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“Optimization & Equilibrium”

“Nothing at all takes place in the universe in which some rule
of maximum or minimum does not appear” L. Euler 1744
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“Optimization & Equilibrium”

“Nothing at all takes place in the universe in which some rule
of maximum or minimum does not appear” L. Euler 1744

“Il n’est pas certain que tout soit incertain” B. Pascal +1645
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Prelude: 14th-Century - 1950

~ 1350 Oresme'srule: f: R > R

x* e argminf i df(X*;W) — lim f(x *HTW) — f(x*)
7—0 T

~ 1650 Fermat's rule: f :R — R, f smooth
x*eargmin f = f'(x*)=Vf(x*)=0
df (x;w) =(Vf(x0,w) = (Oresme rule < Fermat rule)

=0, VweR

(~ 1950 Dantzig simplex method for linear programming)

Oresme's rule: f:R" >R

x eargmin f = df(x*;w)=0, VweR"
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Curve Fitting

find 4:[0,1] > R, given h(z,),...,h(z,)

approximate by p(x)=a x" +---+a,x + a,

N 2(20 7l — h(z, )) = mln L (Za—vy,Za—y)

TR
A Z, 1_

tt RSy = () D)
% z.L 1 i

Solution: applying Fermat's rule,

a' =(Z272)"'Z"y; assuming col. Z linearly independent
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Curve fitting: polynomial-approx.

with best degree # = §

_ 1 1 1 1 1 1 1 1 1 |
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Steepest descent - Newton Methods

direction of descent d7, >0,V7€(0,7,): f(x+7d)< f(X)
df (x;d) <0 smooth: (Vf (x),d > < 0 = d direction of descent

Steepest descent: x”; VF(x")=0 stop;
di==Vf(x"),x" = argmin{f(x)‘x clx",x" +Ad"),A 2> O}

Newton direction: d" = —(V2 f (xv))_1 Vf(x") = Newton Method

quadratic convergence locally: (f C*...), with local sol'n @ x
dp>0k20: IV f(x)-V fF)ILxlx—x"1, Vx,x" € B(x,p)
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Quasi-Newton Method(s)

0. x",B"(=1),v=0
1. VF(x")=0 stop or B'd"=-Vf(x")
DL = argmin{f(x)’x elx",x"+Ad"),A 2> O}

B’ = Hessian V° f(x") in Newton (curvature)
Bv+1(xv+1 i xv) 1] (Bv i1} U)(xv+1 5 xv) x) Vf(xv+1) §3 Vf(xv), i.e.,
UvSv ) CV i BVSV,SV 1 xv+1 —XV,CV 23 Vf(xv“)—Vf(xv)

Quasi-Newton condition
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Integral Functionals
(Calculus of Variations)

min{ f(x)= j;L(r,x(r),x(t))dt\x e fens([0,1],R), x(0) = o, x(1) = /3}

Oresmerule: x eargmin f = df(x ;w)=0,VweW c X,
W admissible variations: = {w € fcns([O,l],R) \w(()) =w(l)= O}

Bernoulli (Jacob, Johan), Newton (~ 1700) = Euler equation

Ai N

L(t,x1),% 1)) = %Lx(t,x*(t),x*(t)) fort €[0,1]

\_ J
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Mathematical Shift
(a paradigm change)

differentiability — non-smooth

typical example: f(x) = min{ g(x,y)|yes (x)}

dom f — open to closed
INEQUALITIES!




A formulation -- Product mix problem

A furniture manufacturer must choose z; > 0, how many
dressers of type 7 = 1,...,4 to manufacture so as to
maximize profit

4
Y ¢jmy = 12a1 + 2535 + 2173 + 4024

25

The constraints:

121 - bea®al b3 + teay < d
tflﬂfl —1— tfgl‘l it tfgib'l = tf4371 S df
te; (tr;) carpentry (finishing) man-hours: dresser type j

d. (ds) = total time available for carpentry (finishing) I
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Product mix problem (2)

Solution via linear programming:

With

max(c, z) so that Tx <d, x € R

A 497 10 d,
SR e T 181140 dy

Optimal:

z? = (4000/3, 0, 0, 200/3)

Value: $ 18,667.

6000
4000

L
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Product mix problem (3)

But . .. “reality” can’t be ignored!

tcj i tC] i ncja

brj =ty + My

entry possible values
d.+¢.: || 9,873 | 5,967 | 6,033 | 6,127
dr + Gy || 3,936 | 3,984 | 4,016 | 4,064

10 random variables, say, 4 possible values each

L = 1,048,576 possible pairs (T",d")

A
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Product mix problem (4)

What if > (te; + nej)z; > de + ¢ ? = overtime
With € = (1.3, Cg), recourse: (y.(€), ys(§)) @ cost (qe, qr).

max (c,z) —pi{g,y) ~pAq,y?) = prie,y")

St gyt giid’
T2ZE _y2 S d2
i S i Hln
i QR R e 0T R ) yt >0

Structured large scale l.p. (L ~ 10°) I
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Product mix problem (5)

Define = = {£ = (1,()}, pc = prob [¢ = ¢]

Q(§,v) = max {(—q,y) | Tyx —y > d¢, y > 0}

EQ(r) = B{Q(&,2)} = ) peQ(&, 7)

Eex

the equivalent deterministic program (DEP):

max(c, ) + FQ(x) so that z € R’}

a non-smooth convex optimization problem: E(Q) concave. I
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Product mix problem (6)

DEP

robust

Recall: x! =(1,333.33, 0, 0, 66.67)
expected "profit" relying on x‘ = $16,942

o x“ is not close to optimal

o x? isn't pointing in the right direction I
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Curve Fitting (2)

find A:[0,1] = R, given A(¢,),...,h(t, ) & h smooth
approximate by z, C'*-curve
mesh ={O,5,25,...,N5 £ 1}, on ((k —1)0,ko] Z7(t)=a,

k—1
)=z, +vt+6) (t—t,+6/2)a, +t—1,_Ya, te((k—1)38,kS]

i

fl] 0
find z,,v,,4,,...,a, all eR

min ||(z(t,) - A()),l =1....,L

\_ 3 1)
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Epi-spline fit

z 1s an epi-spline of order 2,

on each (open) sub-interval a polynomial of order 2.

1.5
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Preliminaries —- Convexity
“minimization framework”

f:R" = R =[-o0,c0], domf ={x|f(x)<oo}

proper: dom f #J, f > —oo

f(x)=f,(x) whenf(x)<0, f(x)=0, xe XCcR"

= oo Of

= R i=s4+1,...m

herwise

epi f = 1(x,0)

fx)zoalcR™

f Isc < epif closed (lower semicontinuous)

f convex < epif convex
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Optimization problem

min f(x), x €S,

S={xeR"[f(x)0,i=1-s, f(x)=0,i=s+1>m/

A

M
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min f on R",

Extended-real valued fcn

f=/f,+1,(x), 1. indicator function of §

S=domf X
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Functions & Epigraphs
epi f = {(x,0)|f(x) < ex]

flscatx:liminf,_ _f(x")2 f(x), fuscatx:limsup . f(x')<f(x)
f Isc < epif closed f usc < hypo f closed
.

_

A

M

.

f Isc & epi1f closed

lower semicontinuous

f convex & epif convex
fuc & —flsc

< hypo f closed

S =dom f X
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flsc & lev, f closed Vo

Level sets & Constraints

lev, ={x e R"|f(x) < a}

-

i

AN

N\

4

Ievaf

—————

CCCCCC

S=domf




MOREAU ENVELOPES

e,f =nf, {f(WH ilw—xlz} epi elfzepif+epii\.\2

2l Moreau envelopes
A SO0 141001
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MOREAU ENVELOPE: APPROXIMATIONS

. 1 1 2
e, =1Inf W)+ — lw—x epie,f =eplf +epl—|e
f w{f() i } pie,f = epif +epi——|+]

i Moreau enverlc
b4 dlsel funttian® f

T AL0XaT4DI1S
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EPI-SUMS (inf—convolution)

1
epif epig=inf, (fW)+gw—x); € f(x) withg=—

10 I

|
|
|
|
8-\ eo.of\ !
o f Moreau envelopes
| 3 j
7+ | f convex function y
|
|
|
|
|

N0 0.150.01 /

PPARER A0 ' A 1

€1f _/'/

[ evof i /
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Convex functions: Properties
s fi+ for B{FEN} = |_F(E2)PWEE) = Ef convex  (E.A,P)
MHEXRY R = [—oo,oo] random Isc function (normal integrand)
x> f(E,x)Isc VEEE
(&,x) > f(&,x) (jointly) A ® B"-measurable

a inf-projection: f(x) =1nf . g(u,x) convex when g 1s convex

uec

Proof:

A f convex, [local minimum < global minimum
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Convex

A f:0,., CcR" di

fcns: differentiability

ferentiable, convex <

(a) {(x' —x",VFA(x") = VF(x")) =0 Vx°,x'; montonicity

(b) f(y) = f(x)

+(Vf(x),y—x),V x,y e R"; affine support

(c) V* f(x) positive semi-definite Vx; f twice differentiable

a f(x)=2(x,0x)+(c,x) quadratic form, convex < Q psd




Convex fcns: subdifterentiability

it oy :f(3_6+ﬂ;)—f(7€)
2 Of(X)={veR"|f(x)= f(@)+(v.x—X), VxeR"} subgradients

subderivative (fcn) direction w

= <:v e R"{v,w) <df (x;w),Vwe R”}
= Vf(x), f diferentiable
A Vw:df(x;w)=max, {(v,w}\v = Bf()_c)}

a f(x)=max, _, f.(x) of convex fcns is convex, df(x) = 7?

a f = inf-projection of g(u,), of(x)=7?
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(GGeneralized Oresme, Fermat Rules

f:R" > R, convex

" A Oresme rule: x" € argmin f < df(x ;)2 0

A Fermat rule: x” eargmin f < 0e€df(x))

. J

g =1., C convex -- indicator function (of constraints, e.g.)
f=f+1., 0€df(x")=?0e€df,(x")+d1.(x")
a 01.(¥)= N, (x)={v[(v.x—X) Vx € C}, normal cone to C @ ¥
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Subdifferential Calculus

proper fcn: dom f #, f > —. f,g proper, convex
df (x;)+dg(xy) = d(f + g)(xy),

df (x)+ dg(x) < d(f + g)(x)
when int dom f N dom g = &, then (Bf (x)+dg(x)=0d(f + g)(x)

f=f+1, [(x)eR=x"eargmin f & 0e€df(x")+ N .(x")
convex programs:
minf =f, +1;, S={xeX|f <0,i:1>s, £=0,i:s+l>m/
X closed, convex convex affine

linearly constrained: (linear, quadratic, ... programs)
X polyhedral (box) affine affine
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Convex, Linearly Constrained

= {x‘(Ai,x) <b,i=1,..,5, (A ,x)=0b,,i= s+1,...,m} polyhedral
with x € C,
veN.(X)= 3dA 20,...,A, 20, A_,...,A € R such that

v=Y LA i=1..5, AL(A.X)-b)=0 (1L (AX-D))
1=4

x” sol'n of linearly constrained convex program if and only if

one can find KKT-multipliers y € R™ such that

(@) (4,2 )2b,i=1,...5, (A.x")=b,i=s+1...,m,
b) i=1,...,m, y 20, y.(A,x")—b)=0,
(€) x" e argminfo(x)—<ATy,x>,x e X (box)
. J

(~c) -ve N, (x") such that of,(x* )2 v+A'y
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Expectation Functionals

plain probability measures: for A € A, P(A)= P,(A)+P.(A)
= E{n@} =2 . M&p.+ A& p(&)dE)

st /demz'tj
E{S@&}={E{s(®)}|s(]) e, S(&),s summable} =R"
properties of E :

linearity, order preserving, dominated convergence
A f random convex Isc functions = x> Ef(x) convex

when Ef finite-valued:
dEf (x;w) = Eqdf (&, x;w)} & OEf(x)=E19f(§,x)]
ax eargminEf & Jve of(s,x"), E{vé)} =0 &

(‘vf €Z: x €argmin, [f(g,X) T <V(§)»x>:|)

1! Remark: to solve 0 € dEf (x*) it suffices to know v(&) for just one &

and solve one problem of the same size as the deterministic version
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Approximation: Convergence

outer limit: Ls C” {x € cluster-points{x"} ,x" € C V}
inner limit: Li,C* ={x=1lim, x",x" eC" cR"} c Ls,C"
limit: C'—CifC= LiC'=Ls C" (Painlevé]

All limit sets are closed
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Convex limit sets

C” convex = Li,C" convex = Lm C" convex (if it exists)

= Ls C" convex

but convexity can result from taking limits
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EPI-Limits

{f:R" >R, veN}
lower epi-limit: e-li /" such that epi(e-li, f")= Ls epif"
upper epi-limit: e-Is f" such that epi(e-ls f")= Li epif"
epi-limit: f" — fwhenf=celif"=elsf", f=elm, f"
all epi-limits are Isc (closed epigraphs), e-li f" <e-ls f"

: o : UL
f* convex = e-Is, f 1sconvex and so1se-Im /" (if it exists)

Convergence of level sets / constraint sets:
f<eli, f" & Ls,(lev, ff)c lev, f Va,— o

fzels, f" o Ls (lev, f*)c lev, f forsome o, —

Operations: sums, scalar multiplication, epi-sums
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SV-Convergence
solutions, minimizers, ...

