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EG(z) =

e

G~1(0) soln’s of G(z) = 0, approximations?

{G(€,2)} =0 “approximated” by G¥(x) =0
, &Y sample, G”(x) = %Zlyzl G(¢, x)

G:=2xD=F, set-valued G(£,x) C E, inclusion E{G(&,z)} 50

il e

o

&Y sample, approximation %Zlyzl G, z) >0

5{f(&2)} v C, E{f(§ )} = Ef(z) = [z f(

&Y sample PY (random) emplrlcal measure
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Optimization problem

min f,(x), x €S,

S={xeR"|f(x)<0,i=1>s, f(x)=0,i=s+1—>m|

A

M
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min f on £, [ =f,+1,(x), 1, indicator function of §
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min f on £, [ =f,+1,(x), 1, indicator function of §
epif = {(x,@) e EXR|f(x)<a}, lev,f={xeE|f(x) <}
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1. pointwise convergence # convergence of minimizers

=g Lm0 ey —
1 v =,

5 > >
1/v

2. uniform convergence implies convergence of minimizers

but applies rarely, never |vvhe]{ll constraints depend on v
|

variational
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f¥<s fiffor all x € F,
e > s imimit, Sl )

2= St limsup. F (zhe= )

“Geometrically”: epi f¥ — epi f (later)

Pointwise:
e S ) S limas | E e e )

Continuous: Vz¥ — x,
limaimif SR o o el i s e )
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EpL-Convergence =

A" =argmin f", €-A" : € >0 approximate minimizers,

A =argmin f of limit problem, €-A approx. minimizers

A" v-converges to A, written A" = A, if
a) X € cluster—points{xv € AV} =>x€A

by xeA=3 e, \0,x" €¢g,-A" >X

f¥ < f implies e-AY =, e-A, Ve >0
A unique minimizer, e¥-AY == A as ¥ \.0.
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1. Stochastic Programming (recourse model)

e {f(n( r)+ Q& x) ifxeC

00 otherwise

Q(g,&j) = infy {fOQ(gay) }y & 02(5733)}

min B f(z) = E{f(¢, )}
SAA-problem: min f”( ) Zl i)

2. Statistical Estimation (fusion of hard & soft information)
(
Al e el co e B
G e e
(o0 otherwise

EL(h) = E{L(§, h)}, h"™"® = argming E{L(§, h)}

estimate: h” € argming EY{L(&,h)} = = >/, L(¢', h)
AS°tt . constraints on support, moments, shape, smoothness, ...
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~ Pricing financial instruments |

T

3. A contingent claim: environment process: {5 c R’ }t_o

history:g, E=E", price process: S f(f) € R"; numéraire (risk-free): S| =1
-t r d —1
, I-Strategy: {Xt(é)} ; value @ 1 : (S§'(£),X'(&))

t=0

claims: {Gt(g)}
=l

Instruments: T-bonds, options, swaps, insurace contracts, mortgages, ...

maXE{(ST,XT>} such that (S, XY< G + (S, X)), t=1>T
(S X <G (S =6 tas

feasible if G’ +---+ G' =0 V¢&; arbitrage = unbounded
prob[€ = £]= p, (finite sample?): max ), oes P(ST(E).XT (D)) ..
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Variational formulation: V&, Su— |Vu|2da: — (h, u)
find U(f,ﬂ?) = argminuEHé(Q) g(fa )7 g(f, ) ( 0 OO] GOLEH L

Lu(g,
G(u) =

Thursday, December 20, 12

r)} € Argmin,, ¢ rr1 (o) G(u) where epi G = E{epig(&,-)}
inf, {E{g(&, 2(€)) | E{2(§)} = u}

GG e & 0 =gy, {(v,u> e g(S,u)}, conjugate fcn

.. stationary, use Ergodic Theorem for random lsc functions

(epiy, -lim, £ >, g* (&, )* = Wllies oo ()
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Ef = B{f(£,))

f:Ex E —= R, random Isc function, f(&,x)= f,(£,x) when x € C(&)
Ec M(E,A;R"): L2(E,A,P;R"),...
others: C ((E,T);R” ) ,Orlicz, Sobolev, Isc-fcns(E)

Ef (x) = |_f(Ex(E)PdE) = B{f (€ x(E)}

= oo whenever |_f, (E,x(£) P(dE) = o
Ef :E — R always defined

Regression: (£ 1s not a linear space)

min{ jyeR Le[o,un ¢(y — h(x)) P(dx,dy)| h e Iscfens(R") N FH }

JH shape restrictions (convex, unimodal, ...)
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f:EXE— R a random Isc function, & values in (£, A4,P)

(a) Isc (lower semicontinuous) in x, (V& € E)

(b) (&, x)-measurable (A X B, )-measurable
recall: f(&,x)= f,(S,x) when x € C(&) -- stochastic constraints

G =+

Sy
;2121( FE X if x e CEY) (typically)

(oo otherwise (~ SAA of optimisation problems)

Question:

Do the " (&,") epi-converge to E{f(é,h)} P-a.s.?

does x" e argmin f” = x € argmin E{f(£,x)} P-a.s.?

