VARIATIONAL ANALYSIS:
APPROXIMATION METHODOLOGY

Rocrer J-B WETS
MATHEMATICS, UNIVERSITY OF CALIFORNIA, DAVIS

Hanoi, Vietnam —- Spring 2013
Institute of Mathematics & VIASM

Tuesday, January 22, 13




A STOCHASTIC LINEAR PROGRAM?

min z={c,x) suchthat 7x <d, x € R", say 4 variables, 2 constraints
c; = unit cost of activity j, nonegative activities x; 20
t, = # units of i-resourse consumed by activity j, random

d, = i-resourse units available, random

Decision problem: choose best x! best returns distribution z( x; 7, d)

N
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A PRODUCT MIX PROBLEM

min {c,x) suchthat Tx <d, x € R, say 4 variables, 2 constraints

¢, = — profit of activity x;
per dresser production profit (manufacturer)

t, = per unit i-resourse consumed by activity j
time consumed for carpentry and finishing

d, = i-resourse units available
# of hours availalbe for carpentry and finishing

but actually #; and d; are random variables = additional 'overtime'
min {c,x) +E{{q,y)} suchthaty>Tx—d, xeR",y>0.
(T, d) uniformly distributed components = infinite # of variables, constraints

discretized, say each 4-values, = l.p. with = 2*%10° variables, constraints

(1. consistent approximation? 2. design of solution procedures)
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VALUATION

history:g, E={"

: T
environment process: {ft e R¢ }t_o

price process: St(th) € R"; numéraire (risk-free): S| =1

T T

contingent claims: {Gt(z)} , investment strategy: {Xt (TS)}

i= t=0

portfolio value at 7 : (S ’(Et),x t (g)>
PRICING: T-bonds, options, swaps, insurace contracts, mortgages, ...
max E{(S",X")} such that (S'. XY <SG+ (S'.X""), t=1>T
($°,X°Y<G°, (S",X"Y<G" as.

What if the random vectors are not discrete? What if t €[0,7T]?

Associated Risk-Neutral Probabilities: exists?, can be approximated?
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HOMOGENIZATION

conductor: Q  R’, composite > 2 materials,

0 <a(&,x)<k,,,, stationary process w.r.t. location

heat u : with rapidly varying stochastic coetficients

Ve(a(€,x)Vu(€,x)=h(x), x € Q & bdry conditions

homogenized equation with effective coefficient a
Ve(a(x)Vu(x)=h(x), x€Q & brdy cond.

such that{u(x) = E{u(é,x)}) a(x) #E{a(&,x)}
] 2
min . o 8(G,u) = b JQ a(&,x)|Vu| dx—(h,u)

g:L> — (=], to be minimized for all &

homogenization: find g"™ such that

E{u(E,)}=iu(-)eargmin| g""(u)| u e Hy() |

Tuesday, January 22, 13



OPTIMALITY CONDITIONS

min E{ f,(€,x)} such that prob{ f.(§,x) <0,i=1,..m} <«
simplifying: o =1, f,(&,x) = f,(x), constraint qualification satisfied,
Optimality conditions (KKT) or stationary point
x optimal if 3y = (y,,...,y, ) such that
a) f(x)<0,i=1,...m
b) y 20andy, L f(x),i=1,...m

c) 0eV (Efo (x)+ Zﬁﬁ-(x)) =E{Vf,§.0t+ 23 Vf,(x)
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OPTIMALITY CONDITIONS

Solving the "generalized equation”:

f()<0,y,20,y, L fi(x), i=1—>m
0 e |:Vfo (6,x)+ zzl)’ivfi (x):|
C:E3(R"xR"), &.y)eB{C&)

| v Feul
sample &, (x*,y*)e C(£"), ? ;Ekﬂuk,y")ﬁ? (X,5).

C(&)=1(x,y)
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WHAT TO REMEMBER?
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Stochastic problems get quickly unmanageably large
Approximation (discretization, sampling, ... ) is a must

Approximation “of the classical type” might or might not
work, including the standard approx. of stochastic processes

The presence of constraints, in particular inequality
constraints, radically changes the paradigm.

The search for “averaged solution” doesn’t result from
straightforward averaging.
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VARIATIONAL PROBLEMS

Optimization: min f(x) suchtthat xe X c X
Variational Inequality: x € C such that — G(x) € N.(x)
Complementarity Problems: 0 <x 1 H(x)=0
Generalized Equations: S(x)>0,5:X =< U (set-valued)

Economic Equilibrium: Va € A, x € argmax, u,(p,x)

market equilibrium: 0 < p such that D(p,x,) e N.(p)

Nash Games: x, € argmaxr, (x ,x_), VaeA

Each one comes with applications in a stochastic environment
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OPTIMIZATION PROBLEM

min f(x), x €S,

S={xeR"[f(x)<0,i=1>s, f(x)=0,i=s+1>m/

A

g
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EXTENDED-REAL VALUED FCN

min f on R", f=f, +1.(x), I indicator function of §

S =dom f X
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FUNCTIONS & EPIGRAPHS
epi f = {(x,00)|f(x) < et}
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FUNCTIONS & EPIGRAPHS
epi f = {(x,00)|f(x) < et}

flscatx:liminf __ f(x")2 f(x), fuscatx:limsup___ f(x)< f(x)
f Isc < epif closed f usc & hypo f closed
l.

.
...

M

lower semicontinuous

f £l f convex & epif convex
usc & —f Isc

< hypo f closed

S =dom f X
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flsc & lev, f closed Vo

LEVEL SETS & CONSTRAINTS

lev,, = {x c R”‘f(x) < OC}

e
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S=domf X
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EPI-SUMS (INF-CONVOLUTION)

1
2A

epif # epig =inf, { fWHgw—x)} e, f(x) with g=

10 I

|
|
|
| |
| 8r\eo.o1f|
| P Moreau envelopes /
| & : f convex function y
| e S L O /
l
|
|
|

i R ' A |

e1f //

i _ /
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APPROXIMATION: CONVERGENCI

outer limit: Ls C" = {x € cluster-points{x"} ,x" € C V}

L4

inner limit: Li,C" ={x=1lim,x",x" eC" cR"} c Ls,C"

limit: C"—>CifC= LiC"=Ls,C" (Painlevé)

All limit sets are closed
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' CONVEX LIMIT SETS

C" convex = Li,C" convex = Lm C" convex (if it exists)

= Ls C" convex

but convexity can result from taking limits
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EPIL-LIMITS

{fv :R” %ITR,VEN}
lower epi-limit: e-li /" such that epi(e-li, f")= Ls epif"
upper epi-limit: e-Is f" such that epi(e-Is, f")= Li, epif"
epi-limit: £ —f whenf = e-li f CaEdly e el
all epi-limits are Isc (closed epigraphs), e-li f" <e-ls f"

v o . Rl
f* convex = e-Is, f 1sconvex and so1s e-Im  f (if it exists)

Convergence of level sets / constraint sets:
f<eli, f" o Ls (lev, ff)c lev, f Va,— o

fzels, f" o Ls (lev, f*)c lev, f forsome o, -

Operations: sums, scalar multiplication, epi-sums
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SV-CONVERGENCE
SOLUTIONS, MINIMIZERS, .

A" solutions of (generalized) equations
minimizers of a sequence of functions

saddle points or min-sup points of bifunctions

e-A" : € >0 approximate solutions, minimizers, ....

A solution set, minimizers, ... of corresponding limit

Definition: A" sv-converge to A, written A" = A, if
a)X € cluster—points{xv S AV} =>x€EA

b)xeA=3 ¢, \0,x" €¢g,-A" > X
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CONVERGENCE

SV-CONYV.

OF MINIMIZERS

CRGENC

L, OF MINIMIZ.

RS

ff—=f.xe c:luster{xv € argminfv} = x € argmin f

f'—f,inf feR,xcargmin f = Je, \0,x" € g,-argmin f* — x

f"— f = argmin f" — argmin f

f'of, inff" >inffeRe{f}  epitight,ie.

Ve >0,dB compact s.t.inf, f" <inf f" +¢€, Vv=>v.

<« —argminf — »
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SET-VALUED MAPPINGS

S osc (outer semicontinuous) at x it Ls - S(x) < S(x)
S osc & gph S closed
S 1sc (inner semicontinuous) at x if Li___S(x) D S(x)

S continuous 1if 1it's 1sc and osc
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GRAPHICAL CONVERGENCE
SV-CONVERGENCE OF SOLUTIONS

§" —, S when gph S” — gph § (as subsets of R" X R™)

Generalized Equations ~ Inclusions
§.8:R"=ZR", §'"(x)>u”, S(x)>u and §* —, S,u” — u. Then
NS EPR SN G EY

X € cluster—pts{

Sx)>u = du" - u withS"(x")>u” andx” —> x

§* —, S pointwise doesn't yield convergence of sol'ns

Applications: F(x)=b, —G(x)e N.(x),...variational problems
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RATES OF CONVERGENCI

L4

Excess distance function:

e,(A,B)=inf {n20[AnpBc B+nB}, p>0
Estimate of set distance:

dl (A,B)=max[e,(A,B),e,(B,A)]
Set-distance:

dl,(A,B)=max d(x,A)— d(x,B)

d(x,C)=1nt

yeC

b

y—x
Pompeiu-Hausdroftt distance: p = oo
dl (A,B)<dl (A,B)<dl (A,B),
p’ > 2p +max[d(0,A),d(0,B)]
C' - Codl,(C",0)>0s dl(C",C)>0 Yp=0
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EPI-DISTANCE

Isc-fens(R") = space of all Isc functions from R” — R =[— oo, 0]

dl,(f.g)=dl,(epi f.epig), dL,(f.g)=dl,(epif.epig), p=0
B"' =B" x[-1,1]

dl(f,g)= j Oe"’dlp(f,g) dp, epi-distance
p=

', f €lsc-fens(R"), ¥ —, fodI(f",f)—0
alsodl (f",f)>0,Vp2p>0,...