A" solutions of (generalized) equations
minimizers of a sequence of functions

saddle points or min-sup points of bifunctions

e-A" : € > 0 approximate solutions, minimizers, ....

A solution set, minimizers, ... of corresponding limit

Definition: A" sv-converge to A, written A" = A, if
a) X € cluster—points{xv € AV} =>x€eA

b)xeA=3 e \0,x" €¢g,-A">X
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Convergence of Minimizers
Sv-convergence of Minimizers

fvjf,x S cluster{xv S argminfv} = x € argmin f
fv?f,inff eR,xeargmin f = Je, \0,x" € g, -argmin [ — x
fvij@argminfv — argmin f

fv7f’ inf f* — inf f e R <:>{fv}veN epi-tight, i.e.

Ve >0,dB compact s.t.inf, f" <inf f" +¢&, Vv=>v.

-« aremin - »
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Set-valued mappings

S(x)c S(x)

NVirv X

S osc (outer semicontinuous) at x if Ls

S osc & gph S closed
S 1sc (inner semicontinuous) at x if L1 - S(x) D S(x)

W2 A

S continuous 1if 1it's 1sc and osc
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GRAPHICAL CONVERGENCE

SV-convergence of solutions

§" —, S when gph S* — gph § (as subsets of R" X R™)

Generalized Equations ~ Inclusions

S8 R'=ZR", §"(x)u’”, S(x)>u and §* —, S,u” — u. Then

X € cluster—pts{xv S'(x")> uv} =SX)>u
SX)ou =3du’" - u withS'(x")2u" andx" —> x

§* —, S pointwise doesn't yield convergence of sol'ns
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CONVERGENCE RATES

Excess distance function:

e,(A,B)=inf {n=0[AnpBc B+nB}, p>0
Estimate of set distance:

dl (A,B)=max[e,(A,B),e,(B,A)]
Set-distance:

dl (A,B)=max _;|d(x,A)—d(x,B)
d(x,C)=1nf . |y — x|
Pompeiu-Hausdroff distance: p = oo

(di,(A,B)<dl,(A,B)<dl (A,B),)
p’=22p+max[d(0,A),d(0,B)]
C'—Cedl,(C',C)>0e d (C'.C)—>0 Vp=0

9
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EPI-DISTANCE

Isc-fcns(R™) = space of all Isc functions from R* — R =[—o0,00]
dl,(f.g)=dl,(epif.epig), dl,(f.g)=dl,(epif.epig), p=0

B"" =B" x[-1,1]
di(f,g)= jpzo e "dl (f,g) dp, epi-distance, Attouch-Wets topology

f',f elsc-fens(R"), f¥ —, f<dI(f',f)—0
also dlp(fv,fH 0,Vp=2p>0,...

(lsc—fcns(R”) \{f =oo},dl ) complete metric space
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Epi-distance




QUANTITATIVE ESTIMATES

under y-conditioning for f, f,g € lIsc-fcns(R”), inf f,infg € R
min p g — minf‘ <dl (f,.8)
argmin ; ¢ C argmin f +y(dl (f,8))B

(b)

(X.1(x))

- > - >

2¢€ 2¢€
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QUANTITATIVE ESTIMATE

convex functions

f,g:R"—> R, proper, Isc, convex functions
argmin f,argmin g # &
p, large enough so that p,1B meets argmin f & argmin g
min f 2—p,, min g =2 —pP,

Then, withp>p,, €>0, n=dl (f.g)

A : . it 2p
dl,(e-arg min f,e-argmin g) <7| 1+
n+el/?2

<(1+4p/e)dl (f,g)
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Convex functions

(Wijsman) f'—f < (fY) —f =sup, ((v,x) - f(x)), f” Isc, convex

conjugate
functions

"= f =+ f" > f (pointwise) & fvﬁf;bfv?f
frof=fofe '} isequilsc

(Walkup-Wets) dl., (f.g)= dl,,(f*.g*) |=di(f.g)=dI(f*.g"]
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Attouch’s Theorem

(initial proof: via Moreau envelopes)

f¥,f:R" — R, proper, convex, Isc and A >0

The following are equivalent:
DT If
b) the mappings of " —, df and
I € (&), € (X), ()= @) [ (x) > )

(convergence of an integration constant)

1
— 2} and
21

dx,x" — x suchthate, f"(x") > e, f(x)

OPf —, Plf:argminw{f(w)+ |w—-

in situation b): also " (v')— f (V)
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Epi-Convergence

review
f¥<s fiffor all x € F,

1. Va¥ — zx, liminf, f“(z") > f(x)
2. da¥ — x, limsup, f¥(z") < f(x)

“Geometrically”: epi f¥ — epi f (later)

Pointwise:
liminf, f¥(x) > f(x), limsup, f“(x) < f(x)

Continuous: Vz¥ — x,
im0 fiCe o i sup,, f7 (24 < f(x)
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Epi-Convergence =

convergence of minimizers

A" =argmin f", €-A" : € >0 approximate minimizers,

A =argmin f of limit problem, €-A approx. minimizers

A" v-converges to A, written A" = A, if
a) X € cluster—points{xv € AV} —>x€eA
b) xeA=>3 ¢, \0,x" e¢g,-A" > X
/Y% f implies e-AY =, e-A, Ve > 0

A unique minimizer, e¥-AY == A as ¥ \.0.
T —

(nf f > -)
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Why epi-convergence?

1. pointwise convergence # convergence of minimizers

giill== il except wliliedli=1 010 fF o fl = ]
L (i

5 > >
1/v

2. uniform convergence implies convergence of minimizers

but applies rarely, never when constraints depend on v

|
l

|
|
|
|
1
fr

Y

dom f”
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Why epi-convergence?

1. pointwise convergence # convergence of minimizers
giill== il except wliliedli=1 010 fF o fl = ]
A

b

5 >
1/v

f

>t

2. uniform convergence implies convergence of minimizers
but applies rarely, never when constraints depend on v

|
l

f

dom f

Variational

ep1-

CONVergence

Y
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Variational geometry
Tangent Cone

weT,.(x),tangent to C atx € C, if xv—x‘/’rv —>w fOI‘XV?X,TV N 0

*
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Variational Geometry
Normal Cone

= NC()_C), regular normal at x € C, if (v,x—Xx)<o(lx—-Xx1),VxeC

ve N.(x),normal at x € C,if Elxv?x and v" — v withv' € Nc(xv)

normal cones: closed cones, N.(x) convex
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Clarke regularity

C Clarke regular at x it C locally closed & N.(x) = N -(x)

which implies N.(x) 1s convex if C regular at x
N_(x) D N.(¥)

Smooth manifolds and closed convex set are regular (also locally)

In general, N.(x) = Ls

Ivaie 1k

e e

N

[
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SUBGRADIENTS

(never supergradients)

Ve éf()_c) regular subgradient if f(x) > f(xX) + (v,x—X)+ o(l x — X )
EA)f()_c) - {v‘(v,—l) e ]Qfepif()_c,f()_c))}, closed and convex
X,V € EA)f(xV) with v — v

v € df (x) subgradient if 3x" —

of (¥)=1{v|(v.-D) e N, ,(X.f(¥))]. closed

X > df (x) osc f-attentive convergence: = Lsx_>f)_68f (x) c df (%)
£ differentiable at ¥ : 9f (¥) = VF(X) = of (¥)
f regular at ¥ : f locally Isc with 9f(X) = 9f (X) (f locally convex, e.g)

di.(x)= N.(x) when C is convex
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OPTIMALITY

min f = f, + 1., optimality: 0 € df (x)”
generally, d( f + g) # of + dg
C Q. (Constraint Qualification): — N.(x)N 9~ f,(x) = {0}
v € d” f,(X)= horizon subgradient if
x,v' e éf(xv),lv NO&AY — v

\%
dx el

Fermat's Rule (quite a bit generalized):
with CQ. x locally optimal = Jdf,(x)+ N.(x)>0

f convex ( = regular), df,(x) + N.(x)>0 =
globally optimal (no C.Q. in this form)
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Stochastic Variational Analysis
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Why?

G:E—RY G71(0) soln’s of G(x) = 0, approximations?

EG(z) =E{G(& x)} =0 “approximated” by G”(x) =0
¢ ... &Y sample, G¥(x) = % D Et i)

G:=xD=F, set-valued G(§,x) C FE, inclusion E{G(&,z)} >0
&, ..., & sample, approximation = >, G(¢,2) 30

minE{f(§,z)}, z € C, E{f(§ 2)} =Ef(z) = |z f(§ z) P(d§)

¢t .. €Y sample PY (random) emplrlcal measure

approx:imm B (&, w)F == N7 f (6, @), o€ O
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Some Examples:

1. Stochastic Programming (recourse model)

G = {fm(x) et R il =

00 otherwise

Q(fax) 7 Hlfy {fOQ(fay) ‘y < 02(6733)}

min Ef(z) = E{f(&, )}
SAA-problem: min f”( ) I e )

2. Statistical Estimation (fusion of hard & soft information)
—Ilnh if h>0,[h=1hec A% C E
(00 otherwise

EL(h) = E{L(§, h)}, h"™"® = argming E{L(&, h)}

estimate: h” € argming EY{L(&,h)} = = >/ L(¢', h)

As°tt . constraints on support, moments, shape, smoothness, ...
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Pricing financial instruments

. ! | T
3. A contingent claim: environment process: {aﬁt S Rd}

t=0
history:?,E , E=&" price process: S t(z) € R"; numéraire (risk-free): S| =1

T T

,  I-Strategy: {Xt(%t)} . value @ ¢ : (SI(ZjI),Xt(g))

t=0

claims: {Gt (Z‘t)}

Instruments: T-bonds, options, swaps, insurace contracts, mortgages, ...

t=1

maX]E{(ST,XT>} such that (S", X Y<G' + (S, X", t=1->T
($°, X°Y<G°, (S",X"Y>G" as.

feasible if G’ +---+ G' =0 V¢&; arbitrage = unbounded
prob[€ = £] = p, (finite sample?): max ), o= P(ST(E).XT (D)) ..
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4.Stochastic homogenization, ...

___________________________________________________________________________________________

Variational formulation: V&, £, u) =3 [, af |Vu|2d:zf — (h,u)
find u(f,x) o argminuEHé(Q) g(‘fa )7 g(f? ) ( 0 OO] UL

i{u(§,x)} € argmin, ¢ y1q) G(u) where epi G = E{epig(§, )}
G(u) = inf; {E{g(€,2()) | E{=(£)} = u}
G* =E{g*(&,-)}, ¢*(&v) =sup, {(v,u) — g(§,u)}, conjugate fcn

g1 €2 ... stationary, use Ergodic Theorem for random lsc functions

G = g"™ = (epi, -lim, £ >, g* (&, )* —  values of a°™(z)
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f:Ex E — R, random Isc function, f(&,x)= f,(£,x) when x € C(&)
Ec M(E,A;RY): L2(E,A,P;R"),...
others: C ((E,T);R” ) ,Orlicz, Sobolev, Isc-fcns(E)

Ef (x) = [_f(Ex(E)PEE) =E{f (& x(E)}

= oo whenever L f (&, x(E)P(dE) = oo
Ef :E — R always defined

Regression: (£ 1s not a linear space)

min{ j il Le[o 0= h(0)) P(d(x.y)) | he lscfens(R") N I }

JH shape restrictions (convex, unimodal, ...)

Friday, June 21, 13



Random Isc functions

f:EXE— R a random Isc function, ¢ values in (£, A, P)

(a) Isc (lower semicontinuous) in x, (V& € E)

(b) (¢, x)-measurable (A ® B, )-measurable
recall: f(&,x)= f,(&,x) when x € C(&) -- stochastic constraints

f(G,x) =

i e
;2121( FE X if x e CEY) (typically)

(oo otherwise (~ SAA of optimisation problems)

Question:

Do the " (&,-) epi-converge to E{f(é,h)} P-a.s.?

does x" e argmin f” = x € argmin E{f(£,x)} P-a.s.?