Efeykias. Pfar—- 55 e o
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via inf-projections
D countable dense subset of E ( t-pro) )

f: E — R, Isc fcn completely identified by
{ox(s = InfRo(y.6) J ‘ x e D, E Q+}, countable

or {Cx(s == iIlfIB(w,(g) f } x € D,o € @+}

| VEN(:E)[ xevfl’]a i S

VEQ(&E)[ ey e
Qx {]BO 15,510 |:UED,5EQ+,$E]BO $,5}

5cQy  {e|B(26)€Q(@)} 0,6
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nvergence
(via iw—f—Projeatlows)
R SR B Rl = Y0 e Ui E D

[ limsup,, ¢ s < cys, liminf, 0 s > 045 j

forx € D,0 € Q,: 05 =infgo(z 4 f¥, cis =infp s [
(fundamental) Theorem. f“ : E — R & f lsc (necessarily)
1. e-liminf, f¥ <= liminf,(infg f*) > infp f for all compact B

2. e-llimsup, f¥ <= limsup,(infp f*) < infp f for all open O

Hit-and-miss topology on the space of epigraphs, (later?).
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Scalarization of random Isc fcns |

f:2 x E = R, random lsc fcn, completely identified by
{ox(;(f) = infgo(y 5y f(£, ) ‘ reD,de (Q+}, countable
or {Cw5(f) = infB(%(g) f(f, ) ‘ZC c D, € Q+}, VETens

T COUNTABLE
£ — 0,5 1 = — R are measurable,
(&) extended real-valued random variable
: 2 — R are measurable,

(&) extended real-valued random variable.

e jf random lsc fcn = f + (p(s,s5) random Isc fcn

e f random lsc fcn = € — a(§) = inf, f(z, &) measurable
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Probabilistic properties

f random lsc fen: {f(&”, -)}VE]N iid whenever {&” }VE]N
Effos field on Isc-fens(E) = o-{ f € Isc-fens(E) | info < a}, O open, o € R
= B(lsc-fens(E)), E Polish

PEAEeT  f ie — os(6 ) e N R e (N

T e B e ) i e 0 e

the same holds for {c,s(-)}
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Summary

et =R random Isc fen, |

€ {sy}VE]N 1
:>f€7 {f‘f e }I/EIN 1id

= {0x5(€ ) == R}VE]N’
countable, identify f(&"” )

— {C:U5(£V) L2 R}I/E]N’
countable, identify f(&” )
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Countable = a.s.

Lemma. f,g: E — IR, Isc. D = prjz countable dense subset of epi f.
FeCgaon D =——it=g onl;

Proof. f < gon D only if {(:1:,04) } o > g(z), s € R} C epi f.
Taking closure on both sides = epig C epi f.

Implication. To check f(&, «) < g(§, ) a.s. on E only needs
f(&,+) <g(&, «)a.s. on D a countable dense subset of F.
Restrict & to a set of P-measure 1, say = itself (from now on),

and f(‘fa ') Sg(f? ') on D) = f(€7 ') Sg(ga ') on L.
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LLN: random Isc functions?

VeeD, deqQ,
L 15V 0ss(€)) — E{oas(€)}, (P=-a.5.)

2. 13, coa(€) = E{cas(@)}, (P~-a.s)

7= D 1 f(&, ) S E{f(E, ) because

min {

e
3{f(€,2)} | 2 € Bz, 0)} # B{ min{f(&,2)} | » € B(x,6)}

wn general
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Law of Large Numbers:

Random Isc functions




- L] (=) - e

"LLN: Proof

Sl R TSI e e T
for any x € E and any sample £= = (£1,£2,..))
lim,, % Yo e ) e imy B F(ES )l — E ().

2. V¥ — x,liminf, E¥f > Ef
fortanyem e andiany e —(Ce e
1
e-lim inf f¥(£<,x) = sup liminf inf EYf > sup liminf —
=t TN e SRR ) BNt
where 2 € D = z, §' € Q. \0: z € B°(z},d") & {B°(z',6")}
%211/21 023151 (fl) = 4}{026151 (&)} & 43{O;lél (&)} 7 Ef(x)

—— o elimsint = T e
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f:Z2 x E — R, locally inf-integrable random lsc function
1€, & e } are iid =-valued random variables. Then,

Eyf T 4]V{f(€7 ) e %Zlyzl f(€l7 ) % Ef o 42'{f(ga }

which means e-argmin EY f =, c-argmin £ f, Ve > 0
E f unique minimizer, e”-argmin EY f = argmin E f as ¥ \.0.

SA A-applies without ‘any’ restrictions

loc.inf-integrable: [ inf{f(&,)|B(z,d)} > oo for some & > 0,
irrelevant in applications
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Ergodic Theorem

(E,d) Polish, (=, A, P) & A P-complete
gfatiie = R

x F/ — R a random lsc function, locally inf-integrable
©p : = — = ergodic measure preserving transformation. Then,

% P ks s I
allows for stationary rather than iid.

Application: “samples” coming from dynamic systems,
time series, SDE, etc.
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G~1(0) soln’s of G(z) = 0, approximations?

= E{G(&,x)} =0 “approximated” by G¥(x) =0
- tisample 2GR ()=t ElE 2

G:=2xD=F, set-valued G(£,x) C E, inclusion E{G(&,z)} 50

Thursday, December 20, 12

il e

o

&Y sample, approximation %22;1 G, z) >0

5{f(&2)} v C, E{f(§ )} = Ef(z) = [z f(

&Y sample PY (random) emplrlcal measure
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G:E—RY G71(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(& x)} =0 “approximated” by G”(x) =0
& S ample Cn = % Mm@y

G:=2xD=F, set-valued G(£,x) C E, inclusion E{G(&,z)} 50
¢, ..., & sample, approximation = > ;_, G(¢,2) 30

SA A-applies without ‘any’ restrictions
f on E x E, random lsc fen (loc. inf-[), {5,51, s } iid
Then BV f =E*{f(€, ) = s X1, f(€, ) & Ef =E{f(€, -}

e-argmin EY f =, e-argmin Ef, Ve > 0
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G~1(0) soln’s of G(z) = 0, approximations?