(lsc—fcns(R”) \{f =co},dl ) complete metric space
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EPI-DISTANCI

L4

d(x,epig)
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QUANTITATIVI

L4

ESTIMATE

under y-conditioning for f, f,g € lIsc-fcns(R”), inf f,infg € R
min p g — minf‘ <dl (f.8)
argmin ; g C argmin f +y(dl,(f,8))B

(b)

(X.1(x))

2¢€ 2¢€
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APPROXIMATE SOLUTIONS:
QUANTITATIVE ESTIMATE

&L

f.g:R"—> R, proper, Isc, convex functions
argmin f,argmin g # &
p, large enough so that p,B meets argmin f & argmin g
min f =2—-p,, min g = —p,

Then, with p> p,, €>0, N = dlp(f,g)

2
dl ,(€-arg min f,€-arg min g) <7n| 1+ P
n+el/2

<(+4p/e)dl (f,g)
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CONVEX FUNCTIONS

(Wijsman) fv?f & (") > f =sup, ((v.x)— f(x)), £ lsc,convex

elf

(v.B) conjugate
//////// functions

(b)

f'>f = "> f (pointwise) & f'—>f = f'— f
fvﬁfzfv%f@{fv}veN 1s equi-lsc

(Walkup-Wets) dl_, (f.g)= dl,, (f*.g*) |=di(f.g)=dI(f* g"]
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VARIATIONAL GEOMETRY
TANGENT CONE

weT.(x),tangentto C atx e C, 1

< |

(X
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VARIATIONAL GEOMETRY
NORMAL CONE

e NC()_C), regular normal at x € C, if (v,x—Xx)<o(lx—-Xx1),VxeC

ve N, (x),normal at x € C,if Elxv?x and v" — v withv' € Nc(xv)

normal cones: closed cones, N.(x) convex
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CLARKE REGULARITY

C Clarke regular at x it C locally closed & N.(x) = N ~(X)

which implies N.(x) 1s convex if C regular at x
N_.(x) D N.(¥)

Smooth manifolds and closed convex set are regular (also locally)

In general, N.(x) = Ls

X—>c X

N
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SUBGRADIENTS

e EA)f()_c) regular subgradient if f(x) > f(x#+ (v,x—=X)+o(lx—X )
I (®)={v|(v.~1) € N, (F.f(F))]{ closed and convex
X" €df(x") with v/ — v

v € df (x) subgradient if 3x" — ,

o (¥)={v|(v.-1) € N, ,(¥.f(X))}]. closed

X > df (x) osc f-attentive convergence: = Lst)_caf (x) c df (x)

f differentiable at X : f (¥) = V£ (%) = 9f (X)
f regular at x : f locally Isc with of (x) = éf (x) (f locally convex, e.g)

di.(x) = N.(x) when C is convex
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OPTIMALITY

min f = f, + 1., optimality: 0 € df (x)”
generally, ( f + g) # of + dg

CQ.(Constraint Qualification): — N.(x)N 9~ f,(x) = {0}

v € d” f,(X)= horizon subgradient if

Ix" =, T, €f (x'),4, N0 & A" — v
with CQ. X locally optimal = of,(x) + N.(x)>0
f convex (= regular), df,(X) + N.(x)>50 =
globally optimal (without C Q)
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ATTOUCH'S THEOREM

(initial proof: via Moreau envelopes)

f¥,f:R" — R, proper, convex, Isc and A >0

The following are equivalent:
I o
b) the mappings df" —, df and
Y € of' (x"), v € f(X), (x"0") = F V). f (X)) f(F)

(convergence of an integration constant)

1
— 2} and
21

dx,x" — x suchthate, f'(x") > e, f(x)

)P f >, P/lf:argminw{f(w)+ ‘w—-

in situation b): also " (V') — £ (v)
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[I. MOPEC

“Multi-Optimization Problems
with Fquilibrium Constraints”




1TH

r

E MOPEC "FAMI

\

]

C 929
Ji 200

€ minimal surface problems, ... , mountain pass solutions, ....

& saddle-point problems: Lagrangians, zero-sum games, Hamiltonians

% equilibrium: classical mechanics, Wardrop, economic (Walras, etc.)

% variational inequalities: finance, ecological models, complementarity, PDE
€ non-cooperative games: pricing, generalized Nash equilibrium

% finding fixed points: Brouwer-type, Kakutani-type (set-valued), MPEC

% ... and the dynamic versions, and the stochastic (dynamic) versions.

% solving inclusions (equivalently, generalized equations): S(x)>0
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PRIMARY OBJECTIVE:
CONSTRUCTIVE THEORY

¢ Exhibits and exploits the interrelation between these problems

¢ Existence theory: (mostly, not exclusively)
¢ Aubin & Ekeland, “Applied Nonlinear Analysis” (Chap. 6), 1984

% Facchinei & Pang, “Finite Dimensional Variational Inequalities
and Complementarity problems” (2003)

¢ Tusem & Sosa (+ Kasay), “Existence of solutions to equilibrium
problems” (2005-....)

© Approximation theory = algorithmic strategies + existence
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SADDLE FUNCTIONS

_4

PI/HYPO CONVE

- Lagrangians (concave/convex)
- 2ero-sum games

- Hamiltonians

)
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EPI/HYPO-CONVERGENC]

dy" e DY
—>yveD

CxD

VyeD,Vx"'eC"—>x

B SeiC
i —>xeC

CxD

VxeCNy eD"—>xeD

L4

finite-valued bifunctions

limsup, K" (x",y") < K(x,y) when x € C

liminf, K"(x",y") > K(x,y) when y € D
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L4

CONVERGENCE: SADDLE POINTS

elh

KV%K:CXD%R,SV\O, (xv,yv)e g, -sdl(K")
(%,

= (x,y)esdl(K) & K(x,y)=Ilim, _,_ K" (xv’yv)

)=1lim,_,_q (xv,yv), N ~ subsequence

~<|

in the convex/concave case = convergence primal/dual solutions

ancillary tight (~ y-compact): Ve > 0,4 B, compact, v,

Yv2> Ve,sup, K'(x"p0)2 sup K'(x"0)—¢€

e/h-convergence + ancillary tight = sv-convergence saddle points
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ZERO-SUM GAMES

x* € argmax _, u(x,y*), y*e€argmin , u(x*,y)
(x*,y*) e sdl(u)
it X,Y convex, compact ( = tight)

Vy,x — u(x,y) concave,usc, Vx,yr u(x,y)convex, lsc
= the zero-sum game G = {(X,u) ,(Y,—u)} has a solution

moreover, X" — X,Y" =Y, u" —u (with same properties)
elh

= their solutions (x",y") cluster to solution of G

also the case for approximate solutions
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VARIATIONAL INEQUALITIES

¢ G:C—>R" ,CcR" non-empty, convex set
¢ find u € C suchthat —G(u)e N _(u)
VENC(ﬁ)<:><v,u—E>SO,VuEC

A
L O
v

v

let C" > C, G":C"—R" continuous

@ $§" solution set of approximating problems

S solution of the limit problem. Does §* — S?