Law of Large Numbers for random Isc functions
~ LLN for Stochastic Optimization Problems.
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Random Isc functions
(via inf-projections)
D countable dense subset of

f: E — R, Isc fcn completely identified by
{03;5 = InfRo(y.s) J ‘ x €D, € Q+}, countable

or {Cx(s — iIlf]B(x,(g) i | x € D,o € Q+}
f(Z) = supy cp(z) infiey f(2)], flsc, f(Z) = llin__;lglr_’;lff(ﬂj)
= SUDy ¢ o(z) [ inf,cv f(x)}, E separable (Polish)
Q(z) = {B°(x,9) ‘:13 € D,0 € Q,,T €B°(x,d)}

= Sup 5EQ. inf{x | Bo(28)eQ(z)} Ox,6

{cs. 5} same argument

Friday, June 21, 13



Epi-convergence: Characterization

(via inf-projections)
Fh R LSRN RIS A Tl se e — v el 1 o e D

14

[ limsup,, ¢, s < czs, liminf, 05 > 045 j

forx € D,0 € Q,: 05 =infgo(y s [¥, chs = infps) [~
(fundamental) Theorem. f” : E — R & f lsc (necessarily)
1. e-liminf, f¥ <= liminf,(infg f*) > infp f for all compact B

2. ellimsup, f¥ <= limsup,(infp f¥) < infp f for all open O

Hit-and-miss topology on the space of epigraphs, (later?).
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Scalarization of random lsc fcns

f:2 x E — R, random lsc fcn, completely identified by
{0335(5) = infgo(y.5) f(£, ") ‘ xeD,de ([Q+}, countable
or {Cm5(f) = infB(a;,(;) f(f, ) ‘ZC c D, € Q+}, e

i COUNTABLE
£ — 0,5 1 2 — R are measurable,
0.5(&) extended real-valued random variable
£ — cps 1 2 — R are measurable,

c:5(&) extended real-valued random variable.

e j random lsc fcn = f + (p(s,s5) random lIsc fcn

e f random lsc fcn = € — a(§) = inf, f(z, ) measurable
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Probabilistic properties
iid-properties (pairwise “i”)

f random lsc fcn: {f(g”7 -)}VE]N iid whenever {5”} 1id

i
veEN
Effos field on lsc-fens(E) = o-{ f € Isc-fens(E) | info < a}, O open, a € R
= B(lsc-fens(E)), E Polish
1. {f(£V7 | )}VE]N Grialiia ity {O:U5(€V>7 = N} 441777 Vo € Qn)d & Q+

2. f(&Y, ), f(€2, ) “d” <= o0,5(€"),045(€7) “d”, Yz € Q™,6 € Q.

the same holds for {c,s(-)}
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Countable = a.s.

Lemma. f,g: E — R, Isc. D = prjz countable dense subset of epi f.
f<gonD — f<gonFE.

Proof. f < gon D only if {(z, ) ‘ o> g(z),x € R} Cepif.
Taking closure on both sides = epig C epi f.

Implication. To check f(&, «) < g(&, +) a.s. on E only needs
f(& +) <g(&, «)a.s. on D a countable dense subset of F.
Restrict &€ to a set of P-measure 1, say = itself (from now on),

and f(€7 ') Sg(gv ') on D — f(€7 ') Sg(év ') on k.
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LLN: random Isc functions?

VexeD, e,
L 152 0,5(8) = E{ous(®)}, (P>-a.s)

2. 1Y cos(€) = Efcs(©)}, (P=-a.s.)

= Y e f(&', ) SE{f(E, ) because

min {

£

2{f(€.2)}| 2 € Bx,6)} # B{ min{f(£,2)} | » € B(x,6)}

in general




Law of Large Numbers:
Random Isc functions




[.LILN: Proof

1. da¥ —- o :limsup, EVf < Ef

for any x € E and any sample £

lim, = >, f(& ) ~ lim,

2. V¥ — x,liminf, E¥f > Ef
for any x € E and any £ = (£1,£2,...) e &=

Slendaatii

{f(€E7, )} = Ef(x).

1 %
e-lim inffy(foo,m) = sup liminf inf EYf > sup liminf — 21—1

V— OO

where 2! € D — z, §' € Q, \0:

% Wity Of,jl(gl (&

2—iielimint,) Lo BV f(z) = E f(x)

43{026151 (§)} &

d (0 V—oo Be(x,d) sl \ 0 v—oo V

z € Bo(z',8") & {B°(z",d")}

{05 (&)} 7 Ef (z)
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Law of Large Numbers
(random Isc fcns)

f:E2 x E — R, locally inf-integrable random lsc function
EE I } are iid =-valued random variables. Then,

il o A o IR G R Al GRS
which means e-argmin EY f =, e-argmin £ f, Ve > 0
F f unique minimizer, e”-argmin EY f = argmin E f as " \0.

SA A-applies without ‘any’ restrictions

loc.inf-integrable: [ inf{f(&,)|B(z,d)} > oo for some & > 0,
irrelevant in applications
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Ergodic Theorem

(F,d) Polish, (=, A, P) & A P-complete

f: 2 x F — R arandom lsc function, locally inf-integrable
p : Z — Z ergodic measure preserving transformation. Then,

% S f(@'E )SES as.
allows for stationary rather than iid.

Application: “samples” coming from dynamic systems,
time series, SDE, etc.
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Approximation: Probability Measures

1. {P”, v=1,...} > P, f : 2 x R" — R random lsc fcn function and
for given x, £ — f(&,x) continuous on =, Ve > 0,

(a) there exists a neighborhood V' of x such that

f(&,y)— f(&,x)| <e, forallyelV.

(b) there exists a subset =, € A such that
/ | f(& x)|PY(d€) < e, forall veN.
=\E.
Then, EVf = SSEf = [ f(§,:)dP(§) at z, i.e.,

i sl Lt B () = i | EY f(x"),

Vi 09
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Approx.: Probability Measures 2

2. {PV}Ve]N? P_
f: 2 x R" — IR random lsc function

Ve >0,z

=. € A suc

n that Vo € dom T,

Joa, IF(€@)P¥(dE) <e, Yv  (f-tight)

Then, E¥f % EF = [ f(&,-) P(d€).




(Quantitative Approximation

3. f random convex Isc fcn, dom f(&,) = X (constant)

{ng(ﬁx)‘xeX}

|ve>o0. sup,, [£EN0@E <
PF:<QEP(5) >
[inf, f(E)0@E)> o

dr (P,Q)= sup‘E f(x)—E°f (x)‘ pseudo-metric on P

xepB

P eP., # argmin Ef bounded = 3p>0,6>0:
Vee(0,€), QeP; suchthatd, .. (P.O)<e:

e N N
4
dl_(e-argminE" f,e-argmin E€ f) < _de bie (P,Q)
\ E | |

Proof: via epi distance between E”f and E°f
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AN
&‘\\\x

Solving Stochastic Programs




[-Shaped Strategy
Benders, Dantzig-Wolte dual

taking advantage of structure




Two-Stage Recourse Model

With (arbitrary linear) recourse:
min,(c,z) + E{Q(&,z)}, Ax =b, >0
Wheref (q(&, - ) T,d,W)
Q(&,z) =1inf {(q(&,v)) | Wey = d¢ — Tex, y > 0}, q(&, +) convex

The deterministic equivalent problem, a convex program:

min, (¢, x) + EQ(x) such that Aa:' = b x>0
with EQ(z) = E{Q(§,7)} = [ Q(€, x) P(dE)

but, generally, E'() is not finite valued.
() finite-valued implies for all decision z,
for all events & a recourse is available
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Multi-Stage: Deterministic Equivalent

min _, E{f(&,x(&)}= ]E{]E. . {E{ f(C,x(@)‘ﬂlT‘. | Al\ﬂlo}}}

"time-staged objective":

= fl(x1)+]E<

= fi(x")+ E;

Efz(éxl,xz(é))+E{f3(&xl,x2<§>,x3<5>)\ﬂ2}\ﬂl}

£(&x .27 )+ B, (&x . (D)| A }

EQ, (&x' x*(®)=E{inf, ., f,&x' . x*©).x)| A, }
= f,(x")+ E{EQ,(&:x' )| A, }

EQl(g;

X)=Blinf, . f,(Ex' 27+ EQ,(&x' )| A, |

= fi(x)+ EQ(x")
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Solution procedures

min ., E{f(&.x(&)}= min £(xHY+EQ,(x)
EQl(g;xl) =+ E{infxzean /> (g;xl,xz) + EQ, (g;xlvxz)‘ﬂl}
EQ,(&x' ¥ (@) =Efinf,_,, fi(&x' 2’ (&).x)|A,]

deterministic optimization! convex when f convex random lsc function
in theory: any algorithmic procedure!

hurdles: values, (sub)gradients, "Hessians" of f, (x")+ EQ, (x")
are either not acessible or at best, prohibitively EXPENSIVE

Approaches: P" ~ P = approximating stochastic process { S T}

sampling: a) same as approximation except P random measure

b) SAA-strategy for ( B{ f(£.x(E)}+ N, (x(£)))
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Sequential L.p. Strategy

min f,(x), xe X eR", f, linear (not essential)
f(x)<0, i=1,...,5, f.(s)=0,i=s+1,...,m (affine)
in the s + 1 first constraints: f,(x) = sup,., f; ,(x), f, 2 f,, atfine

opt

0. v =0, pick polytope (box) K° > x

1.x" eargmin f; on K", seti, : f; (x")= max{lsl.gsfi(xv), el fl.(xv)}
if f, (x")<0,x" optimal, otherwise go to 2.

2. return to 1. with K**' = K* A {(Vf, (x").x—x*) + £, (x") 0]

when f, 1s not linear (but convex): min such that f,(x) -0 <0

convergence: finite # of steps or iterates cluster to optimal sol'n
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SLP for Stochastic Programs

min f,(x)+ EQ,(x) st. Ax=b,x =20 (x=x')
EQ(x) =Y, pQiE %) L large
0 »=inf,  {£(E:x.07)+(EQ, ()}
dom EQ, =(1) _ dom Q,(&'.)=[_{x[3x* € X,. £,(€'sx.57) < o}

O.v=r=s5=0

l.v=v+1, solve: min f,(x)+60, Ax=b, x =0 such that
(feasibility cuts) (BN 2e  k=1>r
(optimality cuts) <Fk ,x> +602f,k=1>ys

2. generate feasibility cuts: check if x € dom EQ, .
No: E, separates x from dom EQ,, goto 1. Yes, go to 3.

3. generate optimality cuts: F, € 0EQ,(x"), go to 1.
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Cut Generation: Fixed Recourse

(Lp

.)-solution: (z",0")

¥ feasible?”

VE € E: z¢ = argmax, {(dg — Tgaj’/,z> | W'z < D=l iligh <l 1}
if ne = (dg —Tex¥, z) =0, z¥ feasible
for some &, 1 > 0, then Epiq = (T¢) ' z¢, exr1 = (dg, 2z¢)

x” optimal?

V€ € E: v = argmax, {(dg i) ‘ W'z < q§}
if infeasible for some & =—  unbounded problem
otherwise Fy,1 = E{Tv}, fri1 =E{(d,v)}

if 0 > fk+1— (Fpi1,2¥) = z¥ optimal

add optimality cut
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(Generating cutting hyperplanes




Aggregation Principle
11
Stochastic

Optimization




Interchanging: | E & min

J&

Evident: with £ = {:1: .= > RN measurable, ... }

min t{f(f,x(f)) ‘xEE} = {mmf E.x ‘mE]RN}
when Jz(-) € F such that P-a.s. x(§) € argmin f(&, -)

x 18 measurable, ...

But our problem is: min

{ f(&, x)}, equivalently,

min Ef(z) = E{f (& z(£))}

such that x(&) =

*j{x(f)} P-a.s.

x can not depend on ‘anticipated’ (future) information
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Dynamic Information Process

So far, x mostly restricted to {(), =}-measurable, i.e., constant on =
Generally, as t ~T (possibly co) additional information is acquired
Ao ={0,Z} Cc Ay C--- C Ar = A, a filtration

with x; decision @ time ¢t depend on available information, i.e. A;-measurable

Reformulation

Let 2(€) = (z0(€), 21(€),-..,z7(&)) :E = RN, N =3 n
No={z€FE ‘ xy Ai-measurable, t =0,...T}

Nonanticipativity constraints: x € N, (linear subspace)
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Here-&-Now vs. Wait-&-See

@ Basic Process: decision --> observation --> decision
xl ~ 5 ~> )Cé%
@ Here-&-now problem! x'

not all contingencies available at time 0

can’t depend on &!

@ Wait-&-see problem
implicitly all contingencies available at time 0
choose (xé ,xé) after observing &

& mcomplete mnformation to anticipative information ?
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Stochastic Optimization:
Fundamental Theorem

A here-and-now problem can be “reduced” to
a wait-and-see problem by introducing the

appropriate ‘information’ costs
(price of non-anticipativity)

Friday, June 21, 13



Price of Nonanticipativity

Here-&-now Explicit non-anticipativity
min B{ f(&,x',x2)]} min [ { £(&,x},x2)]
e R x;€C' cR",
x§ e @G NIMEl x§ = Cz(f,xé), VE.