= E{G(&,x)} =0 “approximated” by G¥(x) =0
- tisample 2GR ()=t ElE 2

G:=2xD=F, set-valued G(£,x) C E, inclusion E{G(&,z)} 50
¢, ..., & sample, approximation = > ;_, G(¢,2) 30

Stochastic Programming (With recourse)

f(f,il?) :f01($)—|-Q(f,$), Q(fv lnf {fOZ y |Z/ECZ 57 )}
SAA-problem: min = >, f(¢,z) & Ef( eI
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G:E—RY G71(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(& x)} =0 “approximated” by G”(x) =0
& S ample Cn = % Mm@y

G:=2xD=F, set-valued G(£,x) C E, inclusion E{G(&,z)} 50
¢, ..., & sample, approximation = > ;_, G(¢,2) 30

Statistical Estimation (fusion of hard & soft information)
Ele )= Inh(efith 0 [Eh S hieAses
Then, estimate h” € argming [EY{L(&, h)}—h*™" = argminIE{L(&, h)}
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mean = (0,0) ... data samples correlated
covariance: MDM ", D= diag(4,1), M=

# samples: v =10,

"soft" information: /4 unimodal

Results:

frue est
e =

2
2

o0

Thursday, December 20, 12
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oS 6) oo

sin(w/6) smm(2r/3) .

=0.028, [A™ —h""| =0.006




normalized
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Absolute Error Level curves: true & estimate
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G:E—RY G 1(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(&,x)} =0 “approximated” by G¥(z) =0
EE e & ample Gl — % ey G(¢, x)

G:=2xD=F, set-valued G(§,x) C E, inclusion E{G(&,z)} 50

¢, ..., & sample, approximation = >, G(¢,2) 30
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G~1(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(&,x)} =0 “approximated” by G¥(z) =0
EE e & ample Gl — % ey G(¢, x)

G:=2xD=F, set-valued G(§,x) C E, inclusion E{G(&,z)} 50

¢, ..., & sample, approximation = >, G(¢,2) 30

SA A-applies without ‘any’ restrictions

f on E x E, random lsc fen (loc. inf-[), {5,51, s ,} iid

Then EY f =

E{f(€, ) =3 2 f€, ) & Ef =E{f(§, -}

e-argmin B f =, e-argmin Ef, Ve > 0
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G:E—RY G 1(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(&,x)} =0 “approximated” by G¥(z) =0
EE e & ample Gl — % ey G(¢, x)

G:=2xD=F, set-valued G(§,x) C E, inclusion E{G(&,z)} 50

¢, ..., & sample, approximation = >, G(¢,2) 30

Pricing contingent claims
—y —y ¢
claims {Gt(ﬁ )}, instrum. prices {St(ﬁ )} , invest. {Xt(g )}
!
max E{(S?, X1)} s.t. (8, X*~1) < G + (8%, X*~1) + end conditions.

Use ‘improved estimation’ & sampling: max > pe (ST (€), X1(€))
Correct pricing = well regulated market??
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G~1(0) soln’s of G(x) = 0, approximations?

— BEC & i —0 “approximatfd” by G (x) =0
EE e & ample Gl — % e G(¢, x)

G:=2xD=F, set-valued G(§,x) C E, inclusion E{G(&,z)} 50

¢, ..., & sample, approximation = >, G(¢,2) 30

Stochastic homogenization Variational formulation
given u(§, ) € argming () g = 2 [, a(é, z)|Vul* dz — (h,u)
(it ge Eseheihelt {u(£’ , )} € argmin ghom

vila: BErgodictiihm: g om— (epiw lim)vL Yl = Bl ))
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Topology of
Hyperspaces

Painlevé, Pompeiu, Zoretti
Zarankiewicz, Hausdorff, Lubben, Moore
Choquet, Vietoris, Fell, Attouch-Wets, Beer, ...




(E,d) always a Polish space

CcE, dx,C)=inf{d(z,x)|zeC}, d(x,D)=oo

cl-sets(E) = {all closed subsets of E}, &, E € cl-sets(E)

dl(A, B) = distance between A & B, metric(?) on cl-sets(E)

(cl—sets(E ), dl) Polish space = complete separable metric ??

dl(C",C)— 0 means C" — C (set-convergence)
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e ewyeegyy
%
:

Taw tOpOlogy
cﬂAp(A, B) >0, cz’Z(A, A) = 0, A inequality
but alAp(A, B) = 0 possibly when A # B
dl A B — SUD,c, B [d(a},A), d(x,B)]

for all p > 0, d, 1s a pseudo-metric

f >0 oA Blew?dp, set-nietric

d,(A,B) <d,(A,B)<dy(AB) p>2 +do
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C" - Cifd(C”,C)) >0 < for any p > 0,
{UEP(C”,C) — 0 forall p>p

A

d,(C”,C)—=0 forall p>p

(E,d) Polish = (cl-sets(F), d) complete, metric space

(cl-sets(F),d) Polish «<— E =R"
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outer SEMALCONELMWULOUS

S:D=Fosc < gphS CD x E closed
gph S = {(z,u) |u € S(z),z € F}

S(x)-closed

dom S= {z|S(z) #0} D ’
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outer SeMLCONELWILOUS

D — %E (OI’ %EXD)
d(R,S) =d(gph R,gphS), d,, d,
(osc-maps(D, E),d) complete metric, Polish: D =R", E =R™

S : D — FE (single-valued) continuous = osc, ...

