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“Optimization & Equilibrium”

“Nothing at all takes place in the universe in which some rule 
of maximum or minimum does not appear” L. Euler 1744

“
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“Optimization & Equilibrium”

“Nothing at all takes place in the universe in which some rule 
of maximum or minimum does not appear” L. Euler 1744

       “Il n’est pas certain que tout soit incertain”  B. Pascal   ±1645

“
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Prelude: 14th-Century  ~ 1950
~ 1350 Oresme's rule:  f :→ 

    x*∈argmin f ⇒ df (x*;w) = lim
τ→0

f (x *+τw) − f (x*)
τ

= 0,  ∀w ∈

~ 1650 Fermat's rule:  f :→ , f  smooth
    x*∈argmin f ⇒ f '(x*) = ∇f (x*) = 0
   df (x;w) = ∇f (x0,w ⇒  (Oresme rule ⇔  Fermat rule)
(~ 1950 Dantzig simplex method for linear programming)

Oresme's rule:  f :n → 

    x* ∈arg min f ⇒ df (x*;w) = 0,  ∀w ∈n

Fermat's rule:  f :n → , f  smooth
    x* ∈arg min f ⇒ ∇f (x*) = 0, df (x;w) = ∇f (x),w
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Curve Fitting
find h:[0,1]→ , given h(z1),…,h(zL )

approximate by p(x) = anx
n ++ a1x + a0

min
a∈n+1 (

l=1

L

∑ aj
j=0

n

∑ zl
j − h(zl ))2 = min

a∈n+1 〈Za − y,Za − y〉

Z =

z1
n … z1 1
z2
n … z2 1
   
zL
n … zL 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, (y1,…, yL ) = h(z1),…,h(zl )( )

Solution:  applying Fermat's rule,

a* = (ZZ )−1Zy;  assuming col. Z  linearly independent
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Curve fitting: polynomial-approx.
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Steepest descent - Newton Methods
direction of descent ∃τ  > 0,∀τ ∈(0,τ  ) : f (x + τd) < f (x )
df (x;d) < 0 smooth: ∇f (x ),d ≤ 0 ⇒ d  direction of descent

Steepest descent: x0; ∇f (xν ) = 0 stop; 

       dν = −∇f (xν ), xν+1 = arg min f (x) x ∈[xν , xν + λdν ),λ ≥ 0{ }

Newton direction: dν = − ∇2 f (xν )( )−1
∇f (xν ) ⇒  Newton Method

      quadratic convergence locally: (f C 2…),  with local sol'n @ x
∃ρ > 0,κ ≥ 0 : ‖∇2 f (x) − ∇2 f ( ′x )‖≤κ | x − ′x |, ∀x, ′x ∈B(x ,ρ)
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Quasi-Newton Method(s)

0. xν ,B0 (= I ),ν = 0
1. ∇f (xν ) = 0 stop  or  Bνdν = −∇f (xν )

2. xν+1 = argmin f (x) x ∈[xν , xν + λdν ),λ ≥ 0{ }

Bν ≈  Hessian ∇2 f (xν ) in Newton (curvature)
Bν+1(xν+1 − xν ) = (Bν +U )(xν+1 − xν ) = ∇f (xν+1) − ∇f (xν ),  i.e.,
Uνsν = cν − Bνsν , sν = xν+1 − xν , cν = ∇f (xν+1) − ∇f (xν )

    Quasi-Newton condition
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Integral Functionals
(Calculus of Variations)

min f (x) = L
0

1

∫ (t, x(t), x(t))dt x ∈  fcns [0,1],( ), x(0) = α, x(1) = β{ }
Oresme rule : x* ∈argmin f ⇒ df (x*;w) = 0,∀w ∈W ⊂ X,
W  admissible variations: = w ∈  fcns [0,1],( ) w(0) = w(1) = 0{ }

Bernoulli (Jacob, Johan), Newton (~ 1700) ⇒  Euler equation

Lx(t, x*(t), x*(t)) = d
dt
L x(t, x*(t), x*(t)) for t ∈[0,1]
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Mathematical Shift
(a paradigm change)

differentiability   →   non-smooth

typical example: f (x) = min g(x, y) y ∈S(x){ }

dom f   →   open to closed
INEQUALITIES! 
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A formulation

A furniture manufacturer must choose xj ≥ 0, how many

dressers of type j = 1, . . . , 4 to manufacture so as to

maximize profit

4
∑

j=1

cjxj = 12x1 + 25x2 + 21x3 + 40x4

The constraints:

tc1x1 + tc2x2 + tc3x3 + tc4x4 ≤ dc
tf1x1 + tf2x1 + tf3x1 + tf4x1 ≤ df

tcj (tfj) carpentry (finishing) man-hours: dresser type j

dc (df ) = total time available for carpentry (finishing)

Dealing with Uncertainty – p. 3/??

-- Product mix problem
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Product mix problem (2)

Solution via linear programming:

max〈c, x〉 so that Tx ≤ d, x ∈ IRn
+.

With

T =





tc1 tc2 tc3 tc4

tf1 tf2 tf3 tf4



 =





4 9 7 10

1 1 3 40



 ,





dc

df



 =





6000

4000





Optimal: xd = (4000/3, 0, 0, 200/3)

Value: $ 18,667.

Dealing with Uncertainty – p. 4/??
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Product mix problem (3)

But . . . “reality” can’t be ignored!

tcj = tcj + ηcj , tfj = tfj + ηfj

entry possible values

dc + ζc: 5,873 5,967 6,033 6,127

df + ζf : 3,936 3,984 4,016 4,064

10 random variables, say, 4 possible values each

L = 1, 048, 576 possible pairs (T l, dl)

Dealing with Uncertainty – p. 5/??
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Product mix problem (4)

What if
∑4

j=1
(tcj + ηcj)xj > dc + ζc ? =⇒ overtime

With ξ = (η{·,·}, ζ{·}), recourse: (yc(ξ), yf (ξ)) @ cost (qc, qf ).

max 〈c, x〉 −p1〈q, y1〉 −p2〈q, y2〉 · · ·− pL〈q, yL〉
s.t. T 1x −y1 ≤ d1

T 2x −y2 ≤ d2

...
. . .

...

TLx −yL ≤ dL

x ≥ 0, y1 ≥ 0, y2 ≥ 0, · · · yL ≥ 0.

Structured large scale l.p. (L ≈ 106)

Dealing with Uncertainty – p. 6/??
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Product mix problem (5)

Define Ξ =
{

ξ = (η, ζ)
}

, pξ = prob [ξ = ξ]

Q(ξ, x) = max
{

〈−q, y〉
∣

∣Tξx− y ≥ dξ, y ≥ 0
}

EQ(x) = E{Q(ξ, x)} =
∑

ξ∈Ξ

pξQ(ξ, x)

the equivalent deterministic program (DEP):

max〈c, x〉+ EQ(x) so that x ∈ IRn
+.

a non-smooth convex optimization problem: EQ concave.

Dealing with Uncertainty – p. 7/??
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Product mix problem (6)

Solution of DEP, or large scale l.p.,:

Optimal: x∗ = (257, 0, 665.2, 33.8)

expected Profit: $ 18,051

The solution x∗ is robust : it considered all ≈ 106

possibilities.