47
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V.IL: THE GAP FUNCTION

¢ Let |K(u,v)= <G(u),v— u> ondom K =CXC

& then—G(ﬁ Ye N 3 (1) if and only if

o u € maxinf point of K with K(u,) =0
& K" (u,v) = <Gv(u),v — u>, domK"=C"xC"
o u €argmax—inf K" with K" (u",2) >0

. u € cluster points {uv} = ? u € argmin—sup K

48
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NON-COOPERATIVE GAMES

¢ ae A, payoff:u (x ,x_): RY — R, ..includes x € Cla
(X, a€ #)

VaeA, x eargmaxu (x ,Xx_)

¢ (Generalized Nash equilibriu such that

. Nikaido-Isoda function:
N(x’y) i ZaeAua(xa’x—a) B ZaeAua(ya’x—a)

X =(x,,a€ A#) isaNash equilibrium
& x eargmaxint N, N(x,e) =0

A
200 4
v

49
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APPROXIMATING GAMI

» Nikaido-Isoda functions of approximating games

Nv(x’y) &F EQEAM:(xa’x—a) x ZGEAM:()/&,X_Q)

x" € argmax—inf N', X € cluster points {xv}

— ? x e argmax—Inf N ~ equilibrium point

—~
_<‘

-}

O
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LOPSIDED CONVERGENC]

Hy' ¢ DY
—>veD

Vy'eD'
)

CxD

|X,y|

VyeD,Vx"'eC" > x

(x",y")
CxD

@eC"%xeC

L4

limsup, K" (x",y")< K(x,y)whenx € C

liminf, K" (x",y") > K(x,y) wheny e D
K"(x",y")—>cwhenygD
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ANCILLARY-TIGHTLY ~
COMPACT IN Y

TIEINIE VIG5 & ancillary-tightly,

CxD

v o dyen = % € MaxiniEkeEes

K" — if KV ?ch and

C"xD" lop ancillary—tight C o "xD" lop

X € cluster points of {x" € maxinf I f

b)VxeC, dx" - x,Vy" e D" andy" — y:
liminf K" (x",y")=> K(x,y) ifye D
K'(x",y")—> o ifyeD

( but also Ve>0, 3B compact (depends onx” — x):
inf K'(",)<inf  K'(x",9)+e VvV,

Bng
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- EVEN BETTER :
C@NVI:‘JRGENCE

K' = K_  lop.ancillary-tightly,

CYVxD"

(1) x" e e-maxinf K, ., X cluster point of {x"}

— x € e-maxinf K p
XD

(i1) x" € € -maxinf K

C"xD

x cluster point of {x"} __

v

&€ N 0= X € maxinfK o p (special: unique)

(iii) ¥ e maxinfK ., = Je 0 & x" € £ -maxinf K"
XD 1% v Co<Di

such that x" — X,

Under tight-lop: convergence of the full £ -maxinf sets

and convergence of values
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KY FAN FCNS & INEQUALITY

K :CxC— R Ky Fan function if
(A)Vye(C: x> K(x,y) uscon C
(b)VxeC:.y— K(x,y) convex on C

K Ky Fan fcn, dom K = C X C + C compact
— argmax—inf K # &

if K(x,x) =20 ondom K, x € argmax—inf K
= mf K(x,y)=0.

Improvements: lusem, Kasay, Sosa (locals)
Lignola, Nessah, Tian, X. Yu, ...

5%
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KY FANS INEQUAILITY:
AN EXTENSION

K" — K lopsided tightly with C" — C,
K" Ky Fan = K Ky Fan fcn
& if Vv :argmax—inf K" #

X € cluster-pts {argmax—inf K"}

— x eargmax—Inf K & K(x,*) =0

Application: guideline for approximation schemes
truncations, COercivity, ...

56
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LINEAR COMPLEMENTARITY
PROBLEMS

LCP: findz=20, Mz4+g=0 and (Mz+q) L 7
K(z,v)=(Mz+q,v—z) on R" xR, Ky Fan fcn
approx.ze[O,rV],MVz+qV2() and M"z+q") L z

K'(z,v)= <Mvz+qv,v—z> on [O,rV]XR’i
~rK'—, KwhenM'—>M,q" —q,r" / o

lop

r K" —, K ancillary tightly when also

lop

Rk — {Z c[0,r"]

M'z+q" 20}%P={z20‘Mz+q20}
= cluster points of sol'ns of approx. solve LCP

(note intP#0, norowof [M,q] = 0= P — P)
A K" —, K tightly (study of quadratic forms)

lop

58
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VARIATIONAL INEQUALITIE

& —Gw) e N.(u), G continuous, C convex, compact

% bifunction: K (u,v) ={(G(u),v—u) on C X C, Ky Fan fcn & K (u,u) >0

¢ THM: C" - C = C" compact v=>Vv, G’ continuous
G'—» G:G'(x")—>Gx), Vx'eC" —>x
K" (u,v)= <Gv(u),v — u> ondom K" =C"xC"
lop-converge ancillary tightly to K= sol'ns converge
Continuous convergence (?):
solns §' =G" +N_, 20— solns S=G+N.>0

29
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FIXED POINTS (SET-VALUED)

find x e C (convex): xeS(x), §:C=C cR", osc(gphS closed)
K(x,v)= sup{(x —V,7— x)\z e S(x) C C}
K a Ky Fan fcn, convex 1n v, usc in x (sup-projection) + K(x,x) =0

Approx. bifunctions: K" (x,v) = sup{(x —V,7— x)‘z eS'(x) CV}
THM. C" — C ,gph S" — gph S (as sets), C compact. Then,

Ve, N0, X e cluster points {xv € g, -maxinft K V} 18 a maxint point of K,

1.e., a fixed point of S. (lop-convergence is tight)

an Application (J.S. Pang) - Cognitive radio multi-user game
f:C — C cR" continuous, C compact, convex, x fixed point
Pertubation (g-enlargement): S(e;€):C = C, osc, S(0)=f

For € near O: existence? dx° € S(x°,e)=S°(x), x* > x?
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LOP- & EPI/HYPO-CONVERGE

1. > L=pL —>L

lop elh

2. IV —> L & convex-concave = L' —L
elh lop

3. epi/hypo- = hypo/epi-convergence

4. I’ = L = convergence of saddle points

= convergence of approximate sadde points
(without ancillary tightness)

5. Existence requires tightness-conditions (~coercivity, €.g.)

61

NCI

L4
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' UNIQUENESS OF
LOP- & EP/HYPO LIMITS




CONVINCING EXAMPLES (?)

@ Lagrangians: L'(r.y)= fy(x)+ 2 3.f/(x) on X"x(R'xR"")
i=1

% Lopsided convergence (maxmin-framework) - sufficient
conditions f¥ £V .. f' hypo-converge tof,,f,....f, on X' — X

& {fiv,v e N} 1s equi-usc, i =0,...,m

% Constraint Qualification: S* = {x . =20,i=1,. ..,m} — S

@ concave-convex case (epi/hypo). int S # &

% lop-limit L is unique
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VARIATIONAL INEQUAILI]

C"'—>C, G" C"—R"continuous, C" convex
—Gv(x)eNCv, veN

THM: C" — C = C compact v >2v, G’ continuous
G'—> G:G'(x")>G(x), Vx"elC" —>x

cont

K" (u,v)= <Gv(u),v— u> ondom K" =C"xC"

lop-converge ancillary tightly to K= sol'ns converge

lop-limit: — G(x) € N .(x) uniquely determined
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MPEC (GENERAILIZED?)

max g(x) such that x € S(x), g continuous, § : C = C convex
bifunction: K (x,v) = g(x)+ sup. {(x —v,z—x)|z € S(x)}
V.I.-constraint: $(x) = N,.(x)+G(x)+Ix on C
LCP: S(x)={(Mx+q,v—x)+Ix on R’"
x e€argmax-inf K = x solves MPEC.

approximating bifunctions: S" :C" = C
K" (x,v)=g"(x)+sup, {(x —V,7— x)‘z € Sv(x)}

C"—>C, gphS" — gph S, g" hypo-converges to g
then K" — K & K unique

lop
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K"(x,y)=y* Uniqueness fails!

Convex-concave function y*

y-axis X-aXis

e L ——
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WALRAS EQUILIBRIUM

& VYae A: da(p)eargmax{ua(xa)Kp,xa)S(Fa%)}

s(p)=, (e,—d (p)) excess supply
find p € A (unit simplex) so that s(p) =0

A
) () 2
v

© Walrasian: W(p,q)= <q, s( p)> Ky Fan fcn

[ b e maxinf W, W(p,)>0 < s(p) >0 ]

€ conditions: 4" — wpo Ugs €, = €, € Intdomu, =

% Convergence: W' lop-converges ancillary-tight to W

68
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AUGMENTED WALRASIAN

W(p.q)={(g.s(p)) on Ax A
W, (p.q) = sup. {W(p,z)| |z—q

= r} ** Jop-converges

O
Srk}

minimizing a linear form on a ball

7 SR max[maxZ <Z,S(pk)>| HZ 1)

qgeA

reduces to finding the largest element of s(p")

0

k+1 S rk-l_l

p’ = argmin| max, (z,s(p)>| Hz— q

pEA

k+1

as r, /oo, pk — p (local quad. approx. Nocedal, Powell)

experiments: 10 agents, 150 goods (easy!)

69
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[, RANDOM SETS
AND MAPPINGS




RANDOM CLOSED SETS

(Z,A,u), Ec R"Y = set-valued mapping,

C:E2E= R?, C(E) c R? closed set forall £ e 2

& C'(0)= {§ ‘C(ﬁ) N O # @} e A, VO c R",open (measurability)
= dom C=C"'(RY)eA

c:E— sets®R’), c(&)~C(&), F,={F <R’ closed|FNO =2}
(sets(R”),i':'), t Effros field = 0 — {FO e sets(R"), O open},

C measurable < ¢ measurable ¢ (F,) € A]

t = B Borel field (R separable metric space)
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CASTAING REPRESENTATION
& GRAPH-MEASURABILITY

% arandom closed set C always admits a measurable selection!