Qxé = 4){)%} VE
w, L subspace of constant fcns

multipliers L gf,1 0

min 4;{f(’g‘,xé ,xé) — (Wg ,xé) + (w&jl}{x;p}

such that x, € C,, x; € C,(€,x,)
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Adjusted Here-&-Now

min E{ f(€.x',x})] such thatx' € C' cR", x} € C*(£,x"), V&
x' must be G-measurable, G = o-{J,Z}

x”~ is A-measurable, A o G,

in general, interchange & & d is not valid
required: V €,x' e C',C*(€,x') 2 @ G-measurability of constraints

Now, suppose w, are the (optimal) non-anticipativity multipliers (prices)
min E{ £(€,x}.x3) — (weoxt) + (v, B{al )y}

such that x; € C' c R", x; € C*(§,x;), V&
Interchange is now O K. , E{(wé,E{xé})} = (E{wﬁ,E{xé}) =0, yields
(‘v’ &, solve: min f(&,x',x*)— (wé,x1>s.t. = e S R Calh o) )

+n,

a collection of deterministic optimization problems in R™
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Progressive Hedging Algorithm

0. w¢ such that E{w{ } =0, v=0. Pick p>0
1. forall &:
(xé"’,xé’v) e argmin f(&x',x%) - (wg,x1>
x'eC'cR", x> eC’(,x')c R™
2. X" =E{x;" |. Stopif

W

1,v 1%
xg X

=0 (approx.)

v+1 v ]

otherwise w, " = wg + p[xé"’ —x " |, returnto 1. with v=v +1

Convergence: add a proximal term

Y,

f&x ,x*)—(wy,x') - g‘xl _ X"

linear rate in (x"V,w") ... eminently parallelizable
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Nonanticipativity

Recall minEf(x) =E{f (& x(&))} suchthat z(¢) = E{z(£)} P-a.s.

Nonanticipativity constraints:

NG = {CE = — ]R”} C linear subspace of constant fcns

— Jw: = — R “multipliers” 1 N, (=

F{w (&)} = 0) such that

¥ cargmin Ef = z* € argmin {E{f (&, z(&)) + (w(&), (z(&) —E{z(&)))}
— z* € argmin {E{f (& z(£)) + (w(€),z(€))}}

P-a.s. = z*€argmin{f (¢, z)+ (w(&),z)}}, £€E

rel

w(.): contingencies equilibrium prices, ~ ’insurance’ prices
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PH: Implementation issues

implementation: choice of p ... scenario (X), decision (+) dependent
(heuristic) extension to problems with integer variables

non-convexities: e.g. ground-water remediation with non-linear PDE recourse
asynchronous

partitioning (= different information feeds)

minE{ (&0} . f(Ex)= f(x)+ 10 (¥)
S={E.5,.....E; } apartitioning of Z, p, = P(E,)
E{fE0}=Y, p,E{f(x]|E,] (Bundling)
defining g(k,x)=E{ £,(£,0)| E, } ifxeC, = [ C,

CeE;

solve the problem as: min ZnNzl p.8(k,x)
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Multistage Stochastic Programs

min__ E{fEx&)}, x(&)=("©)...x ()
filtration: A c Ac---c A=A, A, trivial

—v-1

xe N ifx' /A, -measurable = o-field( & )

(here & deterministic, x'(§) = x')

under usual C.Q. (convex case): x € X optimal if
FAw L N“we X suchthat x € argmin__, Ef(x)—E{{w,x)}"
wLNsE{wE|A, |=0Vt=1..T
\.

w non-anticipativity prices

_/

at which to buy the right to adjust decision (after observation)

can be viewed as insurance premiumes, ....
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A dual PH-strategy

single-stage case

minimize Ef(z) := ) .= pef(§,x) over all z € R"

Strategy: better estimates of the w-variables
“aggregation” of the solutions” to

minimize f¢(&,x) over all £ € R"™ for fixed £ € =

where f¢ approximates f.
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il

epl f# epig = inf, {f(u) + g(u — az)} exf(x) with g = %

epi-sums
10

9

|
|
[
|
8-\ eo.o1f| |
L f Moreau envelopes
l .
24y | f convex function
|
[
[
|
l

A=10,1,0.1,0.01

e1f
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Approximating problem

min F)\(ZIZ) = ZSEE pgf)\(g,f),$ c R"™

fk(fax) i Hlfu {f(fau) 1 % ‘u {1l $|2}
Fy # (F)) but F)\ &% F, F\ S F, finite-valued

Dual: max G)\(UJ) T deg pff;\k(€7w€)7
such that > ..o pewe =0

Solution strategy:
min ZZ;(l) Oray. such that ZZ;(l) Brw® = 0

i R I Mgty RS MR VY |
for a ’desirable’ collection of {w"}
Check for optimality, if not, generate w"
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Algorithmic procedure

Step 0. Initialize by setting v = 1 picking {ﬁj\g}geg in such a way that
= > pely =0 & o = de_pgp\/ﬂ 2|? + sup, (Wiv — f(&,u))]
Step 1. mmg Zk i ﬁkak, such that Zk:() ﬁk v® =0,

Zk Oﬁk 1,5k20,k20,...,u—1
Let (27,07) € R™""! be the associated multipliers
Step 2. For each & € =, let

ug € arglrbnin {f(f,u) + %\z’/ - u]Z}

f@g’/ = A1 (z¥ — ug) w’ = A1 deupg(z” - ug)
af = z’/@g e )\wg) s wS 4 R O I dez pearf
Step 3. If o, < w"2" 4 0" return to Step 1 with v+ 1 — v

If ap > w¥z¥ + 07, 27 is optimal
Adjust ) if appropriate; always generates bounds for original problem.
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Bundling




Discrete Scenario Tree

Algorithm: (1) Nested Sequential SL.P
(2) Progressive Hedging + Bundling
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Bundling Decomposition

min 4l{f(ng)}a f i LC(&)) £ 151
tc(x) =0 when z € C, = oo otherwise
= discrete or discretization (not based on best approximation of =)

{Ek,k: 1,...,K} a partition of =
pk:fEkP(df), k:1,...,K

L{f(&,x) = Zflpk { (& x) | k)
g(k7x) {f €7 ‘—'k}

min 37, prg(k, 2)

Bayes’ Rule
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dcenario Iree Decomposition

/

\

T




PH with Bundling

0. w{ such that E{w{ =0, v=0. Pick p>0
1. forall k : x', )?2=(x§,§€Ek)
(x.",x;") e argming(k;x',x°)— (w),x")
xeC' cR", x> eC’(Ex)cR™
2. T =F5 pa. Stopif [£Y 7

Alv

=0 (approx.)

otherwise w; ™ =w/ + p| %" = %" |, return to 1. with v =v +1

Convergence: add a proximal term

fiGim i Opt el

2

linear rate in (X"",w") ... still eminently parallelizable
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Arrow-Debreu model

pure-exchange economy: goods € R", prices p = ( P ) , free disposal
agents: i € I, | I | finite ---- initial holdings: (e;,i € I)

demand functions: x,(p) € arg max{u (x)‘ p.x)<(p.e, )}

utility fen: u, : domu, = X; - R, usc,concave =% X, closed (but convex)

excess supply function: s(p) = ziel(ei — X, ( p)), market clearing: s(p) =0

p 20 equilibrium < s(p) =20

Existence: x = (x,,,x,), x,, = money' allows p=(l,p,), under

ample survivability: (e e, ) = (X,

im °

elX

zm’

such that x,, <e,, x,, <e, and Ziezxig < Z e,

iel '8

+ 1ndispensability & unactractiveness
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Solution Procedures
Walras' law: p L s(p) ~ p,s,(p)=0,[l=1,....,L, s(p)=s(ap) tor o >0

Elpl L 1} since V or >0: {ap,x) <{op,e,)
A 13 i i possible wa
find p (€ A)suchthat 0<p L s(p)=0, Y

0. (very) special instances: via convex programming

scaling: p e A = {p ceR*?

1. tatonnement, : p = —s(p), p(0) = p’(Adam Smith, Léon Walras)

variant: 'Global Newton' (S. Smale) :

Vs(p)p = As(p), sgn(A) = (-1)" sgndet(Vs(p))
requires s single-valued and differentiable,

e; € 1nt X; or bdry conditions on s

fails, “in general”
source of doubts about economic equilibrium theory
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Solution Procedures

2. simplicial methods (based on "pivoting")
- Scarf (& Hansen) "73: = find fixed pointof p > s(p)— pin A
partitioning A 1n a simplicial complex, pivoting a4 la Lemke-Howson

- piece-wise linear homotopy methods: Eaves 74, Saigal, ...

3. homotopy continuation methods
- homotopy methods G(x) =0, Yorke et al. (72, "78)
variants: Kojima, Meggido and Noma for NCP ('89)
Newton homotopy: Wu ('05), ...
- 'Interior point' homotopy method: Dang and Ye ('11)
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a maxinf approach

recall: s(p) = ziel(el. — xl.(p)), market clearing: s(p)=0
Walrasian: W(p,q) =(q,s(p)), W : AX A — R (a bifunction)

Key observation:
p € maxinf W, W (1_9,-) >0 on A = p 1s an equilibrium point.

under 1nsatiability, p an equilibrium = p € maxint W, W (13,-) >0 onA

M()I‘e()ver: p, : €-equilibrium point if V/ (good), s,(p,) =—¢€

p, € E-maxit W, W ( D. ,-) >—€ on A = p, 1s an €-equilibrium point.

with 1nsat., p, an g-equilibrium = p_ € €-maxint W, W ( pg,-) 2—€go0nA
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... CVCI1 IMOTIC IMMOrcover

recall: max{u (x)‘ p.x)<(p,e, >} i-agent problem, i € |

u' — " — e & p! equilibrium points and £ N\ 0

hypo l’ l

= every cluster point of { D, }(V i 1s an equilibrium point!

Consequence of W, —, W lopsided-convergence
{c.c"cR"},{D,D"cR"} K:CxD->R, K':C"'xD" >R
K’ —,, K (lopsided convergence) if multi-hypoconvergence
@)V (y & Dl el C), = lopsided (Giirkan & Pang)
limsup K" (x",y") < K(x,y) for some (y" € D")—>ye D
(b)VxeC,d(x" €eC”)— xsuch that forany (y" € D")—y
liminf K" (x",y") < K(x,y)whenye D, K" (x",y")—> o yg D
Attouch & Wets 83, Jofré & Wets o9
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Lopsided Convergence

dy" e DY
e limsup, K" (x",y") < K(x,y) whenx € C
Hh D v ) )
i CxD
VyeD,Vx"'eC"—>x
! liminf, K" (x",y") = K(x,y) wheny e D
Vy'eD
(i K"(x",y") > whenye¢D
Y CXxXD

@e(]vﬁxec
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The maxint “family” ...

e saddle-point problems: Lagrangians, zero-sum games, Hamiltonians

¢ equilibrium: classical mechanics, Wardrop, economic (Walras, etc.)

e variational inequalities: finance, ecological models, complementarity, PDE
e non-cooperative games: pricing, generalized Nash equilibrium

e finding fixed points: Brouwer-type, Kakutani-type (set-valued), MPEC

e solving inclusions (equivalently, generalized equations): S(x) > 0

e minimal surface problems, ... , mountain pass solutions, ....

e ... and the dynamic versions, and the stochastic (dynamic) versions.
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Ancillary-tightly - compact in 'y’

THM. K/,  —, K., & ancillary-tightly,

CY"xD"
X € cluster points of {x" € maxinf K(Vjv
if KV
¢

o byey = X €maxint K

,—~K_  and

K’ aEdl
lop

C"xD" lop ancillary—tight ‘i

%D
(b)VxeC, dx" - x,Vy" e D" andy" — y:
liminf K" (x",y")= K(x,y) ifye D
K'(x",y")—> o ifyeD
" but also Ve>0, 1B, compact (depends onx" — x): I

inf  K'(x",s)<inf  K'(x',)+¢& Vv=v
B.ND D £

34

certainly satisfied when D = A is compact
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Convergence of €-solutions

including €=0
K' — K_ , lop.ancillary-tightly,

Aty

_, x cluster point of {x"}

XD veN

(1) x" € e-maxinf K,
— X € e-maxint K _
XD

X cluster point of {x"}

xDV veN

(i) x" € £, -maxinf K,
&€ N\ 0 = X € maxinf K o (special case: locally unique)

(iii) ¥ e maxinfK ., = Je, 0 & x" € £ -maxinf K"
XD 1% 14 (D

such that x" — Xx,

Under tight-lop: convergence of the full € -maxinf sets

and convergence of values

tight-lop when C=A&D=A are compact
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...back to our Walrasian

W(p,q)={q,s(p)) on AX A, p-usc and g-convex

Augmented Walrasian: o augmenting function

B

A
-
-
.-
.-

W.(p.q) = inf {W(p.g—2)+r*,06°(2)}  roG'z)
= sup. {W(p,z)‘ lz—q|. Sr} O =

asr =7 <oo, W T i W. = WJ:> e-maxint W _— maxint W

L, ly=0

| =] . B=[-L1T"

O | o ==

d

| .B = euclidean unit ball
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augmented Walrasian strateqgy

W(p.q)={g,s(p)) on AX A, p-usc and g-convex
W, (p.q)=sup_ {W(p.2)| |z —ql, <r}

gt = arg max[maxZ <z,s(pk)>‘ |z — qHD < rk]

geA
minimizing a linear form on a ball

i.e. finding the largest element of s(p*)

p'T =arg min[maxz <sz(p)>‘ HZ T quHD E rk+1:|

pPEA

k ——
as r 0 —
I /‘ > P P Bagh, Lucero & Wets = 03

first experiments: 10 agents, 150 goods (two blinks)

Friday, June 21, 13



CMM-implementation

Center for Mathematical Modeling -— Universidad de Chile

i ,ﬁ[m " i

v il

e argmin W (9% q)

(@
|
©.