   Recall: xd = 1,333.33, 0, 0, 66.67( )
expected "profit" relying on xd = $16,942

 xd  is not close to optimal
 xd  isn't pointing in the right direction
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Curve Fitting (2)
find h:[0,1]→ , given h(t1),…,h(tL ) & h smooth

approximate by z, C1+ -curve
mesh = 0,δ ,2δ ,…,Nδ = 1{ },   on (k −1)δ ,kδ ]( ′′z (t) = ak

z(t) = z0 + v0t + δ (
j=1

k−1

∑ t − t j + δ / 2)aj + 1
2 (t − tk−1)2ak , t ∈ (k −1)δ ,kδ ](

find z0 ,v0 ,a1,…,aN  all ∈

min z(tl ) − h(tl )( ), l = 1,…,L


−κ ≤ ak ≤κ , k = 1,…,N
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Epi-spline fit
z is an epi-spline of order 2, 

on each (open) sub-interval a polynomial of order 2.
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Preliminaries -- Convexity
“minimization framework”

f :n →  = [−∞,∞],   dom f = x f (x) < ∞{ }  
                                      proper: dom f ≠ ∅, f > −∞

f (x) = f0 (x) when fi (x) ≤ 0, fi (x) = 0, x ∈X ⊂ n

                                i = 1,.., s i = s +1,..,m
           = ∞  otherwise
epi f = (x,α ) f (x) ≥ α{ }⊂ n+1

f  lsc ⇔ epi f  closed (lower semicontinuous)
f  convex ⇔ epi f   convex
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Optimization problem
min f (x), x ∈S,   

   S = x ∈Rn fi (x) ≤ 0, i = 1→ s, fi (x) = 0, i = s +1→ m{ }

S 

η

x

f0
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Extended-real valued fcn

min f  on n , f = f0 + ιS (x), ιS  indicator function of S

S = dom f

f

η

x
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Functions & Epigraphs
epi f = (x,α ) f (x) ≤ α{ }

S = dom f

epi f

η

x

f  lsc ⇔  epi f  closed
lower semicontinuous
f  usc ⇔  − f  lsc
    ⇔  hypo f  closed

f  convex ⇔  epi f  convex

f  lsc at x : lim infx '→x f (x ') ≥ f (x), f  usc at x : limsupx '→x f (x ') ≤ f (x)
       f   lsc ⇔ epi f  closed                      f  usc ⇔  hypo f  closed
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Level sets & Constraints

levα = x ∈n f (x) ≤ α{ }

S = dom f

epi f

levα f

η

α

x

f  lsc ⇔  levα f  closed ∀α f  convex ⇒  levα f  convex
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MOREAU ENVELOPES

eλ f = infw f (w)+ 1
2λ

|w − x |2⎧
⎨
⎩

⎫
⎬
⎭

     epi eλ f ≈ epi f + epi 1
2λ
i

2

−2 −1 0 1 2 3 4
0

0.5

1

1.5
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e0.01f

e0.1f

ff

f

Moreau envelop es

λ = 10, 1, 0, 1, 0.01

e1f

e10f
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MOREAU ENVELOPE: APPROXIMATIONS

−0.5 0 0.5 1

fe0.01f

e0.1f

e1f

f

e10f

Moreau enverlop
lsc function f
λ = 0.01, 0.1, 1,

eλ f = infw f (w)+ 1
2λ

|w − x |2⎧
⎨
⎩

⎫
⎬
⎭

     epi eλ f ≈ epi f + epi 1
2λ
i

2
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EPI-SUMS (inf-convolution)

epi f epig = infw f (w) +g(w − x){ } eλ f (x)  with g = 1
2λ
i

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

f

f
e0.01f

e0.1f

e1f

e10f

Moreau envelop es
f convex function
λ = 10, 1, 0.1, 0.01

♯
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Convex functions: Properties 
 f1 + f2 ,  E f (ξ, ·){ } = f (ξ,i)P(dξ) = Ef  

Ξ∫ convex     Ξ,A,P( )
f :Ξ × n →  = −∞,∞[ ]  random lsc function (normal integrand)

       x f (ξ, x) lsc ∀ξ ∈Ξ

       ξ, x( ) f (ξ, x) (jointly) A⊗Bn− -measurable
 inf-projection: f (x) = inf

u∈m
g(u, x) convex when g is convex

epi g

x

u

epi f
Proof:

 f  convex,    local minimum ⇔  global minimum
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Convex fcns: differentiability

 f :Oopen ⊂ n  differentiable, convex ⇔

(a) 〈x1 − x0 ,∇f (x1) − ∇f (x0 )〉 ≥ 0 ∀x0 , x1; montonicity
(b) f (y) ≥ f (x) + 〈∇f (x), y − x〉,∀ x, y ∈n;  affine support
(c) ∇2 f (x) positive semi-definite ∀x; f  twice differentiable

 f (x) = 1
2 x,Qx + c, x  quadratic form, convex ⇔  Q psd
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Convex fcns: subdifferentiability
 df (x;w) = lim

τ0

f (x + τw) − f (x )
τ

 subderivative (fcn) direction w

 ∂f (x ) = v ∈n f (x) ≥ f (x ) + 〈v, x − x 〉, ∀ x ∈n{ }  subgradients

           = v ∈n 〈v,w〉 ≤ df (x;w),∀w ∈n{ }
             = ∇f (x ), f diferentiable
 ∀w :df (x;w) = maxv 〈v,w〉 v ∈∂f (x ){ }

 f (x) = maxi∈I fi (x) of convex fcns is convex, ∂f(x) = ?? 
 f =  inf-projection of g(u,i), ∂f(x) = ?? 
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Generalized Oresme, Fermat Rules
f :n → ,  convex

 Oresme rule: x* ∈argmin f ⇔ df (x*;·) ≥ 0
 Fermat rule: x* ∈argmin f ⇔ 0∈∂f (x*)

g = ιC , C  convex -- indicator function  (of constraints, e.g.)
f = f0 + ιC , 0 ∈∂f (x ) ⇔ ? 0 ∈∂f0 (x ) + ∂ιC (x )

 ∂ιC (x ) = NC (x) = v v, x − x ∀x ∈C{ },  normal cone to C  @ x

N  (x)C

C C C

v
v

_

0 00
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Subdifferential Calculus
proper fcn: dom f ≠ ∅, f > −∞. f ,g proper, convex
df (x;·) + dg(x;·) = d( f + g)(x;·),
∂f (x) + ∂g(x) ⊂ ∂( f + g)(x) 

when  int dom f ∩  dom g = ∅,  then  ∂f (x) + ∂g(x) = ∂( f + g)(x)

f = f0 + ιS , f0 (x) ∈⇒ x ∈argmin f ⇔ 0 ∈∂f (x ) + NC (x )
convex programs:

min f  = f0 + ιS , S = x ∈X fi ≤ 0, i :1→ s, fi = 0, i : s +1→ m{ }            
             X  closed, convex       convex            affine

linearly constrained: (linear, quadratic, ... programs)
             X  polyhedral (box)     affine            affine 
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Convex, Linearly Constrained
C = x 〈Ai , x〉 ≤ bi , i = 1,…, s, 〈Ai , x〉 = bi , i = s +1,…,m{ }  polyhedral
with x ∈C,
v ∈NC (x ) ⇔ ∃λ1 ≥ 0,…,λs ≥ 0, λs+1…,λm ∈ such that

v = λi
i=1

m

∑ Ai  i = 1,…, s, λi (〈Ai , x 〉 − bi ) = 0 λ ⊥ (Ax − b)( )

x  sol'n of linearly constrained convex program if and only if
     one can find KKT-multipliers y ∈m  such that

(a) Ai , x
 ≥ bi , i = 1,…, s,  Ai , x

 = bi , i = s +1,…,m,

(b) i = 1,…,m, yi ≥ 0, yi (〈Ai , x
 〉 − bi ) = 0,

(c)  x ∈argmin f0 (x) − Ay, x , x ∈X  (box) 