(cﬂ(f’/, f) = 0 = argmin f” =, argmin f]

S~1(0) = sol’'ns of S(z) 0
SY — S uniformly = d(S",S) — 0

Thursday, December 20, 12



lower semicontiruous

f:E—-Rlsc < epif C E xR closed
epi f = {(z,n) |n > f(z)}




Lower semileontLinious

ELiF e i ballfliR a3 e =l

d(f,g) = d(epif,epig) d,, d,
(Iscfens(F), d) complete metric, Polish £ = R"”

d(f”, f) - 0= argmin f” =, argmin f
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Taw — TFf

F = cl-sets(R"), all closed subsets of R”"
= subsets R" that miss D = {F @) — @}

F, = subsets R” that hit D={F N\ D =&}
Hit-and-miss topology (= 7, Fell topology)

subbase: {F*|K compact} & {F, |0 open]
B(x,p) closed ball, center x radius p, B°(x,p) of
a subbase | F 07 ¢ £ g | xeQ’,pe Q..

B(x! UG
countable base: {F PR pe ) F B )}

(cl-sets(R"),7_ ) Polish space (separable, complete metric)
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(2,A,P), ZcR" & E Polish, for example R”
C:Z2 = E, C(§)C E closed set forall ¢ € Z
& C(0)={&|C(&)NO#D}eA, VO c E,open

= dom C = C™'(E) € A, measurability ~ hit open sets

c:E— clsets(E), c(&)~C(), F,={F cEclosed|F N0 =D}
(sets(E),E), E Effros field = G—{FO e sets(R"), 0 open},

C measurable <> ¢ measurable [¢™ (F,) € A]

t = B Borel field when E Polish (complete separable metric space)
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e arandom closed set C always admits a
measurable selection!

ds : dom C' — FE, A-measurable,
s(6)e C(€), VE edom(C C =

s: = — F arandom vector
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O C1sarandom closed set (& dom C measurab.

admits a Castaing representation: 4 a countab

{sv . dom C —> E, meas.—selections}

| ] s'©)=C(),Vée domCcE

O Graph measurability

(E,A) P-complete for some P,

(negligible sets are P-measurable)

C random set < gph C A ® B -measurable
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€:(Q7‘F7M)%(E7A7P)7 51/46

O a.s. (almost sure) convergence:

P{¢| lim, &"(w) = £ # £&(w), w € Q} =0

[ convergence 1n probability:

P(lg" —& >¢) —0foralle >0

O convergence in distribution: PY 3 P
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s {CV =2 R%veN } random closed sets

% a.s.convergence: dl (C Ze)E (f)) — 0 for P-almost all & € =2
C" — C as. = C random closed seton =, u(=,) =1

C" = C P-as.and dom C" = dom C. Then,

1 Castaing representations of C" — a Castaing representation of C

If s : = — E 1s a measurable selection of C, then

ds" :E — E selections of C" converging P-a.s.to s

# ('Egorov's Theorem': C¥ — C u-a.s. < C' — C almost uniformly)
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Let £°C ={xeR"|d(x,C)<¢e}, C*,C random sets
A, =fCivee)ufc et
p-as. convergence: 1{&|C"(&)— C(&)}=1
in probability: P| A;',(K)|—0,Ve>0,K e K = cpct-sets

C" converges to C in probability
< PAIC",C)>¢€e)—0 foralle>0

& every subsequence of {C"},

contains a sub-subsequence converging (-a.s to C

i.e., in probability = in distribution [ [n@aic@).c)paé) — o}

Thursday, December 20, 12



P ~ dlstrlbutlon fcns converge

P¥, P defined on (R, B)
P"B P < [h(§) P¥(d§) — [ h(§) P(d) Yh continuous

F(z) = P"((—00,2)), F(z)=P((—00,z)), cumulative distributions

e P e e G CONt e — { all continuity points of F}

(PP R P «— —F"% —F)
(Feis B 1 dige = for)

by . hypo-convergence
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- pr — P ~ distribution fens Convergem

P, P defined on (R"™, B,,) random vectors &7, &
P"B P < [h(&) P"(d§) — [ h(&) P(dE) Vh continuous

IR e (s e e s B R 2 e A

A

1. — F(z) < F(Z) “increasing” b

o it o Al Al e e n e S =)

3. F is usc (upper sc) limsup,,_,, F(2') < F(z),

4. R=(a1,b1] x --- X (an,bp|, V ={a1,b1} X - x{an,bn} vertices of R
VRC R, P(€ € R) = Yoy sgn(v)F(v), sg(v e V) = (—D#e i °

(e
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Borel o-field: B = G—{FK K compact} or G—{FO O open}
Distribution (P,B) regular, K compact subsets E
determined by values on {FK K € K} or {FK K e K}

Distribution function (Choquet capacity):

T:K—[0,1,T(@)=0and V{K*,ve{0} UN}cK:

(1,3)
a) T(K') \\T(K)when K" \\K  (~usconR")

b){D, :K —[0,1]} _ where D,(K°)=1-T(K")

4)
D,(K°;K"Y=D,(K*)-D,(K" UK") and for v=2,...
DK SR o K= Do (R K = D (R Ok ke o

(~ rectangle condition on R")
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P on B determines a unique distribution function 7 on K
T'(K)=P(F)
DV(KO;Kla---aKV) = P(FKO o FKI e FKV)

T on K determines a unique probability measure P.