¢ (with dom C measurable) C is a random closed set <

it admits a Castaing representation: 4 a countable family

{xv : dom C — R",meas.-selections ¢

cl UveNxV =C(&),Vée domC c E

& (Z,A) u-complete for some i,
C random set < gph C A ® B"-measurable
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MEASURABLI

L4
S

LECTION
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SET-CONVERGENCE TOPOLOGY

F = cl-sets(R"), all closed subsets of R*
F? = subsets RY thatmiss D={F D=}
F, = subsets R? that hit D={F N D # &}
Hit-and-miss topology (= 7, Fell topology)
subbase: {FK K compact} & {F,|O open}

B(x,p) closed ball, center x radius p, B°(x,p) open
~subbase {FB(’C”’),FBO . ‘ xeQ/,pe Q++}

1 r
countable base: {FB(X e ﬂ FBO (x',pU.. . UB’ (x*,p )}

(F = cl-sets(R*),7,) compact, metrizable space
f p
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A.S.-CONVERGENCI

L4

s+ {C V.E=RYveN } random closed sets

a.s. convergence: Li (C") & Ls (C") random closed sets

C" — C as. = C random closed set on =, u(Z,) = 1

C" — C u-a.s.and dom C" = dom C. Then,
1 Castaing representations of C" — a Castaing representation of C
If x :Z —> R is a measurable selection of C, then

Jx" : 2 — R selections of C* converging {-a.s. to x

+ 'Egorov's Theorem': C* — C u-a.s. < C" — C almost uniformly
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CONVERGENCE IN PROBABILITY

Let €°C = {x eR" |d(x,C) < e}, C",C random sets
A,, =(C"\eC)u(c\eC)

C'E) - C®)}=1

in probability: u| A;),(K) | > 0,Ve>0,K eK

U-a.s. convergence: ,Lt{é

C" converges to C in probability
& di(C",C) = 0 in probability
& every subsequence of {C"}

contains a sub-subsequence converging p-a.s to C

i.c., in probability = in distribution [ [n@aicr @.cénuag) - o}
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DISTRI

JUTION OF A RANDOM SET

Borel o-field: B = G—{FK K compact} or G—{FO O open}

Distribution (P,B) regular, K compact subsets R*
determined by values on {FK K € K} or {FK K € K}

Distribution function (Choquet capacity):

T:K—[0,1],T(@)=0and V{K",ve{0}UN}cK:

a) T(KY) N T(K)when K" NNK  (~usconR)

b){D, :K —[0,11} _ where D(K°)=1-T(K")
D(K’;K")Y=D,(K")-D,(K* UK") andforv=2,...
D, (K"K',...K")=D, (K";K',....K*")-D, (K°UK";K',...,K'™")

(~ monotonicity on R)
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EXISTENCE-UNIQUENESS T

P on B determines a unique distribution function 7 on K
T(K)=P(Fy)
D,(K%K'...K")=P(F* nF,nnF,.)

T on K determines a unique probability measure P.

Proof. via Choquet Capacity Theorem (Matheron)

probabilistic arguments (Salinetti-Wets)

C :Z = RY arandom closed set

(P,B) induced probability measure:
P(F)=p|C'(G)| VGeB, T(K)=p[C'(K)| VKeK
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CONVERGENCE [N DISTRIBUTION

random sets C" converge in distribution to C when
induced P" narrow-converge to P:P" — P

(convergence of distribution functions)

T -cont

&T"—= TonkK
what is K
a) VC",v € N,d converging subsequence (pre-compact)

b)K' /K= cl| | K" regularly ifint K | ] K"

T -cont °

c) distribution (fcn) continuity: lim T(K") =T (cl UVK ")
d) convergence T" — T on C, continuity set = P" —, P
SRS RIS o CEi = O TR

K" = finite union of rational ball, positive radius

f) et> T (K + €B) : countable number of distontinuities
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A DETOUR ABOUT RATES

T"— T on C, & P"—, P (Polish space (E,d))
P',P defined on B
probability sc-measures on cl-sets(E): 4
AHA>0, G)A” MCHSAUCHiIfC' cC?
(iii) A is 7,-usc on cl-sets(E), (iv) (D) =0,A(E)=1
(iv) A modular: A(C")+ AUC*)=AC ' UC*)+AUC' N C?)
Pand A=P

cl-sets

{Pv,v = N} tightt P* > PSS A" >, A(~—A" —, —A) on cl-sets(E)

define each other uniquely (E complete = tight)

tightness ~ equi-usc of {A"} _ at
rates: dI(A",A) — O (for R-valued r.v., related to Skorohod distance)
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RANDOM SET: EXPECTATION

f )

EC = B{C()} = | | x(&) u(d&)|x(+) y-summable selection ¢

P

L= J

.not necessarily closed even when C 1s closed-valued

Convexity.
C u-atom convex = EC 1s convex

(certainly when P 1s atomless).
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EXPECTATION: BOUNDED RANDOM SETS

2.4
1.6
Random Se
o equal prob. 0.2
(17
-0.%
1 r:f\ P
. d.41,
-2 4
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EXPECTATION: UNBOUND

D RANDOM &

TS
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STRONG LAW OF LARGE NUMBERS
ARTSTEIN & HART

C :E= R" measurable, {cfv VeN } iid Z-valued random variables

C(&") iid random sets (i.e. induced P" independent and identical)

EC=E{C(>)}= { J _x(&) u(ds) ‘ X (-summable C(é)—selection}
independence = all (measurable) selections are independent

r T
{C(€"):E3R" veN} iid with EC # @. Then, with

Cv(é“’):vl(iC(ﬁk)j% C=clcon EC u~-as.
. = y

Ls,C"(¢")c C < limsup, 0., <0, support functions

[Eif@h(c)i= C relies on LLN for (vector-valued) selections
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RESOURCES ALLOCATIONS
AVERAGE OF EPI-SUMS

g € R’ ., g central resources allocated to v firms
Optimal allocation: p; production functions

suppose k large, p, = p.(&,x) with £ € E,

1% k
VE: z,(E,9)=max v_12pi(§,xi) s.t. V_Iin <g
=il i=1

(E,A,u), p,: uscin x, jointly measurable A ® B

"Limit" Problem:

2(q)=max [ p(Ex@E)du st. [x(E)du<gq
Suppose { p.(&,) € lsc—fcns(R”)} are iid < epi p, iid
Then, z,(§,q) = z(g) p-a.s. where p = p, if u nonatomic

or — p= con — p, (must not depend on &)

Argument: set-LLN on hypographs (~ep1 — p,)
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SAMPLE AVERAGE APPROXIMATION

stochastic variational problem: S(x) =E{S(&,x)} >0
S:ExR" = R™ random set-valued mapping
& random vector with values £ € Z < R"

solution (a 'stationary point') x € S~ (0)

—V

sample & =(&',...,E") of &

1 ” v
_(Zk_lS(fk ,X)) =S5"( & ,x)>0, approximating system?
N

ie., (8¥) (0)—>57(0) as.
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STOCHASTIC OPTIMIZATION

min Ef (x) = E{ f (é‘,x)} --stationary point-- dEf(x) >0
assuming E{df(€,x)} = 0Ef(x) (not generally correct)
could dEf(x)>0 getreplaced (?) by

—V

v (Ezzlaf (= ,x)) 5 0 from sample &

dom Ef = ﬂéea dom f(&,),

unless ¢ — dom f(&,) constant,
interchanging & & d is only exceptionally valid

Tuesday, Januar
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STOCHASTIC V..
(VARIATIONAL INEQUALITY)

E=(',E..), G'(,x) o-(&,...£") measurable

-G"(E,x)e N .(x), C compact, convex
G'(&,)—' G(&,)
x" (&) solution of — G"(£,x) € N.(x) for sample = &

does x"(&) — asolution of —G(&,x) e N.(x)? a.s.

what if C depends on v,& : sequence of random sets C” (&)

N¢ (X)
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RANDOM MAPPINGS

SEECGE — R S iR
A ® B"-jointly measurable: S~ (0) e A® B", O open
— V x:¢+— S(&,x) arandom set

random c!

ES:E = R" wit

1 ES(x) =

osed set when § 1s closed-valued

D {S (f,x)} expected mapping

ES convex-valued when ¢ — S(&,-) yu-atom convex

Law of Large Numbers for random sets applies
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SAMPLE AVERAGE APPROXIMATIONS

—V

E=(E',E%,..) iid, sample & =(&',....£")

SAA-mapping: given S : = X E = R" random mapping
S": 2" X E=R" with

VECE", xc E S (£,x) = %ﬁs«gk,x) = S¥(& %)

S" depends only on &
SAA-mappings " are random mappings
not necessarily closed-valued

(the sum of closed sets 1s not necessarily closed)

Tuesday, January 22, 13



POINTWISI

L4

LIMITS: SAA-MAPPINGS

ES(x)=TE{S(,x)} # D, then
Vxe X: S"(,x) > clcon ES(x) =: S (x) U -a.s.
If S(-,x) is P-atom convex, S'(€,-) = cl ES(x) =:S(x) u~-as.

Proof: LLN for random sets. O
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CONOSISTENT APPROXIMATIONS?