(~c) -v ∈NX (x ) such that ∂f0 (x ) v + Ay
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Expectation Functionals
plain probability measures: for A ∈A, P(A) = Pd (A) +Pc (A)

⇒ E h(ξ){ } = h(ξ)pξ + h(ξ) p(ξ)dξ)
ξ∈Ξc ⊂

N∫ξ∈Ξd
∑

E S(ξ){ } = E s(ξ){ } s(ξ) ∈a.s. S(ξ), s summable{ }  ⊂ N

properties of E :  
linearity, order preserving, dominated convergence

 f  random convex lsc functions ⇒  x Ef (x) convex 
when Ef  finite-valued: 

dEf (x;w) = E df (ξ, x;w){ }   & ∂Ef (x) = E ∂f (ξ, x){ }
 x∗ ∈argminEf ⇔ ∃ v ∈  ∂f (i, x∗),  E v(ξ){ }  =0  &

∀ξ ∈Ξ : x∗ ∈argminx f (ξ, x) − v(ξ), x⎡⎣ ⎤⎦              

density

!!  Remark: to solve 0 ∈∂Ef (x*) it suffices to know v(ξ) for just one ξ
and solve one problem of the same size as the deterministic version
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Approximation: Convergence

C1 Cν C=limνC
ν

 outer limit: LsνC
ν = x ∈  cluster-points{xν} , xν ∈Cν{ }

inner limit:  LiνC
ν = x = limν x

ν , xν ∈Cν ⊂ n{ }⊂  LsνC
ν

     limit:     Cν → C  if C =  LiνC
ν = LsνC

ν   (Painlevé)

All limit sets are closed
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Convex limit sets

 Cν  convex ⇒ LiνC
ν  convex ⇒  LmνC

ν  convex (if it exists)
                   /⇒  LsνC

ν  convex

C1 Cν limνC
ν

but convexity can result from taking limits
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EPI-Limits

f ν :n → , ν ∈{ }
lower epi-limit:  e-liν f

ν  such that epi(e-liν f
ν ) =  Lsν epi f ν

upper epi-limit:  e-lsν f
ν  such that epi(e-lsν f

ν ) =  Liν epi f ν

epi-limit: f ν →
e
f  when f =  e-liν f

ν =  e-lsν f
ν ,   f =  e-lmν f

ν

all epi-limits are lsc (closed epigraphs),     e-liν f
ν ≤ e-lsν f

ν

f ν  convex ⇒  e-lsν f
ν  is convex and so is e-lmν f

ν  (if it exists)

Convergence of level sets / constraint sets:
f ≤ e-liν f

ν ⇔  Lsν (levαν
f ν ) ⊂  levα f ∀αν →α

f ≥ e-lsν f
ν ⇔  Lsν (levαν

f ν ) ⊂  levα f for some αν →α

Operations: sums, scalar multiplication, epi-sums
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SV-Convergence
solutions, minimizers, ...

Aν  solutions of (generalized) equations
     minimizers of a sequence of functions
     saddle points or min-sup points of bifunctions
ε-Aν :ε > 0 approximate solutions, minimizers, ....
A  solution set, minimizers, ... of corresponding limit

Definition:  Aν  sv-converge to A,  written Aν     v   A,  if

   a) x ∈  cluster-points xν ∈Aν{ }⇒ x ∈A

   b) x ∈A⇒∃ εν  0, xν ∈εν -Aν → x

!!
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Convergence of Minimizers
Sv-convergence of Minimizers

f ν →
e
f , x ∈  cluster xν ∈argmin f ν{ }⇒ x ∈argmin f

f ν →
e
f , inf f ∈, x ∈argmin f ⇒∃εν  0, xν ∈εν -argmin f ν → x

f ν →
e
f /⇒ argmin f ν → argmin f

f ν →
e
f , inf f ν → inf f ∈⇔ f ν{ }ν∈  epi-tight, i.e.

∀ε > 0, ∃B compact s.t. infB f
ν ≤ inf f ν + ε, ∀ν ≥ ν

f�+1
f �

�argmin f

argmin f

f
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Set-valued mappings

Rm

Rndom S

rge S

S(x)

S-1(u)

gph S

u

S  osc (outer semicontinuous) at x if Lsx→x S(x) ⊂ S(x )
           S  osc ⇔  gph S  closed
S  isc (inner semicontinuous) at x if Lix→x S(x) ⊃ S(x )
S  continuous if it's isc and osc
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GRAPHICAL CONVERGENCE
SV-convergence of solutions

Sν →g S  when gph Sν → gph S   (as subsets of n × m )

Generalized Equations ~ Inclusions

Sν ,S :n     m , Sν (x) uν ,  S(x) u  and Sν →g S,uν → u . Then

x ∈  cluster-pts xν Sν (xν ) uν{ }⇒ S(x ) u

S(x ) u ⇒∃ûν → u  with Sν (x̂ν ) ûν  and x̂ν → x

Sν → p S pointwise doesn't yield convergence of sol'ns

!!
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CONVERGENCE RATES

Excess distance function:
     eρ (A,B) = inf η ≥ 0 A∩ ρB⊂ B +ηB{ }, ρ > 0
Estimate of set distance:

dl̂ρ (A,B) = max[eρ (A,B),eρ (B,A)]  
Set-distance:
dlρ (A,B) = maxx∈ρB d(x,A) − d(x,B) ,

    d(x,C) = infy∈C y − x
Pompeiu-Hausdroff distance: ρ = ∞

dl̂ρ (A,B) ≤ dlρ (A,B) ≤ dl̂ρ ' (A,B),
′ρ ≥ 2ρ + max[d(0,A),d(0,B)]

Cν → C ⇔ dlρ (Cν ,C)→ 0 ⇔ dl̂ρ (Cν ,C)→ 0 ∀ρ ≥ 0

C
0

�

�

�

�

�d (C, C ) <��

IB

C� �IBU

C + IB�

A

ρ

η

B
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EPI-DISTANCE

lsc-fcns(n ) =  space of all lsc functions from n →  = [− ∞,∞ ]

dl̂ρ ( f ,g) = dl̂ρ (epi f , epig), dlρ ( f ,g) = dlρ (epi f , epig), ρ ≥ 0

                                                      Bn+1 = Bn × [−1,1]

dl( f ,g) = e−ρ
ρ≥0∫ dlρ ( f ,g) dρ,    epi-distance,   Attouch-Wets topology

f ν , f ∈lsc-fcns(n ), f ν →e f ⇔ dl( f ν , f )→ 0
           also dlρ ( f ν , f )→ 0, ∀ρ ≥ ρ > 0,…

lsc-fcns(n ) \ { f ≡ ∞}, dl( )  complete metric space
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Epi-distance

f
g

⇢

dl⇢(f, g)
f

g
dl⇢(f, g)

⇢
d(x, epi f)

d(x, epi g)

Friday, June 21, 13



QUANTITATIVE ESTIMATES

under ψ -conditioning for f , f ,g ∈lsc-fcns(n ), inf f , inf g ∈

minρB g − min f ≤ dlρ ( f ,g)

argminρB g ⊂ argmin f +ψ (dlρ ( f ,g))B

epi f epi f

f f(a) (b)

�
�

2� 2�

(x,f(x))
__ (x,f(x))

__
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QUANTITATIVE ESTIMATE
convex functions

f ,g :n → ,  proper, lsc, convex functions
argmin f , arg ming ≠ ∅
ρ0  large enough so that ρ0B meets argmin f & argming
min f ≥ −ρ0 , min g ≥ −ρ0