Proof. via Choquet Capacity Theorem (Matheron)

(refined) via probabilistic arguments (Salinetti-Wets)

C :Z=R? arandom closed set

(P,B) induced probability measure:
P(F,)=P|C(G)] VGeB, T(K)=P|C'(K)| VKeK
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random sets C” converge in distribution to C when
induced P" narrow-convergeto P:P* — P _ pr n» p

(convergence of distribution functions)

T -cont

&T"— TonkK

K

T -cont °

a) VC",v € N, d converging subsequence (pre-compact)

b)K" /" K= cl| ] K" regularly ifint K c | ] K"

c) distribution (fcn) continuity: lim , 7(K") = T(cl Uv K")

d) convergence T* — T on C, continuity set = P" — P
OB Peei s on @Gl E e
K = finite union of rational ball, positive radius

f) e T(K + €B): countable number of discontinuities



T"— T on C, & P" —, P (Polish space: E,d)
P',P defined on B

probability sc-measures on cl-sets(E): A

> O,l S MCHSMCHIfC e C?
(1)

A is T ,-usc on cl-sets(E), @ MD)=0,M(E)=1
A modular: A(CH+ ACH=AMC' UC*)+AC' nC?)

Pand A=P

cl-sets

{Pv,v € N} tight: P" > PSS A" >, A(~— A" —, —A) on cl-sets(E)

define each other uniquely (£ complete = tight)

tightness ~ equi-usc of {A"} _ at <
rates: dl(A",A1) — 0 (for R-valued r.v., "~" Skorohod distance)
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Random Sets
Convergence & Expectation

Artstein-Vitale-Hart-Wets,
Cressis, Hiai, Weyl, ...




imit: Lo C" = {x e cluster-points{x"} ,x" € C V} =g (E"

inner limit: Li C" = {x — it e EE e R”} & Lo C"

limit: C"—>CifC= LiC"= Lo,C" (Painlevé - Kuratowski)

All limit sets are closed
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imit: Lo C" = {x e cluster-points{x"} ,x" € C V} =g (E"

inner limit: Li C" = {x — it e EE e R”} & Lo C"

limit: C"—>CifC= LiC"= Lo,C" (Painlevé - Kuratowski)

All limit sets are closed
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{C’; CiiE=nli e ]N} random closed sets. Then,

G —=Ca.s- dC% C)= 0 a5 Lo (Chre Cae il (Ciia:s
2. Vx € R™ and £ € E, with P(=1) =1, d(z,C¥(§)) — d(z, C(£)),
3. Vx € R™ and f € =1 with P(El) g

pli/(moo Lo, (C¥(§) NB(z,p)) C C(§) C pli/(moo B CaimiBis ol
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C¥ - C < VzxeR" d(z,C") — d(z,C) provided £ = R".

C" — (C if and only if the hit-miss criterion is satisfied

C' hits B°(x, p) then C* hits B°(z, p) for v > v, ,
sopCia@ iy, CF < diz,Cli> limsup. d( Celva

C' misses B(z, p) then C* misses B(z, p) for v > v, ,
sesCEmilher G —— = d (e CHllmmind s d s € vin
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C : =2 = R", a random closed set. Let

A= {ak — (@ . .,aZ’,aZH) | ai € Q" & aff. independent }

for ) # D = D" closed, define Prjp Gx = Prpn CLZ+1

where D' = prjpi—: aﬁc QIR ="
prjp ax is a singleton: intersection of n+1 “aff. independent” spheres.
Moreover, {prj DOk, Qf € A} also dense in D

s : = — R™ with s4(§) = Drjc(e) @k 18 a measurable selection of C

When D is a random closed set, so is & +— Prip(e) @, ¢ € R
repeat the argument n + 1 times to obtain s; measurable.
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C" : = = R™ random closed sets converging P-a.s. to C, dom C* = dom C. _1
Then, 3{3%, k e N} Castaing representations of C'¥ converging for each k

to a Castaing representation {sk, k e 1N} of C.

All Castaing representations are built via our earlier “projections”.
Then, V&€ € =1, s7.(€) — sp(€), P(Z21) = 1 the set of a.s.-convergence.
Since, P-a.s. convergence of ¥ — C' = (rely on 2. earlier)

d(ay, sy (€)) = d(ay, C*(£)) — d(ay, C(§)) = d(ay, 5k(£)), V& € Ex.

(a) Convergence of Castaing representations % convergence of random sets!
(b) v meas-selection of C' = Jv” meas-selection of C' converging a.s. to v.
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C := = R"is a simple random set if rge C' is finite.
(' is a closed random set <= (C = P-a.s. limit of simple random sets.