AP
o &

P 1 p
o=
2

k+1
)

pk tl e arg max li',‘; r(p, g

{ith L-k I il

'/
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Scart’s example

L -1 g1\ P 7 9 constant elasticit
; (x) = (Zzzl(ail ) (x,) i ) CES-utility substitution {
i € [ =5 agents, L =10 goods (2000 simplicial pivots)

prices and excess supply convergences
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just, ... one more example

same CES-utility function (# ), I =10 agents, r, =1.21"
L = # of goods

| .
Jin 100
|: {

| L=25 L =50
——— |

i L=175 - L =100

N excess supply convergence
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A dynamic model

max ulo (x”) + ull (x")

(7 y, x')
such that <p0 X+ Tl.oy> < <p0 ,e?)

(') S(p'el +Ty)

x'eX! ye¥, xeX
with solutions: {(x?(p),yi(p),xil(p)),i = I}, p=(p’,p")
excess supply: s”(p) = Ziel(elp I (xt (p)+ Tio)’,-(l?)))

s'(p =Y, (e +T'5.p)-x'(p)

equilibrium: p € A, X A, such that s'(p)=0,s'(p)=0 (=)
Walrasian: W (p,q) = <(q0,q1),(so(p),sl(p))> on A7 X A7

= augmented Walrasian, ...
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Exploiting separability

ri(y,p) = sup [MS(XO)KPO’XO +T7y) < <p0,e?>]

0 eXiO

+ sup [ul.l(xl)’<p1,xl> < <P1»€i1 T Til)’ﬂ
1 Xl

x €X;

I'y<e |

i-agent problem: find y,(p) € R"’ that maximizes { r.(y)

L
Example: u;"' are of Cobb-Douglas type: u,(x)=[]x/, B e A
=1

X?(po,y)=%2;pﬁ(€2—((Tio)k,y>), [=1....L, X]=R]

[

x}<p1,y>=%2;p,i(e,i+<<T,-1>k,y>), I=1,...L, X'=R
[

substituting = r, linear in y : i-agent's problem is a linear program!

substantial gain in processing time
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Stochastic Environment

i

a ‘mimimal’ model




Chap.7 -- Theory of Value G.Debreu,’s9

x(p}caécﬂ E {u (x”, xgl ,x£1 2 )} i-agent

t i 7 1 ) 1%
such that <p€’27gr(egl,...gf e )> >0, VE=(E,67,..), t=0,1,...
Ziel(zm(e; 1 ) )) >0,V¢,¢ Clearing the market
Key Assumption (via K. Arrow): all contingencies available at time O

— complete market, i.e., all &'s can be dealt with separately

gl/\% & (Pg =(P§,p§,...)
/ ‘x / \%1 (V &) equilibrium prices.
N

Q02

(o

g112
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i-Agent: stochastic case

max u?(xo) E’ {uf(f,xé)}

xO,y,x}Eill

so that <p0,x0 + Tl.oy> < <p0,ef>

an engineer’s
viewpoint?

<pig’xé> = <pé,el.1,§ T Tiif;)’>, \V”é ==

e e TR xé eXl.l,é, VEe

@ E'{.} expectation w.r.t. i-agent beliefs

pr—
e
(S

Stochastic program with recourse: 2-stage
Well-developed solution procedures
Well-developed "Approximation Theory”
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Simplest-classical assumptions

= finite (support)

u; : X; >R, VEeZ, u;(Es): X/ . > R concave
continuous, numerical experiments: differentiable

T',T,. :input-ouput matrices

(savings, production, investment, etc.)

X', X ¢ ‘closed, convex, non-empty interior (survival sets

ei e int X io ; el., ¢ € Int Xl., : forall &  (or as on first slide)
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Market Clearing
Agents: iel, |I|finite ("large"), p = (po,(pé, = E))

()_cio(P),yi(p),{fil,f(p)}éea) € argmax {i-agent problem }
excess supply:

Y, (6 =GP +T5,(p)) = 8" (P ApLhez) 2 O
b=

Y. (e T 5 (p)-%.(p) = st(p° AP} 2 O
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Existence: via Ky Fan Inequality

W(Perde) = (de-5(Ps))
(@ AaD s AP {5 P 0] L))

W H A X H A— R a Ky Fan function: usc, convex

1+1=1 1+1=l

linear w.r.t. g, , continuous w.r.t. p,
and also W(p,.,p,)=0.

provided s(e) continuous w.r.t. p,

|
another lecture series
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Incomplete — ‘i-Complete’ Market
VEeZ (separately),
i-agent's problem:
R N
for {w, . }... associated with (p”, p;)
clearing the market:
s'(p"pe) 2 0, s:(p°.p:)2 0

Arrow-Debreu ‘stochastic’ equilibrium problem
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Cobb-Douglas utilities
U, (x)= ﬁxlﬂf ,B'eA, t=0,1
“agent’s optimization” (skipping ) i

. it ’ i taking advantage
r&y.p)=a’ (po)(zk:1p’8 (e,? <T"O ,y>)) of separability

i B
+a (DX plelede~ (@) ap)= IH(%)

i ‘ T°v<e’,u ERZ}

v+1

ye €arg maX{rV(c.f;y) —(w".y) - g\y o

“outer loop”, calculating ( p (p;. &€ E))
augmented Walrasian
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4. Variational Inequality

to be dealt with now in glorious detail




back ... Arrow-Debreu model
i-agent demand: x,(p) € arg max{ui (x) ‘ (p,x) < <p,el.>}

u, =X — R", usc,concave = X. closed (but convex)
excess supply: s(p)= Eiel(el. — xl.(p)), market clearing: s(p)=0

(under ample survivability, indispensability, unactractiveness)

i-agent optimal x.(p) < JA. =0 such that
A L{p.e.—x(p), (p.e—x(p)20, A utility

x;(p) € argmax _, u,(x)— A (p,x) A

when X, = R", u, smooth:
O0<x(p)LAp—Vu(x(p)=0

Friday, June 21, 13



via Variational Inequality

x,(p) € argmax{u,(0) | (p.x) <(p.e).x e X, | Wl
Y (e~ x(p)) = s(p) 20 l\z
N,(@)=1{v|(v.z-Z)<0.,Vze D} D

G(p.(x)2)=[ Y (e, = x):(Ap = Vu(x)):(p.e, — x,)]
D=Ax(IT x)x([TR.) Uy

(—G(l_y,(xi),(ﬂi)) eN, (I_ja(xi)9(ﬂ‘i))J T]J?SRII’\;E;

D unbounded — l’j bounded M. Ferris, ..

geometric V.I. via smoothing: L. Qi, X.Chen, ...




addmg Firms (@ parenthesis)

i-agent:e, —> ¢, +60,z.  share 6, of productionz, € Z. of firm j € J

6,12 (0, X Lig = L= L
z;(p) € argmax{(p,z)‘ e Z].}
excess supply: Ziel(el. — xl.(p)) + 2]61 z;(p)20 (equilibrium)
functional V .I. ( ( ) (/1) (2, )) € af( ( -),(Ii),(zj))]
f( ’( i)’(ﬂ’i)’(zj)): Lt (p)_zielui(xi)+2iellR+ (;L")_I_ZjeJlZf (z)

f convex = df monotone operator (yields existence of solution)

G(p.(x).(A).(z)))
:[Zi(ei —xl-)+zjzj;(lip);(<p,ei+z HUZ] it >) ( p])}

Jofré, Rockafellar & Wets 'o7
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Path Solver .. (M.Ferris, D.Ralph et al)
~G(Z)eN,(@), Z=(D.(X).(A))

D =Ax ([T % )x(ITR.)={zlaz > b}

Complementarity problem:
~-G(z)=A"y, y=0, Az—b Ly
with K = R" xRY :
(z,y)eK, H(z,y)e-K", (z,y) L H(z,y)
G()+ATy]| (0
Az _( j

H(z,y) =




Equivalent nonsmooth mapping

0 0= H(prj(z,y)) +(2,y) — prj (z,¥)
1 with simplified K
(CP)0<x_L F(x) =20 Complementarity Problem
(NS) 0 = F(x, )+ x— x, Nonlinear system

O x sol'n (CP) = X sol'n (NS):
x,=x, tF(x)=0, x,=—-F (x )1t F (x)>0
0 x sol'n (NS) = x, sol'n (CP):
x,20,F(x,))=x,—x20&x, L x —Xx
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PATH Solver:

X =(2,y), X, = prjg(x,y)
e PATH: Newton method based on nonsmooth
normal mapping:

H(x, )+x—x,

e Newton point: solution of piecewise
linearization:

H(x’j)+<VH(xf),x+ —x’+‘>+x—x+ =0
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The “Newton” step

......... .............._........ \ .__.. | ...._-._ _..........“.....
LR AN
RO \ ,,,._
wﬂw%ﬁ;ﬁﬁ ,,_ ﬂ/f R
AR RS
SRR Y
W%ﬁ”ﬁ; &ws J”,.,} WY A

| y; ,f,
ml ,...._....m...n.”......”....._nﬁ._”...n._ﬂ...,,_,..,...... ..,_..,... ......................
| xﬂuﬁmwvf..f .,;fuf..,, ,,,...u
..H.....r ........,.,.,. .....................
N

B ”Hffﬂf T

0.5

C.4

J A3

0z

0

| ,,_é il ,_//J

»1

-0

—0.3

—0.4

05
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V.1.-Extensive Formulation

discrete distribution: |g] finite

G(p°:phee A% Hiez),, (B M), ) =
l:(z‘i(e’Q H xlp)’zi(eil’if il x"l’g)éea);(()’iopo 1 Vuio(x’p))iel ’(/lil’ipé i Vuil(é;xil’é))iel,éea);(<p0’e? 1 xi0>’(<pé’e"l’g i xil’§>)iel,§ei):|

(oL L5 (T2 AT,
~G(Z)eN,(2)= {v‘ (v,z — Z) <0,Vze D}
$ = (p() apéea)’(x? ’xil,cSeE )iel ’(//Li0 ’ 1'1’565 )iel

“Thanks the gods (& M. Ferris) for EMP”

for a special VI handled via smoothing/sampling: later
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so, let’s go: PATH Solver

e Economy: (8 goods), 5 types of agents
e Skilled & unskilled workers

e Businesses: Basic goods & leisure

e Banker: bonds (riskless), 2 stocks
e small # of scenarios 280,

o utilities: CES-functions (gen. Cobb-Douglas)

o Utility in stage 2 assigned to financial instruments

unfortunately, ... PATH Solver lets us down

Friday, June 21, 13



Back to the
drawing board




Disaggregation!

initialization: Vie I

w; . such that E{wl.,g}

v& = equilibrium with {

—0 — =l

yieldS: (Xi,gayi,é’xi,é)’




stochastic-pure exchange

(for eac@§ € & : the equilibrium problem, I agents with

i-agent's problem: max{ (ij X, ¥, X )on 6i,§(p0,pé)}

U = u§’<x0>—<w,.,,;,<x°,y>>—§u<x°,y>—(?c“,y)Hz +u) (& x")

clearing the market: s’ (p° ,pé) > 0, Sé (p’ ,pé) > 0

'51/ \% but now with w, A constraints
/\x /\%] x’ (&) = x” constant
/\ L4 x(GEH =5, ¥ ¢J5 = x,

E21.2

5112
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Disaggregation with PATH Solver

e Economy: (5 agents - 8 goods)

on M. Ferris

e Skilled & unskilled workers semi-slow laptop
using EMP-package

4 min + 2 min for

e Businesses: Basic goods & leisure VAT
verification

e Banker: bonds (riskless), 2 stocks
e 2-stages, solved under # of scenarios (280)

o utilities: CES-functions (gen. Cobb-Douglas)
e Utility in stage 2 assigned to financial instruments

e Financial instruments only used for transfer to time 1
e used for calibration (-> stochastic model)

numerically: "blink’ Gooo iterations).
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Ja! scenario disaggregation, but ...

i-agent: x.(p) € argmax{ui(x) ‘ (p,x) < <p,el.>}, iel
with excess supply s(p): 0<p L s(p)=0

Multi-Optimization Problem with Equilibirum Constraint

MOPEC-class ~ maxinf family

(xl. cargmax .. f,(p,x,x_;), i€ I, x,=(x,i€ I)\
D(p,x;)€ dg(p) |or € N.(p)]

with Michael Ferris ’'11-?? ... 057
Examples: Walras, noncooperative games, .....