Then, with ρ > ρ0 , ε > 0, η = dlρ ( f ,g)

dl̂ρ (ε-arg min f ,ε-arg min g) ≤ η 1+ 2ρ
η +  / 2

⎛
⎝⎜

⎞
⎠⎟

                                              ≤ (1+ 4ρ / )dl̂ρ ( f ,g)
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Convex functions

(Wijsman)   f ν →
e
f ⇔ ( f ν )*→

e
f * = supx v, x − f (x)( ), f ν  lsc, convex

epi f
(�,�)(x, )�

l �x,
(a) (b)

epi f*

l �v,

conjugate
functions

f ν →
e
f /⇒ f ν →

p
f (pointwise)  &   f ν →

p
f /⇒ f ν →

e
f

  f ν →
e
f ≡ f ν →

p
f ⇔ f ν{ }ν∈  is equi-lsc 

(Walkup-Wets)     dlcsm f ,g( ) =  dlcsm f *,g *( ) ≈ dl( f ,g) = dl( f *,g*)[ ]
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Attouch’s Theorem

f ν , f :n → ,  proper, convex, lsc and λ > 0
The following are equivalent:
  a) f ν →e f
  b) the mappings ∂f ν →g ∂f  and

      ∃vν ∈∂f ν (xν ),v ∈∂f (x ), xν ,vν( )→ (x ,v ), f ν (xν )→ f (x )
                    (convergence of an integration constant)

  c) Pλ f
ν → p Pλ f = argminw f (w) + 1

2λ
w − i 2⎧

⎨
⎩

⎫
⎬
⎭

 and

      ∃ x , xν → x  such that eλ f
ν (xν )→ eλ f (x )

in situation b): also f ν*(vν )→ f *(v )

(initial proof: via Moreau envelopes)
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Epi-Convergence 

f

� !e f if for all x 2 E,

1. 8x� ! x, lim inf� f
�
(x

�
) � f(x)

2. 9x� ! x, lim sup� f
�
(x

�
)  f(x)

“Geometrically”: epi f

� ! epi f (later)

Pointwise:

lim inf� f
�
(x) � f(x), lim sup� f

�
(x)  f(x)

Continuous: 8x� ! x,

lim inf� f
�
(x

�
) � f(x), lim sup� f

�
(x

�
)  f(x)

review

Friday, June 21, 13



Aν  = arg min f ν , ε-Aν : ε > 0 approximate minimizers,
A = argmin f   of limit problem, ε-A  approx. minimizers

Aν  v-converges to A,  written Aν ⇒v A,  if

           a)  x ∈  cluster-points xν ∈Aν{ }⇒ x ∈A

           b)  x ∈A⇒∃ εν  0, xν ∈εν -Aν → x

f� !e f implies �-A� )v �-A, 8 � � 0
A unique minimizer, ��-A� !! A as �� &0. (inf f > -∞)

Epi-Convergence  ⇒
convergence of minimizers
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1. pointwise convergence 6) convergence of minimizers

f⌫ ⌘ 1 except f(1/�) = 0, f⌫ !
p
f ⌘ 1

ff

1/ν

ν

dom f⌫

f⌫

2. uniform convergence implies convergence of minimizers

but applies rarely, never when constraints depend on ⌫

Why epi-convergence?
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1. pointwise convergence 6) convergence of minimizers

f⌫ ⌘ 1 except f(1/�) = 0, f⌫ !
p
f ⌘ 1

ff

1/ν

ν

f

dom f

2. uniform convergence implies convergence of minimizers

but applies rarely, never when constraints depend on ⌫

Variational
epi-

convergence

Why epi-convergence?
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Variational geometry
Tangent Cone

w ∈TC (x), tangent to C  at x ∈C,  if xν − x / τν → w for xν →
C
x,τν  0

C

x
_

C
_

T (x)
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Variational Geometry
Normal Cone

C

x
_

N (x) = N (x)^_ _
C C

v ∈N̂C (x ),  regular normal at x ∈C,  if v, x − x ≤ o(| x − x |), ∀x ∈C

v ∈NC (x ), normal at x ∈C, if ∃xν →
C
x and vν → vwith vν ∈N̂C (xν )

normal cones: closed cones,  N̂C (x ) convex
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Clarke regularity

C Clarke regular at x if C locally closed & NC (x) = N̂C (x )
          which implies NC (x ) is convex if C regular at x

In general, NC (x ) = Lsx→C x
NC (x) ⊃ N̂C (x )

Smooth manifolds and closed convex set are regular  (also locally)

C

x
_

_
T (x)C

_N (x)C
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SUBGRADIENTS

v ∈∂̂f (x ) regular subgradient if f (x) ≥ f (x ) + v, x − x + o(| x − x |)

        ∂̂f (x ) = v (v,−1) ∈N̂epi f (x , f (x )){ },  closed and convex

v ∈∂f (x ) subgradient if ∃ xν → f x ,vν ∈∂̂f (xν ) with vν → v

        ∂f (x ) = v (v,−1) ∈Nepi f (x , f (x )){ },  closed

x ∂f (x) osc f -attentive convergence: ⇒ Lsx→ f x
∂f (x) ⊂ ∂f (x )

f  differentiable at x : ∂̂f (x ) = ∇f (x ) = ∂f (x )

f  regular at x : f  locally lsc with ∂f (x ) = ∂̂f (x ) ( f  locally convex, e.g)
∂ιC (x) = NC (x)  when C is convex

(never supergradients)
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OPTIMALITY

min f = f0 + ιC ,  optimality: ``0 ∈∂f (x ′′)
         generally, ∂ f + g( ) ≠ ∂f + ∂g
C.. (Constraint Qualification): − NC (x )∩ ∂∞ f0 (x ) = {0}
v ∈∂∞ f0 (x ) =  horizon subgradient if 

                         ∃ xν → f x ,vν ∈∂̂f (xν ),λν  0 & λνv
ν → v

Fermat's Rule (quite a bit generalized):
with  C..  x  locally optimal ⇒∂f0 (x ) + NC (x ) 0 
f  convex ( ⇒ regular), ∂f0 (x ) + NC (x ) 0 ⇒  
                        globally optimal (no C.Q. in this form)
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Stochastic Variational Analysis
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G : E ! d
, G

�1
(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(⇠, x)} = 0 “approximated” by G�
(x) = 0

�1, . . . , �� sample, G�
(x) = 1

�

P�
l=1 G(�l, x)

G : ��D ⇤⇤ E, set-valued G(�, x) ⇥ E, inclusion {G(⇠, x)} ⌅ 0
�1, . . . , �� sample, approximation 1

�

P�
l=1 G(�l, x) ⌅ 0

min {f(⇠, x)}, x � C, {f(⇠, x)} = Ef(x) =
R
� f(�, x)P (d�)

�1, . . . �� sample P �
(random) empirical measure

approx.: min

�{f(⇠, x)} =

1
�

P�
l=1 f(�

l, x), x � C

Why?
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1. Stochastic Programming (recourse model)

f(�, x) =

(
f01(x) +Q(�, x) if x ⇥ C1

� otherwise

Q(�, x) = infy

�
f02(�, y)

�� y ⇥ C2(�, x)
 

minEf(x) = {f(�, x)},
SAA-problem: min f�

(

!
�

�
, x) = 1

�

P�
l=1 f(�

l, x)

2. Statistical Estimation (fusion of hard & soft information)

L(�, h) =

(
� lnh(�) if h ⇥ 0,

R
h = 1, h ⇧ Asoft ⇤ E

⌅ otherwise

EL(h) = {L(�, h)}, htrue

= argminE {L(⇠, h)}

estimate: h� ⇧ argminE
�{L(⇠, h)} =

1

�

P�
l=1

L(�l, h)
Asoft

: constraints on support, moments, shape, smoothness, . . .