<: the limit of a sequence of random sets is a random set
=: let 'Y = C' N vIB, unif. bounded closed random set, C' = Lm, C”
build (via ”prj”) Castaing representations {r,’; }k ol thesCE

let {SZ}%N, = {r%}UGN, also Castaing for C”
o= Uj<k s d-converge uniformly to C* as k — 00
since each sy = lim;_,, s}; uniformly, s7, simple random variables

|74

w = U<y 57 1s a simple random set, C'(£) = Lm, Lmy Lm; A} (&)

AL Dy 2 C" allows diagonalization to find AY.,, — C.
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=, A) a measure space

Sierpinski (1922). Suppose P is an atomless probability measure.
(Given Ao,Al & ./4 with 0 S P(Ao) S P(Al) S 1, then

VA€ [0,1], 3 Ay € A such that P(A)) = (1 — AN)P(Ag) + AP(Ay).
In particular, it implies VA € [0,1], 3 A € A such that P(A) = X;
choose Ag = () and A; = =.

Lyapunov (1940) p : A — R™ atomless, o-additive measure.
For A € A, define rge u(A) = {u(B) | B C AN A}. Then,
rge (=) C R™ is convex and if u is also bounded, it’s compact.
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C : 2 = R"™ a simple random set, i.e., rgeC' = {zk e R" ‘ k € K, |K| finite }
Given 7,5 € EC =E{C(§)} =

1 simple selections r, s : = — R” with E{r(&)} =7, E{s(§)} = 5.
Let A € [0,1]. Define v : = — IR™ as follows:

1. partition = into subsets A— and A

A = B ciEin(e)i=— s(E) e
3. A={£ € E|r(&) = 2k, 8(§) = 21,k # 1} € A, a finite collection
4. split each A € A, P(A,) = AP(A) & A; = A\ A, (Sierpinski)

set v(£) =

9

2

\

r(&) on UAeA;é A alol
8(5) on UAE.A# As

then v =E{v(é)} =+ (1 - A5 = EC convex.
Clearly EC is bounded and it’s easy to show it’s also closed = compact.
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C:==1R" a closed random set
—> (' = P-a.s. limit of simple random sets,

say C¥ — C with C¥ . w.l.o.g

ECY =TE{C" (&)} ~ are convex, compact =
FC = B{C(§)} = U, BC¥

—> FE'C convex
—> E(C' closed it C' is integrably bounded
—> compact if rge C is bounded
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Random Mappings
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=E{G(&,x)} =0 “approximated” by G"(x) =0
et ample G0 %22/21 G(¢, x)

G:=2xD=FE, set-valued G(§,x) C F, inclusion [E{G(&,z)} 50
¢, ..., &Y sample, approximation = >, G(¢',2) 30

AN appevwll)(: meore about solutlon bounds

7

{f(&z)}, x€C, E{f(§z)} = Ef(z) = J f(

¢t ... €Y sample PY (random) emplrlcal measure

approx.: min

R fG siE——  (Cnherie @
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f,9: E — IR lIsc, convex & argmin f N pB # () # argmin g N pIB
e e gt

with p > p, € > 0, ﬁ:afp(f,g):

(

A

d ,(e- argmin f, - argmin g)
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exf(x) with g =

Moreau envelopes

f convex function
Al e i T T U0

1

2




d >y ,(f,g) =sup {|fr(z) — gr(z)

f,g majorizing —aq| - [P — ag

N ) dlv,\,p(f, G = 5(>\710)Cﬂ/\’y()\,p)(f7 g)

dy(fr,92) < dxp(f,9)
Cﬂp(fa g) < Cﬂ)\,9p(fa g) + k(A a1, ag, p)
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E separable Banach space, f random Isc function, {S = }

1. {f(&, ),€ € E} separable subspace (Isc-fens(E), 7qq)
2. P-a.s.,V0 >0, ,0>O I

B (33 16 VAT A s

with € ,(A) = 0 as ANO

I/E]N

3. V6> 0,p>0,dg,(Efr, Ef) 0 as A\O0.

'

Then, d(E*f,Ef) -0 P>-a.s.
e

r — f(&,x) convex =—> conditions 2 & 3.
d, (- argmin B f, e- argmin Ef) < (14 4pe=)d,(E” f, Ef)

E reflexive, BV f —Ef — d(E"f,Ef) — 0 a.s.
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[G : E — R% G 1(0) soln’s of G(az)a O, approximations?]

EG(z) =E{G(&,x)} =0 “approximated” by G"(x) =0
L pamlles G ) = % denele )

G:=xD=FE, set-valued G(§,x) C FE, inclusion E{G(&,z)} 50
¢, ..., & sample, approximation = >, G(¢',2) 20

{f(&z)}, x€C, E{f(§z)} = Ef(z) = J f(

¢t ... €Y sample PY (random) emplrlcal measure

approx.: min E¥{f(§,z)} = £ >, f(¢',2), 2 €C
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min f = f, +1. optimality:(0 € f (¥) = S)D  ~0 = Vf(¥)
generally, o( f + g) # of +dg

CQ.(Constraint Qualification): — N.(Xx)N 9" f,(x)={0}
v e d” f,(x) = horizon subgradient if

3% = ¥ with f(x*) = f&@),v" € FG*)A N0 & AV — v

with CQ. X locally optimal =(9f, (X) + N.(¥) = S(¥) 3 0)
f convex ( = regular), df,(x)+ N.(x)>0
— globally optimal (without CQQ)
When f,, C are convex: —df,(x) € N.(x),

a functional variational inequality
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(E,d) Polish, in paricular £ = R"

(cl-sets(F), d) complete metric space; Polish if £ =1R"
d(C¥,C) =0 << C" - C

osc-mappings = closed graph
(osc-maps(S), d) complete, metric space;
Polish if dom C R", rge C R™

Convergence:
Sl S i dlephS% ephiS) — 01— (S =G
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G:E —RY G 1(0) soln’s of G(z) = 0, approximations?

