSIVE HEDGING ALGO.

0. initialize: pick w0 (ξ) ∈(N a )⊥ , x̂0 ,ρ > 0, ν = 1
1.∀ξ ∈Ξ,  solve (approximately): min fν (ξ, x), x ∈  dom f(ξ, · )

f ν (x,ξ) = f (x,ξ) + 〈wν −1
t (ξ), xt 〉 +ρ

2
xt − x̂t ,ν −1 2⎡

⎣⎢
⎤
⎦⎥t=1

T∑
minimizer: xν (ξ) = xν

1 (ξ),…, xν
T (ξ)( ), ξ ∈Ξ

2.wν
t (ξ) = wν −1

t (ξ) + ρ xν
t (ξ) − x̂ν

t (ξ)( )  where x̂ν
t (ξ) = "averaged" solution

x̂ν
t (ξ) = E xν

t ( ·) A{ }(ξ) for each A ∈A t

    go to 1. with ν = ν +1

convergence: linear in (x,w)
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WALRAS EQUILIBRIUM

agent's problem: Agents:  a ∈ A,   |A| finite, possibly "large"

xa ∈argmax ua (xa ) so that p,xa ≤ p,ea , xa ∈Xa
ea: endowment of agent a, ea ∈  int Xa
ua: utility of agent a,  concave, usc

ua : Xa → , Xa ⊂ 
n  (survival set)  convex

market clearing: s( p) = (ea − xaa∈A∑ )  excess supply

equilibirum price:  p ∈Δ such that s( p) ≥ 0,     Δ  unit simplex
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VARIATIONAL INEQUALITY

ca = arg maxx ua (x) so that p, x ≤ p,e , x ∈Ca

(eaa∑ − ca ) = s(p) ≥ 0.

              ND (z ) = v v, z − z ≤ 0,∀z ∈D{ }
G(p,(xa ),(λa )) = (ea − xa ); λa p − ∇ua (xa )( ); p,ea − xaa∑⎡⎣ ⎤⎦
                        D = Δ × Caa∏( ) ×  +a∏( )
                       −G(p,(xa ),(λa )) ∈ND (p,(xa ),(λa ))

                        D unbounded → D̂ bounded

D

N
D (x)
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EQUILIBRIUM: STOCHASTIC ENVIRONMENT

(ca
1 , ya ,ca,ξ

2 )= argmax
x1 , y∈L ,xi

2∈M
ua

1 (x1)+Ea ua
2 (ξ,x2 (ξ)){ }

   such that  p1,xa
1 +Ta

1y ≤ p1,ea
1

                   pξ
2 ,xa,ξ

2 ≤ pξ
2 ,ea,ξ

2 +Ta,ξ
2 y , ∀ξ ∈Ξ

                          xa
1 ∈ Xa

1 , xa,ξ
2 ∈ Xa,ξ

2 , ∀ ξ ∈Ξ

Ea i{ }  rational expecttion with respect to a-beliefs, Ξ finite support

2-stage stochastic programs with recourse
solution procedures & approximation theory "well-estblished"
Ta

1,Ta,ξ
2 : input-output matrices (production, investments)

ea
1 ∈ int Xa

1 , ea,ξ
2 ∈ int Xa,ξ

2  for all ξ
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MARKET CLEARING

excess supply:

    agent-a:  ca1 , ya
1 , ca,ξ

2{ }ξ∈Ξ( )
ea

1 − (ca
1 + Ta

1ya )( )a∈A∑ = s1 p1,{pξ
2}ξ∈Ξ( ) ≥ 0

and for all ξ ∈Ξ :

(ea,ξ
2 + Ta,ξ

2 ) − ca,ξ
2( )a∈A∑ = sξ

2 p1,{pξ
2}ξ∈Ξ( ) ≥ 0

Walras' auctioneer:

max
p= p1 ,{ pξ

2 }ξ∈Ξ( ) inf
q= q1 ,{qξ

2 }ξ∈Ξ( )E q, s{ }, s = s1,{sξ
2}ξ∈Ξ( )
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AGENT’S PROBLEM: DISAGGREGATION

with  p = p0 , pξ
1{ }ξ∈Ξ( )

(ca,ξ
1 , ya ,ca,ξ

2 ) ∈

argmax
x1∈l ,y∈L ,x2 ∈L

ua
1 (x1) − wa,ξ ,(x1, y) + ua

2 (ξ, x2 ){ }
                      p1, x1 ≤ p1,ea

1 − Ta
1y

                      pξ
2 , x2 ≤ pξ

2 ,ea,ξ
2 + Ta,ξ

2 y ,

                             x1 ∈Xa
1, x2 ∈Xa,ξ

2 .
     
              solved for each ξ separately
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INDIVIDUALLY COMPLETED MARKET

∀ξ ∈Ξ (separately),
agent's problem (individually completed market):

ca
1 , ya ,ca,ξ

2( )∈argmax ua
wa ,ξ x1, y, x2( ) on 


Xa,ξ (p1, pξ

2 ){ }
          for {wa,ξ}ξ∈Ξ  associated with (p0 , pξ

1 )

clear market:
s1(p1, pξ

2 ) ≥  0, sξ
2 (p1, pξ

2 ) ≥  0

       Arrow-Debreu ‘un-stochastic’ equilibrium problem
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EXAMPLE USING PATH-SOLVER

 Economy: (5 goods)
 Skilled & unskilled workers
 Businesses: Basic goods & leisure
 Banker: bonds (riskless), 2 stocks

 2-stages,   280 scenarios, 2776 scenarios
 utilities: CES-functions (gen. Cobb-Douglas)
 Utility in stage 2 assigned to financial instruments
 only used for transfer in stage 1

 on laptop: ~4 min, ~14 min, but 
         extremely parallelizable algorithm
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PATH-SOLVER: CONVERGENCE

objective:           ua
1 (x1) +  ua

2 (x2 ) ⇒

ua
1 (x1) − 〈wa,ξ

ν ,(x1, y)〉 − ρ
2

(x1, y) − (x̂a
1,ν , ŷa

ν )
2
+ ua

2 (x2 )

updating: 

(x̂a
1,ν , ŷa

ν ) = Ea (ca,ξ
0,ν , ya,ξ

ν ){ } projection on non-anticipative subspace

    wa,ξ
ν+1 = wa,ξ

ν +ρa (ca,ξ
0,ν , ya,ξ

ν ) − (x̂a
1,ν , ŷa

ν )( )

convergence:   ρa > 0
                 also requires a proximal term to support

                 the convergence of the equilibrium prices  p = p0 , pξ
1{ }ξ∈Ξ( )
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