SYE,-)—> S ut-as.=? S'E,)(0) =.57(0)

point

sometimes!

graphical rather than pointwise convergence is required

SV(’g',-)%h S u~-a.s.is needed
gp

relationship between graphical and pointwise convergence?
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GRAPHICAL & POINTWISE

D,D" : X = R". Then, D" — D and D" — D (at x)

point gph
= {DV , veN } are equi-osc (asymptotically) (at x)

~ Arzela-Ascoli Theorem for set-valued mappings

S random mapping, yU~-a.s., S"(&,-)—>clconES =S

point

then §' > S < {S ",veN } are equi-osc (asymptotically)

gph
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EQUI OSC MAPPINGS

D:X=R", X cR" isoscif gph S is closed
oscatx if D(x)> Ls, _D(x")

X —X

~ givenany p>0,£€>0
IV eN®E): e,(Dx),DF))<e, VxeV

{DV = Rm} are equi-osc at x
~ givenany p>0,£>0
IV eN®E): e,(D'(x),D"(X)) <€, VxeV
V =V(p,é€) doesn't depend on V.
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GRAPHICAL CONVERGENC:
OF SAA-MAPPINGS

<

§ EXX = R" random mapping, (E,A4,u)
u=-as.:S'(E,-)— S atx & SAA-mappings {Sv(f,-)} equi-osc at X

gph

= sol'ns of $*(&,-) 2 0=3 sol'ns of S(-) >0

Sufficient conditions: (™ -a.s.

S(&,-) stably osc & steady under averaging = {S (&, )} equi-0Sc

Law of large Numbers for Random Mappings
S random osc mapping: =X R"= R"

stably osc & steady under averaging

E',E” ..., iid random variables (values in Z), distribution u

Then, V_IZZZIS@",')%gph S = clconE{S('g'O,-)} U -a.s.
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STABLY OSC

S stably osc near x if u-a.s.,
Vp>0,e>0, AW eN(X) & nB (n>0):
ep(S(’g',x'),S(’g',x)) <g,Vx'ex+nB, xeW

S —_—
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STIEA.

)Y UN.

JER AVERAGING

ueS'(E.x)NpB=3p=>p, u* €S, x)N pB such that

u=v '+t '), S'(E )N pBe—| Y SE )N PB
V] k=1

1
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STEADY UNDER AVERAGING
& STABLY OSC

rge S < B bounded = steady under averaging

S cone-valued and rge S < pointed cone K. Then,

S = ES and = steady under averaging.
S, R steady under averaging = so1s S+ R
R(&,x) = R(x) = R steady under averaging
rge S bounded + R constant = steady under averaging
G(é,x)+ N .(x) = steady under averaging (V.I.)
G :Z X X— R" 1s bounded

S,R stably osc = S + R stably osc
although D',D* osc = D' + D’osc
B closed, convex x> Ny(x) osc

but not stably osc (x" € intB — x € bdry B)
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IMPLEMENTING SAA ** LOCALLY

EG(x)=E{G(,x)} € S(x)

(V.I.: $= N, applied to option pricing, ...)
G'(E,)=v'Y" G(E.x). Assume G'(E,"), EG e C'(R";R"),
x strongly regular solution [Robinson] of EG(x)e€ S(x),

AV e N(x), p > 0 such that Vz € pB :

72+ EG(X)+ VEG(X)(x—X) € S(x)

has a unique solution x(z) € V, Lipschitz continuous on pI8, and

HGV(EV»—EG‘

— 0 u-a.s. Then, for v sufficiently large

S8 7al4

on a neighborhood of X, G"( & ,-) € S(x) has a unique solution

)_c(_év) — X M-a.s.
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IMPLEMENTING SAA ** EXAMPLE

stochastic program with recourse (simple): € uniform on [1,2]
min, E{—x\ x+y, <& xe[0,2],y, 2 o} = min(Ef(x) = B{f(&,)})
29 = =555 Uy sy =20,
to solve 0 € dEf (x) gets replaced by 0 € v‘lzzzlS =S (Ev,x)
S(E,x) = Af (£, x)=~1+Nj;,(x), dom S(&,*)=[0,&]

((—c0,—1] when x =0,

A

=:—1 for x € (0,£),
[1,00) when x =&

Solution of 0 € SV(EV,x) = min{é1 - ..,fv} — .. X =1(opt. sol'n)
but x" is never a feasible solution,
Ay, 20 such that x” +y, <& when ¢ €[1,x")

Problem: 0Ef (x) # E{df(€,x)} *** interchange is not valid.
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V. RANDOM
LSC FUNCTIONS




STOCHASTIC PROGRAM WITH RECOURSE

fEx) = fo)+inf , { £ (Ex,)

= OO

G =0 =l |
when f . (x)<0,i=1,...,m,,

otherwise

2-stage stochastic program with recourse: min__, E{ f(&,x)}

f(gax(°)) =9

(£, (€,x(+)) if x(&) € C(&,x(E)) as

&2 otherwise

with &> x(&) & & C(&,x(&)) € N _ (non-anticipative)

(dynamic) stochastic programs with recourse

min _, E{f(&,x(&))}
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SOLVING VIA APPROXIMATION

P" — P usually a discretization (P")

say, generated via taking conditional expectation, ...

min . E'f =B {f&x0)}=|_f(&x)P"d¢)

approximates min _, E f = L f(E,x)P(dE) ?
If Ef" —, Ef then "argmin Ef" — arg min Ef"
& "e-argmin Ef " — e-argmin Ef " (confidence intervals)

holds if { P",v e N} is f-tight: for all x & dom Ef,
Ve > 0,4 compact K, such that ‘f(&,x)‘ P'(dé)< e

E\K,

certainly the case when supp P" is bounded
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SOLVING VIA SAMPLING

E',E”,...1id samples of & (or p.iid)
: I o .
argmin__, ;Zkzl f(E* x)——argmin__, E{f(&,x)}

Set: Ef(x)= E{f(&,x)}= [ f(£.x)P(dE),

(random) empirical measure P", prob[é = f"] =y~

£ = (8 .8,..), E f(E” x)" = E"f(x) = [ f(.x) P" (dE)

E'f % Ef WK”-as. (arg min® = argmin)
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STATISTICAL ESTIMATION
FUSION OF HARD & SOFT INFORMATION

Observation (hard data): f 1 ,5 ’ R ,5 g

Soft data (non-data knowledge):
Support: (un)bounded
density or discrete distribution,
bounds on expectation, moments,
heavy tails
shape: unimodal, decreasing, parametric class

Softer data (modeling assumptions):
see above + ...
level of smoothness, "Bayesian’ neighborhood, ..
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POTENTIAL APPLICATIONS

» Estimating (cum.) distribution functions
» Estimating coefficient of time series

» Estimating coefficients of stochastic differential
equation (SDE)

» Estimating financial curves (zero-curves)
» Kalman filtering
* Dealing with lack of data: few observations

» Estimating density functions 4¢ (non-parametric)
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KERNEL ESTIMATES

eeeeeeeeeeee

“frequentist” viewpoint: observations
optimal bandwith: kernel support
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KERNEL ESTIMATES: LOW DATA

| T T
1k

0.9

0.8F

0.7 |

0.6

05

0.4

03
02r

01

_ v=5 samples
: , e . ] exponential distribution
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.. AS STOCHASTIC OPTIMIZATION

max E" {ln h(x)} = %Zlv_lln h(x,)

such that | A(x)dx =1,

h(x)=0, VxeR"
he A" c H

E" {ln h(x)} ~ max Hlvzlh(xl) maximum likelihood
A" soft information (constraint set)
H: density functions space, C*(R"), HRKS(supp k), H'(supp h)
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NUMERICAL PROCEDURES

1. h= Zzzluk(pk(-) ¢, basis-functions

Fourier coefficients, wavelets, kernel-like functions

2. h(x)=e"*"™, s epi-spline of order n (cubic, quadratic, ...)

s(x)=s, +vx+jdrjdtz(t) z(f)=z, on (xk,xk+1]

=5 +vx+2 4.z, Whenxe(x ka
]:
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ESTIMATION PROBLEM X = R

max E"{Inh(x)} ~ min%is(xl)
b=l

suchthat | e*®@dx<1, (h20)

' Supp" h
z, € [—K‘I,K‘u] 'constrained'-spline

unimodal: K =0

k
s(x)=s,+v,x+ zjzl .z, when x € (xk,ka]
constraints on z, . on curvature of s

on "supp 2" : bounds on support of /
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KERNEL & EPI-SPLINE ESTIMATED
SAMPLES FROM EXPONENTIAL DISTRIBUTION

— h(t)
18\ . true density(A=0.5)

0 ﬁﬁ f T T P
kernel-based estimate epi-spline based estimate
ot < soft info: support R.

b decreasing
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FUNCTIONAL LLN

[KOlmOgOTOV, Mourier ('53)] X separable Banach space
{f":ExX > R,veNy}, iidand E{|f(&,)|} <. Then,

1 v
VxeX, =3, &) - B ()= E{f*(Ex)] pas.