Some Examples: 
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3. A contingent claim:          environment process: ξ t ∈d{ }t=0

T

history:ξ
→ t

, ξ = ξT ,   price process: St (ξ
→ t

) ∈n;  numéraire (risk-free): S1
t ≡ 1

claims: Gt (ξ
→ t

){ }
t=1

T

; i-strategy:  Xt (ξ
→ t

){ }
t=0

T

;  value @ t : 〈St (ξ
→ t

),Xt (ξ
→ t

)〉

Instruments: T-bonds, options, swaps, insurace contracts, mortgages, ...

Pricing financial instruments 

maxE 〈ST ,XT 〉{ }  such that 〈St ,Xt 〉 ≤ Gt +  〈St ,Xt−1〉, t = 1→ T

                                               〈S0 ,X 0 〉 ≤ G0 , 〈ST ,XT 〉 ≥ GT  a.s.

feasible if G0 ++GT ≥ 0 ∀ξ;   arbitrage ⇒  unbounded
prob[ξ = ξ] = pξ  (finite sample?): max pξξ∈Ξ∑ 〈ST (ξ),XT (ξ)〉…
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4.Stochastic homogenization, ...

� ·
�
a(⇠, x) u(⇠, x)

�
= h(x) for x ⇧ �, u(⇠, x) = 0 on bdry �

Variational formulation: ⌃ �, g(�, u) := 1
2

R
� a(�, x)| u|2dx� ⌥h, u�

find u(�, x) ⇧ argminu2H1
0 (�) g(�, u), g(�, ·) : L2 ⇥ (�⌅,⌅]. convex

{u(⇠, x)} ⇧ argminu2H1
0 (�) G(u) where epiG = {epi g(⇠, ·)}

G(u) = infz
�

{g
�
⇠, z(⇠)

� �� {z(⇠)} = u
 

G⇤ = {g⇤(⇠, ·)}, g⇤(�, v) = supu
�
⌥v, u� � g(�, u)

 
, conjugate fcn

�1, �2, . . . stationary, use Ergodic Theorem for random lsc functions

G = ghom =
�
epiw - lim�

1
�

P�
l=1 g

⇤(⇠l, ·
�⇤

=⇤ values of ahom(x)
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f :Ξ × E→ , random lsc function,   f (ξ, x)= f0 (ξ, x)  when x ∈C(ξ)
           E ⊂ M(Ξ,A;n ) : Lp(Ξ,A,P;n ),…

           others: C (Ξ,τ );n( ),Orlicz, Sobolev, lsc-fcns(E)

Ef (x) = f (ξ, x(ξ))P(dξ) = E f (ξ, x(ξ)){ }
Ξ∫

         = ∞ whenever f+ (ξ, x(ξ))P(dξ) = ∞
Ξ∫

Ef :E→  always defined

Regression: (E  is not a linear space)

min φ(y − h(x))P(d(x, y)) h ∈  lsc-fcns(n )∩H
x∈[0,1]n∫y∈∫{ }

           H   shape restrictions (convex, unimodal, ...)

Ef = {f(⇠, ·)}

Friday, June 21, 13



f :Ξ × E→  a random lsc function, ξ  values in (Ξ,A,P)
    (a) lsc (lower semicontinuous) in x, (∀ξ ∈Ξ)
    (b) (ξ, x)-measurable        (A ⊗ BE )-measurable
    recall:  f (ξ, x)= f0 (ξ, x)  when x ∈C(ξ)  -- stochastic constraints

f ν (ξ, x) =
1
ν

f (ξ l , x) if  x ∈C(ξ l )( )l=1

ν∑    (typically)

∞ otherwise    ( ~ SAA of optimisation problems)

⎧
⎨
⎪

⎩⎪

Question:  Do the f ν (ξ, ·) epi-converge to E f (ξ,h){ }  P-a.s.?
                 does xν ∈arg min f ν ⇒v x

* ∈argmin E f (ξ, x){ } P-a.s.?

Law of Large Numbers for random lsc functions
⇠ LLN for Stochastic Optimization Problems.

Random lsc functions
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(via inf-projections)
Random lsc functions

D countable dense subset of E

f : E ! , lsc fcn completely identified by�
ox� = inf

o(x,�) f
��x 2 D, � 2 +

 
, countable

or

�
cx� = inf (x,�) f

��x 2 D, � 2 +

 

f(x̄) = supV ⇥N (x̄)

⇥
infx⇥V f(x)

⇤
, f lsc, f(x̄) = lim inf

x�x̄
f(x)

= supV ⇥Q(x̄)

⇥
infx⇥V f(x)

⇤
, E separable (Polish)

Q(x̄) =
�

o
(x, �)

��x � D, � � +, x̄ � o
(x, �)

 

= sup �⇥ +
inf{x | o(x�)⇥Q(x̄)} ox,�

{cx,�} same argument
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(via inf-projections)
f⇥ : n ! , f⇥ !e f , f lsc, () 8� 2 +, x 2 D

limsup⇥ c
⇥
x�  cx�, liminf⇥ o⇥x� � ox�

for x 2 D, � 2 +: o⇥x� = inf

o(x,�) f
⇥ , c⇥x� = inf (x,�) f

⇥

(fundamental) Theorem. f� : E ! & f lsc (necessarily)

1. e-lim inf� f
� () lim inf�(infB f�) � infB f for all compact B

2. e-lim sup� f
� () lim sup�(infO f�)  infO f for all open O

⇤ Hit-and-miss topology on the space of epigraphs, (later?). ⇤

Epi-convergence: Characterization
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Scalarization of random lsc fcns

• f random lsc fcn ⇥ f + ⇥ (x,�) random lsc fcn

• f random lsc fcn ⇥ ⇤ ⇤� �(⇤) = infx f(x, ⇤) measurable

8x 2 n, � > 0
⇥ 7! ox� : � ! are measurable,

ox�(⇠) extended real-valued random variable
⇥ 7! cx� : � ! are measurable,

cx�(⇠) extended real-valued random variable.

f : �� E ⇥ , random lsc fcn, completely identified by�
ox�(⇥) = inf o(x,�) f(⇥, ·)

��x ⇤ D, � ⇤ +

 
, countable

or
�
cx�(⇥) = inf (x,�) f(⇥, ·)

��x ⇤ D, � ⇤ +

 
, ⌅⇥ ⇤ �

COUNTABLE
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f random lsc fcn:
�
f(⇠⇥ , · )

 
⇥2 iid whenever

�
⇠⇥
 
⇥2 iid

E�ös field on lsc-fcns(E) = ⌅-
�
f ⇤ lsc-fcns(E)

�� infO < �
 
, O open, � ⇤

= B
�
lsc-fcns(E)

�
, E Polish

1.
�
f(⇠⇥ , · )

 
⇥2 “i” �⇥

�
ox�(⇠

⇥), ⇤ ⇤
 
“i”, ⌅x ⇤ n, ⇥ ⇤ +

2. f(⇠1, · ), f(⇠2, · ) “id” �⇥ ox�(⇠
1), ox�(⇠

2) “id”, ⌅x ⇤ n, ⇥ ⇤ +

the same holds for

�
cx�( · )

 

Probabilistic properties
iid-properties (pairwise “i”)
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Countable ⇒ a.s.