stochastic (dynamic): decentralized electricity markets,
joint estimation and optimization, financial equilibrium, ...
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Contracts (Assets)

finite

assets (=
z,=7 -7 =(z;,...,z; ) assets 'acquired' by i-agent
q, market price of asset k
Dé‘ bundle of goods 'delivered' by one unit of asset k

budgetary constraints:
(p°, x° +Ty) +(q.2) <(p°.€)
<pé,x§> <p5, z§+T§y+D > VEeE

clearing the market:

s° (po (pE),.. ,q) 20, s (é;po (pE),.. ,Q) >0 Ve, [Zie,zi i 0]
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The BDE-example

=| = 3, no y-activities

3 agents, 2 goods,

2 ;
u; (& x) = —(5.7 T Hl=1(xz )sz,z ) =u, (X), o =(025,075), o =(075,025)

1 0
asset #1: D, =| |, asset #2: D; = for all &
0 |

Path Solver solution: p° = (1, 0.7338) (with scaling & z_i < 100)
P = ( ; 1, 0.7182; )
g=(0.9188, 0.6600), z=(72.9868,-100;-36.4934,50; -36.4934,50)

sol'n time: not noticeable
value transfer for #1-agent: @t =0: —1.0649,
@r =1, scn-1:1.403, scn-2: 1.168, scn-3: 0.933,
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The BDE-example

=| = 3, no y-activities

3 agents, 2 goods,

P

u, (& x) = _(5.7 — lel(xl )a”l ) =u, (x), a =(025,075), o,  =(075,025)

il Hiilio
asset #1: D, = H , asset #2: D; = 1 for all &

BDE- solution: p° =(1, 0.74) (with scaling)
p;: = ( . 1, 0.7174; )
g=(22,77), z=(094,0; 0.03,0; 003,0) ——— albuyers
no sellers
change of variables + add unconstrainted agent:

homotopy continuation method (predictor-corrector steps)
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The Cass trick

or the no-arbitrage condition
g = Ztéeawéf (Dgpé) for some weights w, 0, Zgwé =1
max u, (xo , (x; )565) =u. (x")+ E{ul1 (cg;xé)}
such that <p0,e? —x0>+ (q,2) 20 D’ =P WD: =W:p:,6 €
(pi.el:+ D, z—x})20,VEEE
solved by BDE max i, (xo () :) such that

Path Solver = BDE-sol'n (5. ")+ X, _(plDz—x)20

no Path Solver sol'n! {h
<p5,el.’§ + D, .z - x5> >0, VEeE

via Augmented Walrasian
' v : . ! 0 ~0 ( ~1 0 g. ~0 (=1
for 'money' assets (Deride, Jofré & Wets '09) ¢ (p ,(pé )565) >0, s (g,p ,(pg )565) >0, ‘v”g’

ct. financial equilibrium: Hens & Pilgrim '06

clearing the market [also: Zie[ dlts @
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Further readings

e Jofré, A. & R. Wets, Variational convergence of bivariate functions: theoretical
foundations. Mathematical Programming (2006).

e Jofré, A., R.'T. Rockafellar R.T & R. Wets. Variational Inequalities and economic
equilibrium. Mathematics of Operation Research (2006?)

e Jofré, A., RT. Rockafellar & R. Wets, A variational inequality scheme for

determining an economic equilibrium of classical or extended type. In “Variational

analysis and applications”, §53--577, Nonconvex Optimisation and Applications, 79,
Springer, New York, 2005.

e Jofré, A. & R. Wets, Continuity properties of Walras equilibrium points. Stochastic

equilibrium problems in economics and game theory. Annals of Operations
Research, 114 (2002), 229-243.

e S.P Dirkse and M. C. Ferris. The PATH solver: A non-monotone stabilization
scheme for mixed complementarity problems. Optimization Methods and Software,
5:1237156, 1995.
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Primary Objective:
constructive theory

e Exhibits and exploits the interrelation between these problems

e Existence theory: (mostly; not exclusively)

e Aubin & Ekeland, “Applied Nonlinear Analysis” (Chap. 6), 1984

Facchinei & Pang, “Finite Dimensional Variational Inequalities
and Complementarity problems” (2003)

[usem & Sosa (+ Kasay), “Existence of solutions to equilibrium
problems” (2005-....)

* Approximation theory = algorithmic strategies +
existence
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Saddle functions
Epi/hypo convergence

- Lagrangians (concave/convex)
- Zero-sum games

- Hamiltonians




EPI/HYPO-Convergence

C"x D" \
/"(x Y) just y dependent: epi-convergence
! just x dependent: hypo-convergence
dy" e D’ L
X 4 : Vv Vv Vv
—>yeD i limsup, K" (x",y" )< K(x,y) whenx e C
GIPD
VyeD,Vx'eC" — x
C'x D" epi- in y & hypo-in x = epi/hypo
i o(X,)) but not a necessary condition!
dx" e C”’ L
—>xeC bl liminf, K" (x",y") 2 K(x,y) wh D
imin x',v")2 K(x,y)when y €
CxD v Y Y M

VxeCNy eD"—>xeD
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Saddle Points: vs-Convergene

elh

K'>K:CxD—->R,e, 0, (x',y")e g, -sdl(K")
(¥,

= (%,5) esdl(K) & K (%,5) = lim,_y_, K" (x",y")

)=1lim,_,_y (xv,yv), N ~ subsequence

<

in the convex/concave case = convergence primal/dual solutions

ancillary tight (~ y-compact): Ve > 0,4 B, compact, v,

Yv 2> Ve,sup, K'(x"0)2 sup K'(x"0)—¢€

e/h-convergence + ancillary tight = sv-convergence saddle points
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Zero-Sum Games

x* € argmax ., u(x,y*), y*e€argmin , u(x*,y)
(x*,y*) e sdl(u)
if X,Y convex, compact ( = tight)

Vy,x — u(x,y) concave,usc, Vx,yr u(x,y)convex, Isc
= the zero-sum game G = {(X,u) ,(Y,—u)} has a solution

moreover, X" — X,Y" — Y, u" —u (with same properties)
elh

= their solutions (x",y") cluster to solution of G

also the case for approximate solutions
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Max-Int # Min-Sup




Variational Inequalities

* G-C R C < R” non-empty, convex set

* find u eC suchthat —G(u)e N_.(u)
VENC(E)<:><V,M—E>SO,‘V’L¢EC

e let C"—>C, G"C"—>R" continuous

°* §" solution set of approximating problems

S solution of the limit problem. Does §* — S?
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V.1.: The gap function

o Let K(u,v)=<G(u),v—u> ondom K=CxC

* then —-G(u) e N_(u) if and only if
o u € maxinf point of K with K(u,») =0

o K'(u,v)= <Gv(u),v— u>, domK"'=C"xC"
o ' €argmax—inf K" with K" (u",*) >0

:

o u € cluster points {uv} = ? u € argmin—sup K
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Non-Cooperative Games

* aeA, payoff: u (x ,x_): RY > R, .. includes x €C(x_)

e Generalized Nash equilibrium: (X,,a€ #) such that
VaeA, x eargmaxu (x ,x )

o Nikaido-Isoda function:

N(x’y) i ZaeAua(xa’x—a) ml ZaeAua(ya’x—a)

o X=(x,a€ #) isaNash equilibrium

& x eargmaxint N, N(x,e) =0
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Approximating games

* Nikaido-Isoda functions of approximating games

Nv(x’y) i ZQEA”:(xa»X_a) H zaeA”:(ya>X_a)

e x" eargmax—inf N", x € cluster points {xv}
N" > N and ...

* =7 Xx eargmax—int N ~ equilibrium point
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Ky Fan functions & inequality

K :CxC— R Ky Fan function if
(a) VyeC:x+— K(x,y) uscon C
(b)VxeC(C:y— K(x,y) convex on C

K Ky Fan fcn, dom K = C X C + C compact
— argmax—inf K # &

if K(x,x) 20 on dom K, x € argmax—inf K
= mf K(x,y)=0.

Improvements: lusem, Kasay, Sosa (locals)
Lignola, Nessah, Tian, X. Yu, ...
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Ky Fan’s inequality:

an extension

K" — K lopsided tightly with C" — C,
K" Ky Fan = K Ky Fan fcn

& if Vv :argmax—inf K’ #
X € cluster-pts {argmax—inf K"}

— x eargmax—Inf K & K(x,*) =0

Application: guideline for approximation schemes
truncations, COErcivity, ...
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Checking Lopsided
Tightness




Linear Complementarity Problems

LCP: findz=20, Mz+g=0and (Mz+q) L 7
K(z,v)=(Mz+q,v—z) on R” xR, Ky Fan fcn
approx. 7 € [O,rV],Mvz+qV >0and M"'z+q") Lz

K'(zv)=(M"z+q",v—z) on | 0,r" | xR,

1%
A K iy

lop

R {z c[0,r"]

K when M’ - M,q" = q,r" /oo
A~ K" —, K anci

lary tightly when also
M'z+q" ZO}ﬁP:{zzO‘Mz+q20}

= cluster points of sol'ns of approx. solve LCP

(note ‘1t P

# O, norow of [M ,q] = O:PV%P)

»r K" —, K tightly (study of quadratic forms)
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Variational Inequalities

® —G(u)e N.(u), G continuous, C convex, compact

e bifunction: K (u,v) =(G(u),v—u) on C X C, Ky Fan fcn & K (u,u) >0

® THM: C" — C = C" compact v=>Vv, G’ continuous
Gl GGy =2 (), | VD) €| CTH — X
K" (u,v)= <Gv(u),v — u> ondom K" =C"xC"
lop-converge ancillary tightly to K= sol'ns converge
Continuous convergence (?):

sol‘nsSV:GV+NCv 50— solnsS=G+N,.>0
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Fixed Points (Set-Valued)

find x e C (convex): xeS(x), §:C=C cR", osc (gph S closed)
K(x,v)= sup{(x —V,7— x)\z e S(x)C C}

K a Ky Fan fcn, convex in v, usc in x (sup-projection) + K(x,x) =0

Approx. bifunctions: K" (x,v) = sup{(x il x>‘z eS'(x)c CV}

THM. C" — C ,gph S" — gph S (as sets), C compact. Then,

Ve, N0, X e cluster points {xv € £, ,-maxint K V} 18 a maxinf point of K,

1.e., a fixed point of S. (lop-convergence 1s tight)

an Application (J.S. Pang) - Cognitive radio multi-user game
f:C — C cR" continuous, C compact, convex, x fixed point
Pertubation (g-enlargement): S(e;€):C = C, osc, S(0)=f

For € near O: existence? dx° € S(x°,e)=S°(x), x* > x?
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Lop- & Epi/Hypo-convergence

1. L'>L=L —>L

lop elh

2. I > L & convex-concave = L' — L
elh lop

3. epi/hypo- = hypo/epi-convergence

4. L o L = convergence of saddle points

= convergence of approximate sadde points
(without ancillary tightness)

5. Existence requires tightness-conditions (~coercivity, €.g.)
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Uniqueness of

lop- & epi/hypo-limits




Convincing Examples (?)

e Lagrangians: L'(x,y) = f; (x)+ D y.f1(x) on X" x(RS me_s)
i=1
e Lopsided convergence (maxinf-paradigm) - sufficient conditions
° £, 1 ,....f, hypo-converge to f,,f,....f, on X' — X

e the collection {fiv,v = N} 1s equi-usc, i =0,...,m

£'20,i=l..m}—>S$

e Constraint Qualification: SV = {x

° lop-limit L 1s unique concave-convex case (epi/hypo). int § # &
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Variational Inequalities

C"—>C, G" C"—R"continuous, C" convex
—Gv(x)eNCv, veN

THM: C" — C = C compact v =2v, G" continuous
G'—> G:G'(x")>Gx), Vx"eC" —>x

cont

K" (u,v) = <Gv(u),v — u> ondom K" =C"xC"

lop-converge ancillary tightly to K= sol'ns converge

lop-limit: — G(x) € N_.(x) uniquely determined
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MPEC (generalized?)

max g(x) such that x € S(x), g continuous, § : C = C convex
bitunction: K (x,v) = g(x)+ sup, {(x —v,7— x>‘z € S(x)}
V. I.-constraint: S(x)= N,.(x)+G(x)+Ix on C
LCP: S(x)=(Mx+q,v—x)+Ix on R"
x e€argmaxinf K = x solves MPEC.

approximating bifunctions: S :C" = C
K" (x,v)=g"(x)+sup. {(x —V,2— x)‘z = Sv(x)}

C"—>C, gphS" — gph S, g" hypo-converges to g
then K" — K & K unique

lop
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K"'(x,y)=y*  Uniqueness fails!

Convex-concave function y*

y-axls ¥-aXis

®-axis
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[Il. Random Sets & Mappings




[G : E —RY G1(0) soln’s of G(az)a O, approximations?]