For our purposes:
a) E{|f(&,-)|} <o but f is R-valued!

b) convergence 1s pointwise =% arg min convergence
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LLN FOR RANDOM LSC FUNCTIONS

E',&,...1id samples of & (or p.iid)

(random) empirical measure P", prob [5 = fk] 17

ERE(E0 Eom) B (E ) = B ()
| —
= [fE0P W@ =-3] FE 0
LLN (# 1): Evf%Ef ,LLOO—CZ.S : Ersinf._, f(&,x) summable

epi

"argmin__, E' f — argmin__, Ef" U”-a.s.

f random Isc convex function, f(&,-) convex

= JE" f — OEf u~-a.s. (Attouch's Theorem)
gp

solutions of dE" f 5 0= _ solutions of 0E f 20 u~-as.
OE" f = E'df ? sometimes but not always
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LLN #2) RANDOM LSC FUNCTIONS

(X,d) Polish (also, a linear space, for convenience)

VA>0,020:d, (f,8)=sup,.;|e,f(x)—e,8(x)

metric: m, (f,g) = j:e—f’d,t,p( £,9)dp, topologically =dI, 7. topology

, f,g proper Isc-fcns(X)

A >0 sufficiently small, m,d(f",f)—> 0 f"—=f

epl
(£°,€'"....) iid values in = < R", support of
f:2x X — R random lIsc function such that

S = { f(&,: )‘ ce E} separable subspace of (proper Isc-fens(X),7 )

—V

d; (Evf,enE"f) N O u”-as.asn N0, Vsamples &
d, 5 (Ef,enEf) N O U”-a.s.as n N O. f random lsc convex function
Then,E'f — Ef u~-as

aw-epi
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AUTO-REGRESSIVE TIME SERIES

17, = @y 2@l o5 L S O S U !
data: e b n,, non-datainfo:a, =2a, =2:--2 a,,
( %) ]
F(E a)=1 N, —ay—M,_.4 _“._nt—pap‘ itag, 2---2a,
(o otherwise

fZxR" SR, {c‘,‘t} stationary

1
(a_ov,ﬁlv,. ..,c_zlf) € arg min ;Zlef(it,a)

— (dy.a,.....a,) € argmin E{ f(£,a)| I} (invariant field)

Ergodic Theorem: f : =% X — R random Isc fen,

¥ 2 — = ergodic measure preserving transformation

Il «v -
;zkzlf(ﬁk (&)) —E—Efa.s., inf, f(s,x) summable
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HOMOGENIZATION

conductor: Q c R°, composite = 2 materials,

# conductivity spatial location: a(&,x) dependend

0<a(é,x)<Kk,,,, stationary process w.r.t. location

heat u : with rapidly varying stochastic coetficients
Ve(a(€,x)Vu(€,x)=h(x), xeQ
u(&,x)=0, x e bdry Q
homogenized equation with effective coetticient a
Ve(a(x)Vu(x) = h(x), x €Q
u(é)=0, x € bdry Q
such that u(x) = E{u(&,x)}. a(x) # E{a(&,x)}
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HOMOGENIZATION
A "NUMERICAL™ METHODOLOGY

1

. 2
min ., o 8(G,u) = Ejga(ﬁ,x)wu\ dx —(h,u)

g:L> — (=], to be minimized for all &

homogenization: find g"" such that

E{u(&,")} =u(-) e argmin i "™ (u)

o —o —o —o conjugate duality —o —o —o —o

£ () = (epi-[_g(&,1) + P(dE)) () on H}(Q)

weH, (Q)]

(epi— [Lg& )+ P(déj))(x) L epi-integral
int { [ 2(&.2©) P@)| [L2©)P© = x} |
gl ¥ Ergodic
approximation: 6@« f(-)=0f(0" ) Theote s

= argmin{v_1 *(g(él,-)#---#g(fv,-)) ‘ Ue H(l,(Q}
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RANDOM LSC FUNCTIONS

[ROCKAFELLAR: NORMAL INTEGRANDS]

f:2x X — R arandom Isc function
(X,d) Polish space, Borel field B
(Z,A,P) probability space
(a)f(Es) lsc VEEE
(b) (£,x) > f(E,x) AXB"-measurable (jointly)

(a & b) imply ¢ epi f(E,2) =epi f(&) is a closed random set
epl f :E=X XIR (= all properties can be trasferred)
epi (&) © X X R closed epigraph for all £ € =

& (epi f) ' (0) = {’g’ ‘epif(’g’) e 0} €A, VO c X xR, open
= dom epi f = (epi ) (X x R) € A (measurable set)
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EXAMPLES: RANDOM LoC FCNS

f:E2xX — R, A-measurable in &, continuous in x
f and — f are random Isc functions

f 1s a Carathéodory random Isc function

f(€,x)=g(x), glsc

= Borel subset of R, f Isc = random Isc function
f(G,x) =1, (x) with C random closed set

f(S.x) = f,(S,x) +1 (x) is a random Isc function

when f, random lsc function, C random closed set

Proof. epif(§)=epif,(§)U|C(E) xR]
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RANDOM LSC FCNS: PROPERTIES

f random Isc function
= lev,f(&,) random closet set
=& p(&) =inf, f(&,) is A-measurable ,
p(5) = inf, &, (&) with :
{(x",o,)}, . Castaing representation of epi f
= & > argmin (&) ={x\f(¢:‘,x) < p(é})}is A-measurable
= 1 A-measurable selections: f(&,x(&)) = min, f(E,°)
Moreau envelopes: ¢, ;, f (€,-) are random Isc functions

A(E) > 0 sufficiently small

€, Carathéodory random Isc function
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RANDOM CONSTRAINT SYSTEMS

C :Z=R" random closed set
f :E2xR" = R random Isc function, i€ I,

f, :2xR" = R Carathéodory random Isc fcn, i€ [,

o, : =2 — R random variable i € I, U I, (countable index)

l

Then, S :Z=R" is a random closed set where

i ( fE NS, iel,
S(@—<xeC(§)ﬁ(g,x):ai(éj), tel,

.
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EPI-TOPOLOGY:; REVIEW

{fV:R”%I?R,VeN}

epi(e-li, f")= Ls, epif”, epi(e-Is,f")= Li, epif"
epi-limit: f* — f when f = e-li f" = e-Is f", f= e-lm f"

Hit-and-Miss topology translated to Isc-fens(R”) @ 7
subbase: hit open sets, miss compact sets
{ gEe lsc—fcns(R”)‘infO g < Oc} { gE lsc—fcns(]R”)‘ian g> OC}

(Isc-fens(R™), 7. ) compact, metrizable space -- di a metric

epi

fzels, f" < limsup, (inf, f7) 2 inf, f, VO open (inf usc)
f< el f" < liminf (inf, /") <inf, f, V K compact (inf, Isc)
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SCALARIZATION

Effros field for Isc-fcns(R") : € (= B, ,X Polish)
generated by A, , = { f €linf, f < oc} , D closed or open
distribution of a random Isc function f : Zx R" — R
P.(A)=pu{éeE| f(&)eA], AcE
(&) =inf _, f(&,x) with f : 2 — Isc-fens(X), X Polish
then f random Isc fcn < &+ (&) measurable for all D € D
where D is anyone of the following:
a) all closed (or open) sets

b) all open rational balls, centers at R dense subset of X

¢) if X 1s o-compact, all closed rational balls, ...

{n'x’ . XER,pE Q+} countable collection R-valued r.v.

inherit independence, identically distributed
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ERGODICITY

{fv ExX >R, ve N} random Isc functions
{n; ,=Infy . xeER,pe Q+} countable collection R-valued r.v.

f¥ independent: {v,,v,,....,v,} c N, a,,a,,...,0, € R {eo}

1 2 k
X ,X .., X €R, p,pPys... 0, €Q,,

k

EI‘B/%i(xi,pi)(é) <o,i=1— k} = H 1P{é =

1=

P{& € n];f(xi ,p,->(§) < ocl.}
stationarity: joint distributions of /™ ,..., f** invariant under shift
@ :Z — = meas. preserving transformation: P(¢~' (A))= P(A),VA e A
I invararian o-field: P(¢~'(A)aA)=0
@ ergodic if I is trivial P(A) € {0,1}VAe I
{fv, Ve N} ergodic & {f o",VE N} for ¢ associated meas. p. transform.

= VO open {71'0 o@’,veN } ergodic sequence of R-valued r.v.

Tuesday, January 22, 13



ERGODIC THEOREM

(X,d) Polish, (2,4, u) probability space
(: = — = a measure preserving transformation

I its invariant o-field

f :Ex X — R random Isc function, inf-locally summable:
Vxe X, 3V eN, () B{m (&) =inf, f(£,x)}> e

=R c A, JEF f(&,) random Isc fcn

3 countable dense subset of epi E* f(€,*) u-as.

epi f(&,-) solid set, cl( int(epi g)) = epig (cont. on dom g)
Then,

l < v )

=Y. _ @), )>E fE,) pas.

V epi

— Ef u-a.s. when @ 1s ergodic

epi
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LSC STOCHASTIC PROCESSES

{ f":R" >R, veN } stochastic process with Isc-paths (R")
(Isc-fcns(R™), T

i) compact metrizable space -- dl a metric

T., can be generated by xe€Q",peQ,  ,aeQ

{ g € Isc-fcns(R™)

inf g < OC} { g € Isc-fcns(R™)

B (x,p)

1nfB(x’p) g > OC}

a.s.-, in probability, 1n distribution convergence ~ as for their epigraphs

process { f":R">R,veN } converges in distribution in

‘classical’ sense (1.e., pointwise) = epi-converge in distribution

if the paths x — f"(¢,x) are equi-Isc u-a.s.:

Vx,e>0, 3V e N(x):inf{ f"(&,x)|x € } > min| £ 1, inf f*(§,")— €|
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DISTANCE & INDICATOR FUNCTIONS

{CV = R e N} random closed sets
(set-)converge 1n distribution to C <

Processes {d(C "(x,),veN } convergerve

in distribution to d(C(x,*) for all x e R"

C"(&) = ray through (1, v'1)
C(&)=1{(0,0)}, C(&)=ray through (1,0)

C" converges in distribution to C (clearly)

but 1 v converges in distribution to 1. (exercise)
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.. IN DISTRIBUTION OF SELECTIONS

{CV E = IR N} random closed sets
converge 1n distribution to C. Then,

1 measurable selections x” of C"
converging in distribution to a seclection of C.