7

EG(z) =E{G(&,x)} =0 “approximated” by G"(x) =0
L pamlles G ) = % denele )

G:=xD=FE, set-valued G(§,x) C FE, inclusion E{G(&,z)} 50
¢, ..., & sample, approximation = >, G(¢',2) 20

{f(&z)}, x€C, E{f(§z)} = Ef(z) = J f(

¢t ... €Y sample PY (random) emplrlcal measure

approx.: min E¥{f(§,z)} = £ >, f(¢',2), 2 €C
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X BB

. i
C' ‘covered’ by countable selections ok >( )
: : ~ c(&
Castaing represnetation

a.s convergence: P{&|d(C¥(€),C(¢)) =0} =0

= in probability: Ve > 0, P{¢ ‘ d(C*(&),C(&)) > e} — 0

= in distribution T : cpct-sets(E) — [0, 1], T(0) = 0,
(a) T(KY)NT(K) for K¥)\K, (b) ‘rectangle cond’n’
P2 P < TY — T on cpct-sets(IR")
or, even, on finite union of closed rational balls.
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7 )

EC = BE{C(&)} =1 [ s(&)P(d&)| s(-) P-summable selection

f—

= y

.not necessarily closed even when C 1s closed-valued
A

Convexity:

C P-atom convex = EC 1s convex

prob=1/3

(certainly when P 1s atomless).

I
I
I
I
I
]
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(

EC = BE{C(&)} =1 [ s(&)P(d&)| s(-) P-summable selection

f—

=

.not necessarily closed even when C 1s closed-valued
A

Convexity:

C P-atom convex = EC 1s convex

prob=1/3

(certainly when P 1s atomless).

N

J
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"Bounded random set
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measure P atomless, then EC = E{C(&)} is convex (Richter, Lyapounov,...) :

P is P-atom convex = E(' is convex; |an atom contains no (measurable)
subset of positive probability]

C a random set, ) # EC = IE{C(£)} contains no line, then

con EC' = E{con X (&)}

this essentially requires that C'(§) C a pointed cone

in general, the expectation of a (closed-valued) random set is not closed

if |C] = E{sup|[|s(&)||s(¢) € C(€)]} < oo then EC is closed;
C' is then integrably bounded.
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C :Z = E measurable, {§V ,velN } 11d Z-valued random variables

C(&") iid random sets (i.e. induced P" independent and identical)
EC=E{C(+)}= {j_ s(E)P(dE) ‘ s . P-summable C(&)—selection}

independence = all (measurable) selections are independent

I N

{C(€"):E=3R" v e N} iid with EC # . Then, with

Cv(éj“):vl(iC(ék)je C =clcon EC P”-as.

'N A

Lo,C"(")c C < limsup, o . <0z support functions

Proof: time
LGl )= C relies on LLN for (vector-valued) selections allowing
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StE e e R hie R
A ® B"-jointly measurable: S~ (0) e A® B", O open
= V x:¢+— S(&,x) arandom set

random closed set when § 1s closed-valued
ES:E = R" with ES(x) = 4J{S(§,x)} expected mapping

ES convex-valued when ¢ — S(&, ) P-atom convex

Law of Large Numbers for random sets

applies pointwise
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stochastic variational problem: S(x) =E{S(&,x)} >0
S :Z2xR"=R" random set-valued mapping
& random vector with values Ee Z c R"

solution (a 'stationary point') x € S7'(0)

¢ =(5,....6)of

(22—15(5{ x)) Sv(g x) = O appr0X1mat1ng system‘?
v >

ie., (') (0)=, $7(0) as. 277
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S:2x D = F, set-valued S(&,z) C E, inclusion
iid-sample EW: ¢ .. & and z — S(€, ) osc

SAA-mapping S¥ : 2> x D = E, random osc mappings
v A P
Sy(faaj):%Zk:lS(fkax):S (f 756)7 vge‘:

Ve € D, S(-,x), closed random set,

let S =clecon ES, ES(z)=E{S(z, &)}

Artstein-Hart LLN applies SY % S a.s. when E = R™
bl 2 8o =5 o ( )35 ( i Neededs s S

recall: S(z) = cl ES(x) when P-atom convex, ES(z) closed if ¢ — S(§, ) is
integrably bounded and compact if rge S(-, z) is bounded.

Thursday, December 20, 12



S'¢&,:)>, S P -as.=? SY(E,)(0)=, ST(0)

sometimes!

graphical rather than pointwise convergence 1s required

SY(E,.)—> S P”-as.is needed

gph

relationship between graphical and pointwise convergence?
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E=(E'.&E,..), G'(,x) o-(€,...£") measurable
-G"(€,x)e N.(x), C compact, convex

Ney +GY(E,x)=S8"(x)20, S" closed set-valued mapping
G'(&,) > G(E,)

x" (&) solution of —G"(§,x) € N.(x) for sample &= &

does x"(€) — asolution of —G(&,x) e N.(x)? as.

what if C depends on (&,V) : sequence of random sets C"(€)?
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agent's problem: a e A, | A |finite, possibly "large"

x €argmax u (x ) so that <p,xa> < <p,ea>, x €X

e . endowment of agenta,e € mt.X
u_: utility of agent a, concave, usc
u X —> R, X cCR"(survival set) convex

market clearing: s(p)= 2 (e, —x ) excess supply

ac A
equilibirum price: p € A such thats(p) =0, A unit sitmplex
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c, =argmax_ u, (x) so that (p,x)<(p,e),xeC,

2. (e,—¢,)=5(p)20.