EG(z) =E{G(& x)} =0 “approximated” by G"(x) =0
¢ ... &Y sample, G¥(x) = % S G(E, )

G:=2xD=F, set-valued G(§,x) C FE, inclusion E{G(&,z)} 50
&, ..., & sample, approximation = >, G(¢,2) 20

minE{f(€,2)}, z € C, B{f(£,2)} = Bf(z) = [ f(& ) P(de)

¢t ... €Y sample PY (random) emplrlcal measure

approxmm BV (e e = 1= 3T (e x), £ e O
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Examples:

min f = f, + 1., optimality (0 € 9f(¥) = S@W)D  ~0 = /(X))
generally, o( f + g) # of +dg

C Q. (Constraint Qualification): — N.(x)N 9" f,(x)={0}
v e d” f,(x)= horizon subgradient if

3% — X with f(x*) = @), € FE)A N0 & AV — v

with CQ. ¥ locally optimal =(3f, (¥) + N(X) = S(¥) 3 0)
f convex ( = regular), df,(x)+ N.(x)>0
— globally optimal (without C.QQ)
When f,, C are convex: — df,(x) € N.(x),

a functional variational inequality
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“Variational” Approximations

(F,d) Polish, in paricular £ = R"

(cl-sets(FE), d) complete metric space; Polish if £ =1R"
d(C",C) =0 < C"¥ - C

osc-mappings = closed graph
(osc-maps(S), d) complete, metric space;
Polish if dom C R", rge C R™

Convergence:
S¥ 958 if d(gphSY,gphS) =0 = (S¥)"1(0) =, S™1(0)
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G:E — R

G~1(0) soln’s of G(z) = 0, approximations?

7

EG(x) =

i

G:=xD=F, set-valued G(§,x) C E, inclusion [E{G(
&Y sample, approximation %Zl'/:l

A

G (&) =0 -~

, &Y sample,

1
v Zzyzl

G(¢

)

approximated” by G¥(x) =0

GY(x) =
§,2)} 50

G(¢'x) 30

min 1 f (&,
Eril

approx.: min

x)}, x € C,

(&) = Ef(e

&Y sample PY (random) emplrlcal measure

BV {f(&,2)} = 2 f(E

A

x), x € C

P(d¢)
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Set- & “Single”-valued

sets(RM.EP
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Random Closed Sets

(2,A,P), ZcR" & E Polish, for example R”
C:Z = E, C(§)C E closed set for all § € Z
& C(0)={&|C()NMO#D}eA, VO c E,open

= dom C = C™'(E) € A, measurability ~ hit open sets

c:E— clsets(E), c(§)~C(&), F,={F cE closed|F "0 =2}
(sets(E),E), E Effros field = G—{FO e sets(R"),0 open},

C measurable <> ¢ measurable [¢™' (F,) € A]

t = B Borel field when E Polish (complete separable metric space)
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Measurable selection

e arandom closed set C always admits a
measurable selection!

ds : dom C' — FE, A-measurable,
s(6)e C(&), VE edom(C C =

s: = — F arandom vector
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Castaing Representation

e C 1s arandom closed set (& dom C measurable) < it

admits a Castaing representation: 4 a countable family

{SV . dom C —> E, meas.—selections}

cl UveN s'(E)=C(¢),Vée domC c E

e Graph measurability
(E,A) P-complete for some P,

(negligible sets are P-measurable)

C random set < gph C A ® B -measurable
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Castaing Representation

« % NN
- S s -
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P4 PR AT AN A A S A
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~
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P A
7’ s

~

w .
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Convergence of Random Elements

(review)

§:(Q,F,n) = (E,AP), & 5¢
® a.s. (almost sure) convergence:

P{¢| lim, §"(w) = § # €(w), w € R} =0
® convergence 1n probability:

P(lg" — €& >¢) > 0foralle >0

e convergence in distribution: PY 2 P

Friday, June 21, 13



Outer/Inner Limits

(review)

outer limit: Lo C" = {x e cluster-points{x"} ,x" € C V} = [ USLCTE

inner limit: Li C" {x =lim x",x" e C" C R”} c Lo, C"

limit: C"—>CifC= LiC"= Lo, C" (Painlevé - Kuratowski)

All limit sets are closed
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Characterizing a.s. convergence

{C; C":2=R" v e ]N} random closed sets. Then,
1. C" - Ca.s.,dC" C)—0a.s., Lo, (C") Cc C C Li,(C") a.s.,
2. Vx € R" and £ € 21 with P(=1) =1, d(z,C"(§)) — d(x, C(£)),

3. Vx € R"™ and f € =1 with P(El) =<4 ]

pli/(moo Lo, (C¥(§) NB(z,p)) C C(§) C pli/moo Li, (C¥(&) NB(z,p)).
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“Proof 1. = 2.

C" - C < VxeR" d(x,C") — d(z,C) provided £ = R".
CY — C if and only if the hit-miss criterion is satisfied

C' hits B°(x, p) then C* hits B°(z, p) for v > v, ,
so, C' C Li, C¥ <= d(z,C') > limsup, d(x,C"),Vx

C' misses B(z, p) then C¥ misses B(z, p) for v > v, ,
so, C' D Lo, C¥ <= d(x,C) > liminf, d(x,C"),Vx

Friday, June 21, 13



a.s.-Convergence
via Castaing Representations

{C viET R veN } random closed sets

C" — C P-as.and dom C" = dom C. Then,

1 Castaing representations of C* — a Castaing representation of C

It s : = — FE 1s a measurable selection of C, then

ds" :E — E selections of C" converging P-a.s.to s

# ('Egorov's Theorem': C" — C p-a.s. < C" — C almost uniformly)
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Building Castaing representations

C : =2 = R", a random closed set. Let
A= {ak et .,aZ’,aZH) | ai € Q" & aff. independent }

for ) = D = D" closed, define Prjp Gk = Prjpn CLZ+1

where D' = prjpi_: aﬁc TomtAE T v
prjp ax 1s a singleton: intersection of n+1 “aff. independent” spheres.
Moreover, {prj DOk, Qp € A} also dense in D

s = — R™ with s,(§) = DPrjc(g) @k 18 a measurable selection of C

When D is a random closed set, so is & +— Prip(e) @, ¢ € R
repeat the argument n + 1 times to obtain s; measurable.
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Converging Castaing representations

C" : = = R™ random closed sets converging P-a.s. to C, dom C” = dom C.
Then, EI{SZ, k e N} Castaing representations of C'¥ converging for each k

to a Castaing representation {sk, k e 1N} of C.

All Castaing representations are built via our earlier “projections”.
Then, V¢ € 21, s7(§) = sx(§), P(E1) = 1 the set of a.s.-convergence.
Since, P-a.s. convergence of C¥ — C' = (rely on 2. earlier)

d(ay, sy (€)) = d(ay, C*(£)) — d(ay, C(€)) = d(ay, s5k(£)), V& € Ei.

(a) Convergence of Castaing representations % convergence of random sets!
(b) v meas-selection of C' = Jv” meas-selection of C' converging a.s. to v.
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Convergence in probability

Let e°C = {x e R" |d(x,C) < 8}, C",C random sets
A, =(Cc"\eCc)u(creC)
C'(E)—CE)|=1
in probability: P| A, (K)|— 0,Ve>0,K € K = cpct-sets

U-a.s. convergence: ,u{§

C" converges to C in probability
& PAI(CY,C)>€e)—0 foralle>0

& every subsequence of {C"},

contains a sub-subsequence converging (-a.s to C

ie., in probability = in distribution [ [n@aic©).c)pé) — o}
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PY 2 P ~ distribution fcns converge
(review)

P, P defined on (R, B)
PY B P < [h(§) P"(d€) — [ h(§) P(d) VYh continuous

F”(z) = P"((—0,2)), F(z)=P((—00,%)), cumulative distributions

PP 2 P < FY2,F on cont F = { all continuity points of F}
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PY 2 P ~ distribution fcns converge
(review)

P, P defined on (R"™, B,,) random vectors &7, &
P"B P < [h(&) PY(d§) — [ h(§) P(d§) Vh continuous

() Py(fzSZZ,Z—l )7 F(Z):P(fzgzz,Z:L,n)

A

1. — F(z) < F(Z) “increasing” b

2. lim, 4o F(2) =1, lim, /L F(z) — 0,

\/

3. F is usc (upper sc) limsup,, ., F'(2') < F(z), - 5 R

4. R = (a1,b1] x -+ X (an,bp|, V ={a1,b1} X - x {an,by} vertices of R
YR C R, P(€ € R) = 30y sgn(v)F(v), sgu(ve V) = (—D#e i °

(PPR P & _Fv%, _F)
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Distribution of a random set

Borel o-field: B = G—{FK K compact} or 6-{F,|O open} ...
Distribution (P,B) regular, K compact subsets E
determined by values on {FK K € K} or {FK K € K}
Distribution function (Choquet capacity):
) T:K—[0,11,T(@)=0 and V{K",ve{0}UN}cK:
) T(K") NT(K)when KY YK (~usconR") (13
4 b){D, :K—[0,11}  where Dy(K")=1-T(K")
D,(K°;K"Y=D,(K’)- D,(K" UK") and for v=2,...
D,(K%K',....K") =D, (K"K',....K"")-D, (K°UK";K',...,K"™)

(~ rectangle condition on R")
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Existence-Uniqueness of T

P on B determines a unique distribution function 7' on K
T'(K)=P(Fy)
D,(K’K',....K")=P(F* nF,n-nF.)

T on K determines a unique probability measure P.

Proof. via Choquet Capacity Theorem (Matheron)

(refined) via probabilistic arguments (Salinetti-\Wets)

C :Z=R? arandom closed set

(P,B) induced probability measure:
P(F,)=P|C(G)] VGeB, T(K)=P|C'(K)| VKeK
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Convergence in Distribution

random sets C" converge in distribution to C when
induced P" narrow-convergeto P:P"— P = P" R P
&T"—= TonkK

Kits i

T -cont

(convergence of distribution functions)

T -cont

a) VC",v € N, d converging subsequence (pre-compact)
b)K' /K= cl| | K" regularly ifint K | ] K"
c) distribution (fcn) continuity: lim , 7(K") = T'(cl UVK ")
d) convergence T* — T on C, continuity set = P — P
e)P' >, P T > TonCy=C.nK"”

K“ = finite union of rational ball, positive radius

f) e T(K + €B) : countable number of discontinuities
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a detour about rates

T"— T on C, & P" —, P (Polish space: E,d)
P',P defined on B

probability sc-measures on cl-sets(E): A

@/120,&/ MCH < MCH) if C'  C?
A is T ,-usc on cl-sets(E), @ MD)=0,M(E)=1
A modular: A(C")+ A(C?) = AC' UCY) + AC' A C?)
Pand A=P

cl-sets

{Pv,v € N} tight: P* > PSS A" >, A (~— A" —, —A) on cl-sets(E)

define each other uniquely (£ complete = tight)

tightness ~ equi-usc of {A"}  at &
rates: dl(A",1) — 0 (for R-valued r.v., "~" Skorohod distance)
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Random sets j

(review)

(' ‘covered’ by countable selections i
iflhind | (c©) ~ <) )
Castaing represnetation

a.s convergence: P{&|d(C¥(€),C(¢)) =0} =0
= in probability: Ve > 0, P{¢|d(C"(¢),C(&)) >} — 0

= in distribution T : cpct-sets(E) — [0, 1], T(0) = 0,
(a) T(KY)NT(K) for K¥)\K, (b) ‘rectangle cond’n’
PY2 P < T" — T on cpct-sets(R")
or, even, on finite union of closed rational balls.
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Expectation

‘

Artstein, Vitale, Hart, Wets,
Cressis, Hiai, Weyl, ...
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“Simple” random sets

C := = R"™ is a simple random set if rge C' is finite.
C' is a closed random set <= (C = P-a.s. limit of simple random sets.

<: the limit of a sequence of random sets is a random set
=: let C'Y = C' N vIB, unif. bounded closed random set, C' = Lm, C”
build (via ”prj”) Castaing representations {r,’; }k  Of the C¥

| 24 alik v 3 |4
let {Sk}keN' = U<, {rk}UE]N, also Castaing for
EAS 1L 174 : 74
= Ujgk s d-converge uniformly to C* as k — oo
since each sy = lim;_,, s}; uniformly, sy, simple random variables

h = U<y 87 1s a simple random set, C'(£) = Lm, Lmy, Lm; A}, (§)

AL D 2 C" allows diagonalization to find AY.,, — C.

Friday, June 21, 13



Sierpinski-Lyapunov Theorems
(2, A) a measure space

Sierpinski (1922). Suppose P is an atomless probability measure.
GGiven Ao,Al v ./4 with 0 S P(Ao) S P(Al) S 1, then
VA E [O, 1], ] A)\ - ./4 such that P(A)\) — (1 T )\)P(A()) in )\P(Al)
In particular, it implies VA € [0,1], 3 A € A such that P(A) = X;
choose Ag = () and A; = =.

Lyapunov (1940) p : A — R™ atomless, o-additive measure.