Lemma. f, g : E ! , lsc. D = prjE countable dense subset of epi f .
f  g on D =) f  g on E.

Proof. f  g on D only if
�
(x,�)

��� � g(x), x 2 R
 
⇢ epi f .

Taking closure on both sides =) epi g ⇢ epi f. ⇤

Implication. To check f(⇠, ⇧ )  g(⇠, ⇧ ) a.s. on E only needs
f(⇠, ⇧ )  g(⇠, ⇧ ) a.s. on D a countable dense subset of E.
Restrict ⇠ to a set of P -measure 1, say � itself (from now on),
and f(⇠, ⇧ )  g(⇠, ⇧ ) on D =) f(⇠, ⇧ )  g(⇠, ⇧ ) on E.
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LLN: random lsc functions?

⇤ x ⇥ D, � ⇥ +

1. 1
⇥

P⇥
l=1 ox�(⇠

l) � {ox�(⇠)}, (P1-a.s.)

2. 1
⇥

P⇥
l=1 cx�(⇠

l) � {cx�(⇠)}, (P1-a.s.)

⌅=⇥
P�

l=1 f(⇠
l, · )�e {f(⇠, · ) because

min
�

{f(⇠, z)}
�� z ⇤ (x, �)

 
⌅=

�
min{f(⇠, z)}

�� z ⇤ (x, �)
 

in general
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Law of Large Numbers:
Random lsc functions
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LLN: Proof
1. ⇧x� ⇤ x : lim sup� E

�f � Ef
for any x ⌅ E and any sample �1

= (�1, �2, . . .)
lim�

1
�

P�
l=1 f(�

l, x) ⇥ lim�
�{f(⇠1, x)} = Ef(x).

2. ⇧x⇥ ⇥ x, lim inf⇥ E⇥f � Ef
for any x ⌅ E and any ⇤1 = (⇤1, ⇤2, . . .) ⌅ �1

e-lim inf
⇥!1

f⇥(⇤1, x) = sup
�& 0

lim inf
⇥!1

inf
o(x,�)

E⇥f � sup
�l & 0

lim inf
⇥!1

1

⇥

X⇥

l=1
ol
xl�l

(⇤l)

where xl ⌅ D ⇥ x, �l ⌅ + &0: x ⌅ o(xl, �l) &
�

o(xl, �l)
 

&
1
⇥

P⇥
l=1 o

l
xl�l

(⇤l) ⇥ {ol
xl�l

(⇠)} & {ol
xl�l

(⇠)}%Ef(x)

=⇤ e-lim inf⇥!1 E⇥f(x) � Ef(x) ⇤
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Law of Large Numbers
(random lsc fcns)

f : �� E ⇤ , locally inf-integrable random lsc function�
⇠, ⇠1, . . . ,

 
are iid �-valued random variables. Then,

E�f = �{f(⇠, · ) = 1
�

P�
l=1 f(⇠

l, · ) ⇤e Ef = {f(⇠, · }

which means �-argminE�f ⌅v �-argminEf , ⇧ � ⇥ 0

Ef unique minimizer, ��-argminE�f ⇤⇤ argminEf as �� &0.

SAA-applies without ‘any’ restrictions

loc.inf-integrable:

R
inf{f(⇥, ·)

��
(x, �)} > � for some � > 0,

irrelevant in applications
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Ergodic Theorem

(E, d) Polish, (�,A, P ) & A P -complete
f : �� E ⇥ a random lsc function, locally inf-integrable
� : � ⇥ � ergodic measure preserving transformation. Then,

1
�

P�
l=1 f(�

l(⇠, · )⇥e Ef a.s.

allows for stationary rather than iid.

Application: “samples” coming from dynamic systems,
time series, SDE, etc.
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Approximation: Probability Measures 
1. {P ⌫

, v = 1, . . .}!D P , f : ⌅⇥ n ! random lsc fcn function and

for given x, ⇠ 7! f(⇠, x) continuous on ⌅, 8 " > 0,

(a) there exists a neighborhood V of x such that

|f(⇠, y)� f(⇠, x)| < ", for all y 2 V.

(b) there exists a subset ⌅" 2 A such that

Z

⌅\⌅"

|f(⇠, x)|P ⌫
(d⇠) < ", for all ⌫ 2 .

Then, E

⌫
f = !c Ef =

R
f(⇠, ·) dP (⇠) at x, i.e.,

8 {x⌫
, v = 1, . . .} ! x, Ef(x) = lim

⌫!1
E

⌫
f(x

⌫
).
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Approx.: Probability Measures 2

2. {P ⌫}⌫2 !D P

f : ⌅⇥ n ! random lsc function

8 " > 0, 9 ⌅" 2 A such that 8x 2 dom f ,

R
⌅\⌅"

|f(⇠, x)P ⌫
(d⇠) < ", 8 ⌫ (f -tight)

Then, E

⌫
f !e EF =

R
⌅ f(⇠, ·)P (d⇠).
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Quantitative Approximation 
f  random convex lsc fcn, dom f (ξ,·) = X  (constant)

F = ξ f (ξ, x) x ∈X{ }

PF = Q ∈P Ξ( )
∀ρ > 0, supρB f (ξ,·)Q(dξ) < ∞∫

infρB f (ξ,·)Q(dξ) > −∞∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

dF ,ρ P,Q( ) = sup
x∈ρB

EP f (x) − EQ f (x) ,   pseudo-metric on PF

P ∈PF , ∅ ≠ argminEf  bounded ⇒∃ρ̂ > 0, ε̂ > 0 :
∀ε ∈(0, ε̂), Q ∈PF  such that dF , ρ̂+ε P,Q( ) < ε :

dl∞ (ε-argminEP f ,ε-argminEQ f ) ≤ 4ρ̂
ε
dF , ρ̂+ε P,Q( )

3.

Proof:  via epi distance between  EP f  and EQ f
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Solving Stochastic Programs
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L-Shaped Strategy
Benders, Dantzig-Wolfe dual

taking advantage of structure
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Two-Stage Recourse Model
With (arbitrary linear) recourse:

minx⇤c, x⌅+
�
Q(�, x)

 
, Ax = b, x ⇥ 0

where � = (q(�, · ),T ,d,W )

Q(�, x) = inf

�
⇤q(�, y)⌅

��W�y = d� � T�x, y ⇥ 0

 
, q(�, · ) convex

The deterministic equivalent problem, a convex program:

minx⇤c, x⌅+ EQ(x) such that Ax = b, x ⇥ 0

with EQ(x) = E{Q(�, x)} =

R
⌅ Q(�, x)P (d�)

but, generally, EQ is not finite valued.