(also holds for Castaing representations)

{fv ExX >R, ve N} random Isc functions
epi-converge in distribution to f

¢ argmin f(&,-) are random sets =

selections (minimizers) converge in distribution if
(argmin ) converge in distribution
1.f" — f+epi-tightness = inf f* — inf f in distribution

2.+ under p-a.s. convergence, argmin /' (&, - )=, argmin f(&,")
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V. EXPECTATION
FUNCTIONALS o CALCULUS




EXPECTATION FUNCTIONALS

f:2x X - R, random Isc function,
XcMEARY: LOZ,A u;RY,...
others: C ((E,T);IR{” ) ,Orlicz, Sobolev, Isc-fcns(R")
Ef(x)= |_fEXENUEE) = B{f& %)

= oo whenever [_f,(£,X(£) i(d) = o
Ef : X — R always defined

Regression: (X is not a linear space)
min{J.yeR jxe[O,l]” O(y — h(x)) P(dx,dy)‘h e lIsc-fens(R)N H }

JH shape restrictions (convex, unimodal, ...)
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DECOMPOSABILITY

X c M decomposable (w.r.t. i) when
Vx’eX,Aec Aand x' : A > R" € /M, bounded

x’(E) forEeZ\A
©(&=1"
x (&) forceA
— X is a linear space (0 € X)
LP(E, A u;R"), M are decomposable

CE,A;R"), constant-fcns(E) not decomposable

f random Isc function, Ef # o on X. Then,

inf [ F(ExE)R@E= [ | inf fEx) |u(dd)
x € argmin, _y Ef (x) & X(g) € argmin___, f(G,x) u-a.s. (inf ES > —c)
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INTERCHANGE OF
SUBDIFFERENTIATION AND INTEGRATION

f:EXR" -5 R U {e}, random convex Isc function,
Ef:X >R, hereX=L"EA,uR"
G subfield of A (possibly the trivial field = {J,=})
fOEXR" 5 R with f9Ex) = [_f(&.x)PO(dS|E)
EfS X = R, here X = L (E,G,u;R")
assume Ef & Ef finite for some G-measurable functions x(e)
JEfc(L*=L'E A 1RYDSE, A, 1u;R")
J'Ef (x) = 0Ef (x)+ N, . ., (x), OEF(x) ={v € L|v(&) € I (€,x(E)) p-as.}
0 EfY(x)=0Ef°(x)+ N, _ g5 (%), OEf°(x)=... in L}(G)

xe L7, 0Ef°(x)=E°{af (€ x(&)} u-as.?
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VALIDATING THE INTERCHANGE

E f:EXR" > R U {e}, random convex Isc fcn, Ef : L7— R, G cA, )
suppose & > D(E)= cl dom f(E,-) G-measurable

Ef(x) < o0 :V G-measurable selection of D (+ summ. condition)
Then, Vx e L7(G): 0Ef (€,x(E))=E{f (€, x(&))} u-as.
i.e., the closed-valued G-measurable mappings 0Ef° = E9df u-a.s.

inf B{f(&.x'(©).x° &)}, x' e L7(G), x* € L7(A)
Jhe L'(A) such that (x',x*) € dom f(&,-,") = |f(E.x",x7)| < oo

Ers D, (€)= cl{xl eR"

Ax* : F(E,x',x7) < oo} G-measurale
inf Eg(x') on x' € £7(G) with g(¢,.x)=E | inf,__, f(-.x',x*) ] (&)
is "equivalent" to given problem. [ Consider G = {@,R”} ]
min, , {—x'| 2" +x2 <& x' €[0,2].x} 2 0 = min(Ef (x) = E{ f(€.1)})

FEx)=—x" +1,+1 o =—% +1g,
G =1{9,[1,2]}, D)= [0.,£] is not G-measurable!
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PRICING A CONTINGENT CLAIM

environment process: {é‘t e R }10 history: &, £=&'

price process: St(%) e R"; numéraire (risk-free): S; =1

T T

contingent claims: {Gt(g)} ; 1Investment strategy: {X’ (Z‘I)}

t=1 t=0

portfolio value at ¢ : (S’ (Z;),X t (th»

PRICING: T-bonds, options, swaps, insurace contracts, mortgages, ...
maxE{(ST,XT)} such that (S, X Y<G' + (S, X", t=1->T
(T+1)-stage linear stoch. opt. {(S°,X°Y<G’, (§' . X" Y<G" as.

feasible if G* +---+ G' =0 V&, with arbitrage when unbounded
prob[& = £] = p; & finite support: max des D: (ST(&),X"(&)...
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RISK NEUTRAL PROBABILITIES:
DUALI'TY

pricing via risk-neutral probabilities (obtained from dual variables)

FEHE) = {—<ST (£).X" (&) whenx(&)eC(&)

0o otherwise

x(&) = (X (G e (%T)) , C(&= {x(ﬁ)\ satisfies the constraints a.s.}

min__, B f(&x(E)}, f random convex lsc function

L '-"Perfect" duality: (1) C.Q. (M = L), (2) & C(&) nonanticipative

V¢t :E{C(g)

Pricing a contingent claim doesn't satisty (2) = no "perfect" duality

th} Z{ -measurable (depend only on past history)

Full duality requires: dual variables € L @ S , but ...

i.e.,the risk-neutral probabilities are in L @ S !
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SOLUTION PROCEDURES

FOR STOCHASTIC
VARIATIONAL PROBLEMS




INFORMATION-DECISION PROCESS

& AE)=A > & s 2@ S8
More specifically,

(dynamic) Stochastic Programs with Recourse:

min _, E{f(&.x(€))}
time scale:r =0,1,2,....,7, x(&)= (xl(ﬁ),. XD (5))
il cniiice)
information (observation) available at time t: A ,_
filtration: A c A c---c A,=A, A, trivial

—-v-1

xe N ifx' A, -measurable = o-field( & )

here £’ deterministic, x' (§) = x'
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DISCRETE SCENARIO TREE




DETERMINISTIC EQUIVALENT

.. 565l el 1212

"time-staged objective":
= [0+ B AEx PO +B{ A£G A @)X O A A -
= () +E{LEX @)+ EQ,(Ex' X (€)| A, |

EQ,(&x' (@) =E{inf._,, fi(&x' x*(&).x")|A, ]
= )+ E{EQ,(&:x' 0)| A, |

EQ,(&x') = IE‘f{infxzdan e )t EQz(é;xl,xz)\ﬂl}
= f,(x")+ BQ,(x")
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SOLUTION PROCEDURES

min__, . E{f(&,x&)}= minxlew1 f.(xH+ EQ,(x")
EQ (&x') = IE}{infx2€an £,Ex,x)+EQ,(&x ,xz)‘ﬂll}
EQ,(Ex' X&) =E{inf . _,, fi(&x' . x*(&).x)| A, }

deterministic optimization! convex when f random lsc convex function

in theory: any algorithmic procedure!

hurdles: values, (sub)gradients, "Hessians" of f(x')+ EQ,(x")
are either not acessible or at best, computationally EXPENSIVE

Approaches: 11" ~ (I = approximating stochastic process {é B T}

sampling: a) same as approximation except /' random measure

b) SAA-strategy for (E{f(€.x(EN}+ N . (x(£))
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SEQUENTIAL L.P. STRATEGY

min f,(x), xe€ X eR", f, linear (not essential)
f(x)<0, i=1,....,s, f(s)=0,i=s+1,...,m (affine)
in the s + 1 first constraints: f,(x) = sup,_, f,,(x), f, 2 [, affine

0. v =0, pick polytope (box) K° > x*'
1.x" eargmin f; on K", seti, : f, (x")=max, f,(x")

if f, (x")<0,x" optimal, otherwise go to 2.

2. return to 1. with K" = K* n{{Vf, («").x—x")+ £, (') 0]

when f, 1s not linear (but convex): min@ such that f,(x) -0 <0

convergence: finite # of steps or iterates cluster to optimal sol'n
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SLP FOR STOCHASTIC PROGRAMS

min f,(x)+ EQ,(x) st. Ax=b,x20 (x= x')
EQ(x)=Y. pQ(&.x) Llarge
0,8\ x)=inf,__ {f(Ex.x°)+(EQ,(-+)]

x"eX,

dom EQ, =()|_ dom Q,(&'.)=[_{x[3x* € X,. £,(£'sx.x") < oo}

O.v=r=s5=0

l.v=v+1, solve: minf (x)+ 6, Ax=>b, x =20 such that
(feasibility cuts) (E,,x) 2e,k=1>r
(optimality cuts) <Fk ,x> +0=2f,k=1>s

2. generate feasibility cuts: check if x € dom EQ, .