For A € A, define rge u(A) = {u(B) | B € AN .A}. Then,
rge (=) C R™ is convex and if p is also bounded, it’s compact.
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Expectation: simple random set

C : 2 = R"™ a simple random set, i.e., rge C = {zk c R" ‘ k € K, |K| finite }

Given 7,5 € EC = BE{C(£)} —>

4 simple selections r, s : = — IR™ with

(€)=,

Let A € [0,1]. Define v : = — IR™ as follows:

1. partition = into subsets A— and A

2. Ao ={¢e€=E|r(§) =35} A

is(§)} = 5.

3. A={£ € E|r(£) = 2k,58(8) = 21,k #1} € A4, a finite collection
4. split each A € A, P(A,) = AP(A) & A; = A\ A, (Sierpinski)

2

set v(&) = <

\

then v = E{v(§)} = Ar+ (1 — A5 = EC convex.
Clearly EC' is bounded and it’s easy to show it’s also closed = compact.

r(€) onUgea, Ar U A=
S(f) on UAE.A# As
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Expectation of random set

C : =Z = R"™ a closed random set

—> (' = P-a.s. limit of simple random sets,

say OV — (' with C” .~ without loss of generality
ECY =TE{C¥ (&)}~ are convex, compact =

EC = B{C(£)} = U, EC”

—> FC' convex
—> FE(C' closed if C' is integrably bounded
—> compact if rge C is bounded




Random set: Expectation

4 3

EC=E{C(&)}=+ Js(’g’) P(d¢&) H s(¢) P-summable selection ¢

j—

J = y/

.not necessarily closed even when C 1s closed-valued
A

(-2.2) (2,2)

Convexity: o
(1,5/3)
C P-atom convex = EC 1s convex
3 : prob=1/3 EC prob=1/3
(certainly when P 1s atomless).
{ 1/3)
|
prol}=1/3
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Expectation: Bounded Random Sets

-

2 4
c=(-1,3)1r=0.5
< /’_\
1.6 AN

Random Sets / \
o equal prob. 0.2 c=(1,1), r=1

-0.8 €=U
EC:c(41,.21), r=.502
c=(3,-2), r=1
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Expectation: Unbounded Random Sets

ﬁ

myC@U

EC

ray C(£°)
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Some properties: E{C(&)}

e measure P atomless, then EC' = [E{C (&)} is convex ( Richter, Lyapounov,...)

e P is P-atom convex = E(' is convex; |an atom contains no (measurable)
subset of positive probability]

e C arandom set, () £ EC = E{C(£)} contains no line, then

con EC' = E{con X (£)}

this essentially requires that C'(§) C a pointed cone

e in general, the expectation of a (closed-valued) random set is not closed

o if |C] =E{sup[|s(&)||s(§) € C(§)]} < oo then EC is closed;
C' is then integrably bounded.
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LLLN: Random Sets (Artstein & Hart)

C :E =R" measurable, {5" veN } iid =-valued random variables

C(&") iid random sets (i.e. induced P independent and identical)

EC=E{C@)}= {L x(&)u(d&) | x u-summable C (é‘)—selection}
independence = all (measurable) selections are independent

r n
{C(€"):E R"veNY} iid with EC # &. Then, with

C'(S= v (zv: C(&k)j — C=clcon EC u~-as.
. o 4

Lo,C"(”)c C < limsup, o . S0z support functions

Li,C"(&™) D C relies on LLN for (vector-valued) selections
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Random mappings

SingEXx E =R HE R

A ® B"-jointly measurable: S~ (0) e A® B", O open
= V x:¢ > S(&,x) arandom set

random closed set when § 1s closed-valued

ES:E = R"™ with ES(x) =

4 {S (f,x)} expected mapping

ES convex-valued when ¢ — S(&, ) P-atom convex

Law of Large Numbers for random sets

applies pointwise

Friday, June 21, 13



Sample Average Approximation (SAA)

stochastic variational problem: S (x) = 41{5 (f,x)} =40,
S:=ZEXR" = R" random set-valued mapping
& random vector with values £ e E c R"

solution (a 'stationary point') x € S7'(0)

O O O O O O O O O O O O O O O O O O

—V

sample & =(&',....5") of &
1 Vv 2

_(Ek_lS(fk,X)) =S"( & ,x) >0, approximating system?
Vs

ie. () 0)>57(0) as.
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A tew examples ...

(from the MOPEC fanily)




Stochastic Optimization

min Ef (x) =

4]{ f ('g',x)} --stationary point-- dEf(x)>0

assuming 4}{8f (’g’,x)} = dEf(x) (not generally correct)

could dEf(x)> 0 getreplaced (?) by

v (Ezzlaf(’g'k ,x)) 5 0 from sample &

—V

dom Ef =(),__dom f(&,).

unless £ — dom f(&,-) constant,

interchanging [E & d is only exceptionally valid
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Stochastic V.I. (variational inequality)

Network flow equilibrium with stochastic demand and link capacities
Economic equilibrium in a stochastic environment

E=(E'.&E,..), G'(,x) o-(€,...E") measurable

~G"(€,x) e N.(x), C compact, convex

Ney +G'(E,x)=S8"(x)20, S closed set-valued mapping \ ¢ =/

G'(€.)— G(&,)

%v ...........

x" (&) solution of —G"(&,x) € N.(x) for sample & = & S

does x"(€) — asolution of —G(&,x)e N.(x)? as. [ Cos

what if C depends on (&,V) : sequence of random sets C"(€)?
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Walras Equilibrium:
stochastic environment

(Cclz?yaacig) T argmaxx1 yER? ,x.zem uclz(xl) 4l Ea {Mj(é,xz(f))}
such that <p19xclz i1 Ta1y> < <p1,e;>
25 0 A2 ) il
<p§’xaaf> i <p§ ’ea,§ i Ta’£y>9 \Vlf o hry
xClleXclz’ xcf,fEXiga ngE

& {-} expecttion with respect to a-beliefs, = finite support

2-stage stochastic programs with recourse

solution procedures & approximation theory "well-estblished"

T al,T az i input-output matrices (production, investments)

eclZ < intXcll, ejg e inth§ for all £
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Market Clearing ~Equilibrium

excess supply: agent-a: ( ci,y;,{cj,g}éea)
alei =@ +T3))=5'(p' pidsc ) 20
VE X, €+ T - cle) = i (P Apihes) 20

Variational inequality: — G(p,(x,),(A,)) € N,(p.(x,),(1))),
p=(p' P2 ) x= (' o) A= (402D e )

S(S.(p,x,4)) = G(GS,(x,p,A) + Ny, (p,x, 1)),
E{S(&,(p,x,A)} >0




Sample Average Approximations

TV

E=(E,E%,..) iid, sample & =(&,....&")

SAA-mapping: given S :ZX E = R" random mapping
S" 2" X E = R" with

VECE™ xcE:S"(E.x)= %iS(&k,x) — S¥(E %)

S" depends only on ¢
SAA-mappings S° are random mappings
not necessarily closed-valued

(the sum of closed sets 1s not necessarily closed)
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Pointwise limits: SAA-mappings

ES(x) = 4A{S(§,X)} # (), then
Vxe X: S (E,x)— clcon ES(x)=:S(x) u~-as.
If S(-,x) is P-atom convex, S"(€,-) = cl ES(x) =: S (x) U~ -a.s.

Proof: LLLN for random sets. O
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So far ...

= generalized equations

S:Zx D = F, set-valued S(&,x) C E, inclusion [E{S(&,z)} 50
iid-sample ?”: g ... & and z — S(£, ) osc
SAA-mapping S” : 2= x D == E, random osc mappings
Sv(¢,x) =LY S(ek,2) = SY(€ " x), VE€E
Vz € D, S(-,z), closed random set,
let S=clcon ES, ES(x)=IE{S(x,&)}

Artstein-Hart LLN applies St % S a.s. when E = R™
bt 28 =05 i ( )jS ( ). Needed S” %3 S

recall: S(z) = cl ES(xz) when P-atom convex, ES(zx) closed if ¢ — S(§, ) is
integrably bounded and compact if rge S(-, z) is bounded.
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Consistent Approximations ?

$'E,)—>S um-as.=? $(&,)7"0)=2,57(0)

point
sometimes!

graphical rather than pointwise convergence 1s required

Sv(é,-)—i S u~”-as.is needed
gp

relationship between graphical and pointwise convergence?
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Semicontinuity: 0Sc/isc

(review)

S : D = R™ continuous at Z if lim,v_,z d(S(z¥),S(Z)) — 0

d(S(z"),5(%)) = 0 <= d,(S(z"),S(T)) — 0
— d,(S(z"),S(T)) = 0¥p>p>0

CEAP (S(CUV)7 S(ZI_})) T [(BP (S(xlj)a S(a_j))7®0 (S(.Cl_?), S(xy» ]

S is osc (outer semicontinuous) at Z if e,(S(z"), S(z)) — 0 as z¥ —
S is isc (inner semicontinuous) at Z if ,(S(z), S(z")) — 0 as 2¥ — T




Equi-osc mappings

S:D= R", Dc R" is osc if gph S is closed

oscatx: givenany p>0,e>0

3V eN@): e, (5(x).5(x))<e, VxeV

{SV ] Dij} are equi-osc at x
given any p > 0,e >0
3V e N@): eS"(x),8"(x)) <€, VxeV
V =V(p,e) doesn't depend on V.
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(Graphical versus Pointwise Convergence

D,D" : X = R"™. Then, D" — D and D" — D (at x)

point gph
& {DV , veN } are equi-osc (asymptotically) (at x)

~ Arzela-Ascoli Theorem for set-valued mappings

S random mapping, u”-as., S"(E,-)—>clconES =S

point

then S* > S < {S “,veN } are equi-osc (asymptotically)

gph

Friday, June 21, 13



gph-convergence of SAA-mappings

S: Ex X=3R" random mapping, (Z,4,P)
P -as.: Sv(éj,')%h S at X < SAA-mappings {Sv(é,-)} equi-osc at x
gp
= sol'ns of S¥(£,-) 20 =, solnsof S(-)30
Sufficient condition: P~ -a.s.

S(€,-) stably osc & steady under averaging = {S "(&,- )} equi-0SC

-

Law of large Numbers for Random Mappings
S random osc mapping: = X R" I[g”
stably osc & steady under averaging

E',E” ..., iid random variables (values in Z), distribution P

Then, v‘lz“::lS(fl‘,-) TR S = clconE{S({fo,-)} P -as.
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Stably osc

S stably osc near x if u-a.s.,
Vp>0,e>0, AW eNX) & nB (n>0):
ep(S(f,x'),S(f,x)) <g,Vx'ex+nB, xeW
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Steady under averaging

ueS'(E.x)NpB=3p>p, u* e SE.x)N pB such that

u=v'(u +---+u"); SV(Ev,x)m pB % ZS(fk,x)m pB
=il
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Steady under averaging & Stably osc

rge S < B bounded = steady under averaging

S cone-valued and rge S < pointed cone K. Then,

S = ES and = steady under averaging.
S, R steady under averaging = sois S+ R
R(&,x) = R(x) = R steady under averaging
rge S bounded + R constant = steady under averaging

G(&,x)+ N.(x) = steady under averaging (V.I.)
G :=Z X X— R" 1s bounded

S, R stably osc = § + R stably osc
although D', D’* osc =% D' + D’0sc
B closed, convex x> Ny(x) osc

but not stably osc (x" € int B — x € bdry B)

Friday, June 21, 13



Implementing SAA ** locally

EG(x)=E{G(&,x)} e S(x)

(V.I.: S$=N_, applied to option pricing, ...)
G'(E,)=v"Y G x). AssumeG'(&,), EG eC'(R';R"),
x strongly regular solution [Robinson] of EG(x) € S(x),

AV e N(x), p >0 such that Vz € pB:

2+ EG(X)+ VEG(X)(x—X) € S(x)

has a unique solution x(z) € V, Lipschitz continuous on pIB, and

G'(&,-)— EG||— 0 u-a.s. Then, for v sufficiently large

=V

on a neighborhood of X, G"( & ,*) € S(x) has a unique solution

X (Ev) — X U-a.s.
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Implementing SAA ** example

stochastic program with recourse (simple): & uniform on [1,2]
min, E{—x\ x+y, <& xe0,2],y, > o} = min(Ef (x) = B{f(€,0)})
WG ) =k o g B = H L
to solve 0 € dEf(x) gets replaced by 0 € v_lzzzlS (GRSt (Ev,x)
S(Ex) = (E,x) = —1 4N, ;,(x),  dom S(&,")=[0,&]

r(—c><>,—1] when x =0,

A

=K —1 for x € (0,¢),
[1,00) when x = &

-1

Solution of 0 € S" (Ev,x) o= min{é1 ) ..,fv} —. . x =1 (opt. sol'n)
but x” is never a feasible solution,
Ay, 2 0 such that x*" + y, <& when ¢ €[1,x")

Problem: 0Ef (x) # E{df(€,x)} *** interchange is not valid.
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