Q finite-valued implies for all decision x,
for all events � a recourse is available

.
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Multi-Stage: Deterministic Equivalent

min
x∈N a E f (ξ, x(ξ)){ } = E E E f (ξ, x(ξ)) A TA 1 A 0{ }{ }{ }

"time-staged objective":

= f1(x
1) + E f2 ξ; x1, x2 (ξ)( ) +E f3 ξ; x1, x2 (ξ), x3(ξ)( )A2{ }A1{ } 

= f1(x
1) + E f2 ξ; x1, x2 (ξ)( ) + EQ2 ξ; x1, x2 (ξ)( )A1{ }

             EQ2 ξ; x1, x2 (ξ)( ) = E inf
x3 ∈n3 f3(ξ; x1, x2 (ξ), x3) A 2{ }

= f1(x
1) + E EQ1(ξ; x1, x) A1{ }

             EQ1(ξ; x1) = E inf
x2 ∈n2 f2 (ξ; x1, x2 ) + EQ2 (ξ; x1, x2 ) A1{ }

= f1(x
1) + EQ1(x

1)
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Solution procedures 
min

x∈N a E f (ξ, x(ξ)){ } = min
x1∈n1

f1(x
1) + EQ1(x

1)

             EQ1(ξ; x1) = E inf
x2 ∈n2 f2 (ξ; x1, x2 ) + EQ2 (ξ; x1, x2 ) A1{ }

             EQ2 (ξ; x1, x2 (ξ)) = E inf
x3 ∈n3 f3(ξ; x1, x2 (ξ), x3) A 2{ }

deterministic optimization!  convex when f  convex random lsc function 
   in theory:   any algorithmic procedure!
hurdles: values, (sub)gradients, "Hessians" of f1(x

1) + EQ1(x
1)

             are either not acessible or at best, prohibitively EXPENSIVE
Approaches: Pν ~ P⇒ approximating stochastic process ξt , t ≤ T{ }
       sampling:  a) same as approximation except Pν  random measure

                        b) SAA-strategy for ∂ E f (ξ, x(ξ)){ } + NN a (x(ξ))( )
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Sequential l.p. Strategy
min f0 (x), x ∈X ∈n , f0  linear (not essential)
fi (x) ≤ 0, i = 1,…, s, fi (s) = 0, i = s +1,…,m  (affine)

in the s +1 first constraints: fi (x) = supt∈T fi,t (x), fi ≥ fi,t  affine

0. ν = 0,  pick polytope (box) K 0  xopt

1. xν ∈argmin f0  on K ν ,  set iν : fiν (xν ) = max 1≤i≤s fi (x
ν ), s+1<i<m fi (x

ν ){ }
    if fiν (xν ) ≤ 0, xν  optimal, otherwise go to 2.

2. return to 1. with K ν+1 = K ν ∩ ∇fiν (xν ), x − xν + fiν (xν ) ≤ 0{ }
when f0  is not linear (but convex): minθ  such that f0 (x) −θ ≤ 0
convergence: finite # of steps or iterates cluster to optimal sol'n

Friday, June 21, 13



SLP for Stochastic Programs
min f1(x) + EQ1(x) s.t. Ax = b, x ≥ 0  (x = x1)

    EQ1(x) = plQ1(ξ
l , x)

l=1

L∑ L  large

Q1(ξ
l , x) = inf

x2 ∈X2
f2 (ξ l ; x, x2 ) + (EQ2 (){ }

dom EQ1 = dom
l=1

L  Q1(ξ
l ,⋅) = x ∃x2 ∈X2 , f2 (ξ l ; x, x2 ) < ∞{ }l=1

L

0.ν = r = s = 0
1.ν = ν +1,  solve:  min f1(x) +θ, Ax = b, x ≥ 0 such that
 (feasibility cuts)          Ek , x ≥ ek , k = 1→ r

 (optimality cuts)          Fk , x +θ ≥ fk , k = 1→ s
2. generate feasibility cuts: check if x ∈dom EQ1. 
     No: Ek  separates x from dom EQ1,  go to 1.  Yes, go to 3.
3. generate optimality cuts: Fk ∈∂EQ1(x

k ),  go to 1.
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Cut Generation: Fixed Recourse

x� feasible?
8⇥ 2 � : z⇥ = argmaxz

�
hd⇥ � T⇥x� , zi

��W>z  0, �1  zj  1
 

if �⇥ = hd⇥ � T⇥x� , zi = 0, x� feasible
for some ⇥, �⇥ > 0, then Ek+1 = (T⇥)>z⇥, ek+1 = hd⇥, z⇥i
.

(l.p.)-solution: (x⌫ , �⌫)

.

x� optimal?
⌃⇥ ⇧ � : v⇥ = argmaxv

�
⌥d⇥ � T⇥x� , v�

��W>z ⇥ q⇥
 

if infeasible for some ⇥ =⌅ unbounded problem
otherwise Fk+1 = {Tv}, fk+1 = {⌥d,v�}
if �� ⇤ fk + 1� ⌥Fk+1, x�� =⌅ x� optimal
add optimality cut
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Generating cutting hyperplanes

f

domEQ

hEk, xi � ek

hFk, xi+ � � fk

x

⌫
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Aggregation Principle 
in

Stochastic 
Optimization
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Interchanging:  & min

Evident: with E =
�
x : � � N

�� measurable, ...
 

min
�
f
�
⇠, x(⇠)

� ��x ⇥ E
 
=

�
min f(⇠, x)

��x ⇥ N
 

when ⇤x( · ) ⇥ E such that P -a.s. x(�) ⇥ argmin f(�, · )
x is measurable, ...

But our problem is: min {f(⇠, x)}, equivalently,

minEf(x) = {f
�
⇠, x(⇠)

�
}

such that x(⇠) = {x(⇠)} P–a.s.

x can not depend on ‘anticipated’ (future) information
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Dynamic Information Process 
So far, x mostly restricted to {⇧,�}-measurable, i.e., constant on �

Generally, as t%T (possibly ⇤) additional information is acquired
A0 = {⇧,�} � A1 � · · · � AT = A, a filtration

with xt decision @ time t depend on available information, i.e. At-measurable

Reformulation
Let x(�) =

�
x0(�), x1(�), . . . , xT (�)

�
: � ⇥ N , N =

PT
t=0 nt

Na =
�
x ⌅ E

��xt At-measurable, t = 0, . . . T
 

find x ⌅ Na such that Ef(x) = {f(⇠, x(⇠))} is minimized

Nonanticipativity constraints: x ⌅ Na (linear subspace)
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Here-&-Now vs. Wait-&-See

 Basic Process: decision --> observation --> decision

 Here-&-now problem!
    not all contingencies available at time 0
                    can’t depend on ξ!

 Wait-&-see problem
    implicitly all contingencies available at time 0
    choose                after observing ξ

 incomplete information to anticipative information ?

x1 ξ xξ
2↝ ↝

x1

(xξ
1, xξ

2 )
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Stochastic Optimization: 
$ $ Fundamental Theorem

A here-and-now problem can be “reduced” to 
a wait-and-see problem by introducing the

appropriate ‘information’ costs
(price of non-anticipativity)
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Price of Nonanticipativity
    Here-&-now

min E f (ξ, x1, xξ
2 ){ }

       x1 ∈C1 ⊂ n ,
     xξ

2 ∈C 2 (ξ, x1), ∀ξ.

Explicit non-anticipativity

minE f (ξ, xξ
1, xξ

2 ){ }
       xξ

1 ∈C1 ⊂ n ,

     xξ
2 ∈C 2 (ξ, xξ

1 ), ∀ξ.

xξ
1 = E xξ

1{ } ∀ξ
wξ ⊥ subspace of constant fcns

⇒ E wξ{ } = 0

min E f (ξ, xξ
1 , xξ

2 ) − 〈wξ , xξ
1 〉 + 〈wξ ,E{xξ

1}〉{ }
such that xξ

1 ∈C1, xξ
2 ∈C2 (ξ, xξ

1 )

multipliers
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Adjusted Here-&-Now
min E f (ξ, x1, xξ

2 ){ } such that x1 ∈C1 ⊂ n , xξ
2 ∈C 2 (ξ, x1), ∀ξ

x1  must be G-measurable, G = σ -{∅,Ξ}
x2  is A-measurable, A ⊃G, 

in general, interchange E & ∂ is not valid
required:∀ξ, x1 ∈C1, C 2 (ξ, x1) ≠ ∅  G-measurability of constraints