No: E, separates x from dom EQ,, goto 1. Yes, go to 3.
3. generate optimality cuts: F, € 0EQ,(x"), go to 1.
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GENERATING CUTTING HY PERPLANE

< Ek,x> = ey

N
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STOCHASTIC QUASI-GRADIENTS
(~ SAA-APPROACH)

min Ef (x) = E{ f(€,x)} on X cR",

X convex (compact), f (=X R" > R

f(&,-) convex (gen. semi-smooth)

v+1

x' = prj,(x" —A,d"), descent direction, step size
d’ : stochastic quasi-gradient

E{dv xo,...,xv} € dEf(x")+n,

for example:d” € df (£",x") sample &"
or d'e B(z;f(ﬁl,xv)) sample &',...,E"

convergence: p, > O’Zv:o p, = oo,zvzo P < oo
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IH

CRE-&-NOW VS, WAIT-&-SE]

# Basic Process: degision --> observatiozn --> decision
e LR e D
@ Here-&-now problem!
not all contingencies available at time 0
x' can't depend on ¢&!

@ Wait-&-see problem
implicitly all contingencies available at time 0O
choose (x;,x;) after observing &

@ incomplete information to anticipative information ?

&
-
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Fundamental Theorem

of Stochastic Optimization

A here-and-now problem can be “reduced” to a
wait-and-see problem by introducing the

appropriate ‘information’ costs
(price of non-anticipativity)
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PRICE OF NON-ANTICIPATIVITY

Here-&-now
min 4J{f(§,x1,x§)}
x'eC'cR",

x; €C*(&,x"), Ve,

Explicit non-anticipativity
min 4J{f(§,xé,x§)}
xé ceC'cR",

Al (E oy

X =
;=

AEI L

wy L c¢™ functions

= Eqw; | =0
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ADJUSTED HERE-&-NOW

min E{f(€,x',x})] such thatx' € C' cR", x} € C*(£,x"), V&
x' must be G-measurable, G = o-{J,=}

x” is A-measurable, A o G,

in general, interchange & & d is not valid

required: V €,x' e C',C*(€,x') 2 @ G-measurability of constraints
Now, suppose w, are the (optimal) non-anticipativity multipliers (prices)
min IE‘]{f(“,‘,xélj Xz )= Wy X ) + (W, ,E{xé})}

such that x; € C' < R", x; € C*(§,x;), V&
Interchange is now O K. , E{(wé,E{xé})} = (E{wﬁ,E{xé}) =0, yields

(‘v’ &, solve: min f(‘f,xl,xz)—(wé,xl>s.t. x eC', x*eC*(,x) J

+n,

a collection of deterministic optimization problems in R™
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FINDING we
Progressive Hedging Algorithm

0. w’(-) such that E{w’(&)} =0, v=0. Pick p>0
1. forall &:
(xév,xaf )€ argmin (& x',x°)— (wg,x>
GG ARSI i (& el [Re
et ).

—1,v
.Xé X

=0 (approx.)
othersie w; — =w; + p[xé’ — )_cl’v], return to 1. with v=v +1

Convergence: add a proximal term

G ) — <W§, = ‘x__lv

linear rate in (x"",w") ... eminently parallelizable
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PH: IMPLEMENTATION

implementation: choice of p ... scenario (X), decision (+) dependent
(heuristic) extension to problems with integer variables

non-convexities: e.g. ground-water remediation with non-linear PDE recourse
asynchronous

partitioning (= different information feeds)

minE{f(&,x)} suchthatxeC=[)C.

EeE
S={Z&.5,.....E, } apartitioning of E, p, = U(E,)
E{f¢&x)}=) pE{f(Ex|E,} Bayes)
defining g(n,x)=E{ f(£,x)| E, }ifxeC, = ) C,

CeE,

solve the problem as: min 25:1 p,8(n,x)
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MULTISTAG.

min__ B{fEx&)}, x&)=(x'@.....x &)
filtration: Ac A c---c A,=A, A, trivial

—v-1

xe N ifx' A,_-measurable = o-field( & )

(here &’ deterministic, x' (&) = x')

under usual C.Q. (convex case): x € X optimal if
(3w L N“,we X" such that x € argmin__, Ef(x)— E{(#,x)]
LN E{w&)|A,, }=0,vi=1,...T

W non-anticipativity prices

\

at which to buy the right to adjust decision (after observation)

can be viewed as insurance premiums, ....
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PROGRESSIVE HEDGING ALGO.

0. initialize: pick w’(§) e (N)*, X,,p>0,v=1
1.VE € E, solve (approximately): min f'(&,x),x € dom f(&,-)

Fed=rwd+ T @)L :

minimizer: x, (&)= (xi (E) o (f)), Eek
2.w, (&) =w,_ (&) + p(xc &)-x, (5)) where x! (&) = "averaged" solution
(&) =E{x,(-)| A} (&) foreach A€ A,

gotol.withv=v+1

0 2=l
X —X

convergence: linear in (x,w)
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WALRAS EQUILIBRIUM

agent's problem: Agents: a € /A, | A |finite, possibly "large"
X €argmax u (x ) so that <p,xa> < <p,ea>, x €X

e . endowment of agenta,e € mt.X

u_: utility of agent a, concave, usc

u X >R, X cCR"(survival set) convex

market clearing: s(p) = 2 — X _) excess supply

aeﬂl(ea
equilibirum price: p € A such thats(p) =0, A unit simplex
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VARIATIONAL INEQUALITY

¢, =argmax_ u, (x) sothat (p,x)<(p,e),xeC, %

1 Za(ea—Ca)ZS(p)ZO. /‘J
1)

N,(z)= {v‘(v,z — Z> <0,Vze D}
G(p,(x,),(4,)) = [Za(ea = x,):(A,p = Vi, (x,))i(p.e, xa>]
D :Ax(HaCa)x(HaR+)

~G(p,(x,),(1)) € N, (D.(X,),(4,))
D unbounded — D bounded
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CQUILIBRIUM: STOCHASTIC ENVIRONMENT

(Ccll’yajcig) e argmaxxl,yERL,x.zej\/l ucll(xl)_i_Ea {uj(é,xz(g))}
such that <p1’xi+Taly>§<pl,e;>
2 7 DR ) =
<pf,xas§> S <p§’ea,§ N Ta,5y>, \vlf = =
2, EX oy (C L EEE

B {-} rational expecttion with respect to a-beliefs, = finite support

2-stage stochastic programs with recourse
solution procedures & approximation theory "well-estblished"

T,,T,, : input-output matrices (production, investments)

e, €intX,, e cint X, forall¢
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MARKET CLEARING

excess supply:
agent-a: ( cfl,yjl,{c*j,g}cE :)

Eaeﬂ(e‘l’ — (e Talya)) =s (1’91 ,{Pg}gea) 20

and for all £ € 2

Eaeﬂl((eié 0 Taz,é) 27 Cj,g) = 552 (Pl,{pgz}gea) >0

Walras' auctioneer:

max

)E{<q,s>}, SE= (Sl,{Sé}gea)

p=(p" {p?}eez) = q9=(q" {a} ez
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AGENTS PROBLEM: DISAGGREGATION

with p, = (po,{pé}gea)
(CoeYarCog) €
AL MAX . R yeR” 22 R {ucll (x) - <Wa,é‘ (x ’y)> ity (8,17 )}
(p'.x'y<(p' el —T,)y)
(p2.®)<(pi.l + 1),

1 1 2 2
x €X,, X €X_ ..

solved for each ¢ separately
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INDIVIDUALLY COMPLETED MARKI

o

V& € E (separately),
agent's problem (individually completed market):

2

(ccll,ya,ca’g) = ‘clrgmax{u:f“’g (xl, y, xz) on Xa,é(pl,pg)}
for {w, . }..- associated with (p”, p;)

L]
M

clear market:

s'(p,p:)2 0, s;(p',p:)= 0

* Arrow-Debreu ‘un-stochastic’ equilibrium problem

LA

T
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EXAMPLE USING PATH-SOLVER

@ Economy: (5 goods)
| = Skilled & unskilled workers
i = Businesses: Basic goods & leisure
| = Banker: bonds (riskless), 2 stocks
|

@ 2-stages, 280 scenarios, 2776 scenarios

@ utilities: CES-functions (gen. Cobb-Douglas)
= Utility in stage 2 assigned to financial instruments
| = only used for transfer in stage 1

@ on laptop: ~4 min, ~14 min, but
extremely parallelizable algorithm
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PATH-SOLVER; CONVERG]

)

objective: w (x)H)+ u(x’) =

ol
2

%

)= G +ul ()

1, (x) = (W) o, (x',))

updating:

LA

Cmiey =" {(cg;g VY 2f)} projection on non-anticipative subspace

1 0, Ay e
W:,E 5, Wc‘z/,f +pa ((Ca’gay:,g) ., (xa vayc‘:))

convergence: p, >0

also requires a proximal term to support

NC]

the convergence of the equilibrium prices p, = ( p’ ,{ pé }5 :)

L4
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