1 N,(Z)={v|(v.z-Z)<0,Vze D}
G(p.(x). AN =] Y, (e, ~x):(A,p~Vu,(x)):(p.e,~x,)]
D=Ax (HaCa)x (HGR+)

~G(p,(X,).,(A)) e Ny(p.(X,).(A,))
D unbounded — D bounded
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(C;ayaacj,g) p— argmaxxl,yeRL,x?EM ucll(xl) _|_ Ea {uj(g,xz(g))}
such that <p19xclz i Ta1y> < <p1’eclz>
2 2 i) ) =
<p5’xaa§> S <p§’ea,§ +Ta,§y>, \VIS &=
xcllEXcll’ xife‘Xiga ngE

I {-} expecttion with respect to a-beliefs, = finite support

2-stage stochastic programs with recourse

solution procedures & approximation theory "well-estblished"

T,,T, . : input-output matrices (production, investments)

ecll e inthZ, ejg s inthg for all £
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excess supply: agent-a: ( G ycll,{cj’g}éeE)

Y. le-+Tly)) =5 (p' Apites) 20

VE X €T - cls) = st (P Apihes) 20

Variational inequality: — G(p,(x,),(A,)) € N,(p.(x,),(1))),
p= (pl,{pé}geE)’x: (xl,{xé}éea),l: (ll,{/ﬂ@}ges)

S(G,(p,x,A)) = G(G,(x,p,A) + N, (p,x,4)),
E{S(&,(p,x,A)} >0
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S,8" : X=R". Then,S"—S and S"— S (at x)

point gph
@{C “,veN } are equi-osc (asymptotically) (at x)

~ Arzela-Ascoli Theorem for set-valued mappings

S random mapping, P"-as., S"(€,-)—>clconES =S

point

then §' > S < {S “,veN } are equi-osc (asymptotically)

gph
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d(S(z"),8(z)) = 0 <= d,(S(z"),S(z)) = 0

— d,(S(z"),5(%)) = 0¥p>p>0

S is osc (outer semicontinuous) at Z if e,(S(z"), S(z)) — 0 as ¥ —
S is isc (inner semicontinuous) at Z if ,(S(z), S(z")) — 0 as 2¥ — T
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S:D= R", Dc R" is osc if gph S is closed

oscatx: givenany p>0,e>0

vV eN@):e,(S(x).5(x))<e, VxeV

{SV :Dij} are equi-osc at x

given any p >0,e >0

3V eN@): €)S"(x),S"(X))<e, VxeV
V =V (p,e) doesn't depend on V.
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S: Ex X=3R" random mapping, (Z,4,P)
P”-as.: SV(§,°)ﬁh S at X < SAA-mappings {SV(§,~)} equi-osc at X
gp

= sol'ns of $¥(£,-) 20 =, sol'ns of S(-)>0

Sufficient condition: P~ -a.s.

S(€,-) stably osc & steady under averaging — {S e )} €qui-0SC

—

Law of large Numbers for Random Mappings
S random osc mapping: = X R”" Hg”
stably osc & steady under averaging

E',E” ..., iid random variables (values in Z), distribution P

Then, v‘lxzzlS(fl‘,-) - §= clconE{S({fo,-)} P -as.

gph

Thursday, December 20, 12



OSS\; W 050 (

S stably osc near x if P-a.s.,
Vp>0,e>0, AW eN(Xx) & nB (n>0):
€,(SE,x"),SE x))<e, VX ex+nB, xeW
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ueS' (E.x)NpB=3p>p, u* € S(E,x) PB such that
u=v'(u' +---+u"); SV(%v,x)m pB l ZS(fk,x)m pB
Ve e
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rge S < B bounded = steady under averaging

S cone-valued and rge S < pointed cone K. Then,

S = ES and = steady under averaging.
S, R steady under averaging = soi1s S+ R
R(&,x) = R(x) = R steady under averaging

rge S bounded + R constant = steady under averaging

G(&,x)+ N.(x) = steady under averaging (V.I.)

provided G : Z X X— R" is bounded

S,R stably osc = § + R stably osc
although D',D” osc 5 D' + D’0sc
B closed, convex x> Ny(x) osc

but not stably osc (x" € intB — X € bdry B)
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EG(x)=E{G(,x)} € R(x)
(V.I.: $=N_, applied to option pricing, ...)
G'(E,)=v'Y G(Ex). AssumeG'(E,"), EG e C\(R";R"),
x strongly regular solution [Robinson] of EG(x) € R(x),
AV e N(X), p > 0 such that Vz € pB :
2+ EG(X)+ VEG(X)(x—X) € S(x)

has a unique solution x(z) € V, Lipschitz continuous on pl8, and

G"(¢,)— EG||— 0 P-as. Then, for v sufficiently large

on a neighborhood of X, G"( & ,*) € R(x) has a unique solution

e Pae
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