Now, suppose wξ are the (optimal) non-anticipativity multipliers (prices)

min E f (ξ, xξ
1, xξ

2 ) − 〈wξ , xξ
1 〉 + 〈wξ ,E{xξ

1}〉{ }
such that xξ

1 ∈C1 ⊂ n , xξ
2 ∈C 2 (ξ, xξ

1 ), ∀ξ

Interchange is now O.K. ,  E 〈wξ ,E{xξ
1}〉{ } = 〈E{wξ},E{xξ

1}〉 = 0,  yields

∀ξ,  solve: min f (ξ, x1, x2 ) − 〈wξ , x1〉 s.t.   x1 ∈C1, x2 ∈C 2 (ξ, x1)

a collection of deterministic optimization problems in n1 +n2
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   Progressive Hedging Algorithm
0. wξ

0  such that E wξ
0{ } = 0, ν = 0.  Pick ρ > 0

1.  for all ξ :
              (xξ

1,ν , xξ
2,ν ) ∈argmin f (ξ; x1, x2 ) − 〈wξ

ν , x1〉

                    x1 ∈C1 ⊂ n1 , x2 ∈C 2 (ξ, x1) ⊂ n2

2. x1,ν = E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              otherwise wξ
ν+1 = wξ

ν + ρ xξ
1,ν − x1,ν⎡⎣ ⎤⎦,  return to 1. with ν = ν +1

Convergence:  add a proximal term

    f (ξ; x1, x2 ) − 〈wξ
ν , x1〉 −

ρ
2
x1 − x1,ν 2

linear rate in (x1,ν ,wν ) ...  eminently parallelizable
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Nonanticipativity
Recall minEf(x) = {f

�
⇠, x(⇠)

�
} such that x(�) = {x(⇠)} P–a.s.

Nonanticipativity constraints:
N

a

=
�
x : � ⌅ n

 
⇤ linear subspace of constant fcns

=⇧ ⌥w : � ⌅ “multipliers” � N
a

(⇧ {w(⇠)} = 0) such that

x⇤ ⌃ argminEf =⇧ x⇤ ⌃ argmin
�

{f
�
⇠, x(⇠)

�
+ w(⇠), (x(⇠)� {x(⇠)

�
⌦}
 

=⇧ x⇤ ⌃ argmin
�

{f
�
⇠, x(⇠)

�
+  w(⇠), x(⇠)⌦}

 

P–a.s. =⇧ x⇤ ⌃ argmin
x2E

{f
�
�, x

�
+  w(�), x⌦}

 
, � ⌃ �

w(.): contingencies equilibrium prices, ⇥ ’insurance’ prices
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PH: Implementation issues
implementation: choice of ρ ... scenario (×), decision (+) dependent
(heuristic) extension to problems with integer variables
non-convexities:  e.g. ground-water remediation with non-linear PDE recourse

asynchronous

partitioning (= different information feeds)
minE f (ξ, x){ }  , f (ξ, x) = f0 (x) + ιC (ξ ,x ) (x)

S = Ξ1,Ξ2 ,…,ΞK{ }  a partitioning of Ξ, pk = P(Ξk )

E f (ξ, x){ } = pnE f (ξ, x) Ξn{ }n∑    (Bundling)

defining g(k, x) = E f0 (ξ, x) Ξn{ } if x ∈Ck = Cξ
ξ∈Ξk



solve the problem as: min pkg(k, x)
n=1

N∑
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Multistage Stochastic Programs
min

x∈N a E f (ξ, x(ξ)){ }, x(ξ) = (x1(ξ),…, xT (ξ))
filtration :A 0⊂A 1⊂⊂A T=A, A 0 trivial

x ∈N a if xt A t−1-measurable ≈ σ -field( ξ
→ν−1

)  
    (here ξ 0  deterministic, x1(ξ) ≡ x1)

under usual C.Q. (convex case): x ∈X  optimal if
∃ w ⊥ N a ,w ∈X *  such that x ∈argminx∈X Ef (x) − E 〈w, x〉{ }
w ⊥ N a ⇔ E w(ξ) A t−1{ } = 0,∀t = 1,…,T

w non-anticipativity prices 
    at which to buy the right to adjust decision (after observation)
    can be viewed as insurance premiums, ....
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A dual PH-strategy
single-stage case

minimize Ef(x) :=
P

�2⌅ p�f(�, x) over all x 2 n

Strategy: better estimates of the w-variables
“aggregation” of the solutions” to

minimize fa(�, x) over all � 2 n for fixed � 2 �

where fa approximates f .
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Moreau envelopes

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

f

f
e0.01f

e0.1f

e1f

e10f

Moreau envelop es
f convex function
λ = 10, 1, 0.1, 0.01

epi-sums

a.k.a. Moreau-Yosida approximations

epi f epi g = infu
�
f(u) + g(u� x)

 
e�f(x) with g = 1

2�

�� ·
�� 2
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Approximating problem
minF�(x) :=

P
⇤2� p⇤f�(⌅, x), x ⌅ n

f�(⌅, x) = infu

�
f(⌅, u) + 1

2� |u� x|2
 

F� ⇧= (F )� but F� ⇤p F, F� ⇤e F , finite-valued

Dual: maxG�(w) = �
P

⇤2� p⇤f⇤
�(⌅, w⇤),

such that

P
⇤2� p⇤w⇤ = 0

Solution strategy:

min

P⇥�1
k=0 ⇥k�k such that

P⇥�1
k=0 ⇥kw̄k

= 0P⇥�1
k=0 ⇥k = 1, ⇥k ⇥ 0, k = 0, . . . , ⇤ � 1

for a ’desirable’ collection of {w̄k}
Check for optimality, if not, generate w̄⇥
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Algorithmic procedure
Step 0. Initialize by setting ⇧ = 1 picking { bw0

⌅}⌅2� in such a way that

w̄0 :=
P

p⌅ bw0
⌅ = 0 & �0 =

P
⌅2� p⌅[⌅/2| bw0

⌅ |2 + supu( bw0
⌅u� f(⌃, u))]

Step 1. min�
P⇤�1

k=0 ⇥k�k, such that
P⇤�1

k=0 ⇥kw̄k = 0,P⇤�1
k=0 ⇥k = 1, ⇥k ⇥ 0, k = 0, . . . , ⇧ � 1

Let (z⇤ , ⇤⇤) ⌅ n+1 be the associated multipliers
Step 2. For each ⌃ ⌅ �, let

u⇤
⌅ ⌅ argmin

u

�
f(⌃, u) + 1

2⇥ |z
⇤ � u|2

 

bw⇤
⌅ = ⌅�1(z⇤ � u⇤

⌅ ), w̄⇤ = ⌅�1
P

⌅2� p⌅(z⇤ � u⇤
⌅ )

�⇤
⌅ = z⇤ bw⇤

⌅ � f(⌃, z⇤ � ⌅ bw⇤
⌅ )� ⇥

2 | bw
⇤
⌅ |2, �⇤ =

P
⌅2� p⌅�⇤

⌅

Step 3. If �⇤ < w̄⇤z⇤ + ⇤⇤ return to Step 1 with ⇧ + 1 ⇤ ⇧
If �⇤ ⇥ w̄⇤z⇤ + ⇤⇤ ; z⇤ is optimal

Adjust ⌅ if appropriate; always generates bounds for original problem.
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Bundling
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Discrete Scenario Tree

ξ0

ξ1

ξ2

ξ3

Algorithm: (1) Nested Sequential SLP
(2) Progressive Hedging + Bundling
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Bundling Decomposition

Bayes’ Rule

min {f(⇠, x)}, f + �C(�), ⇥ ⇥ �
�C(x) = 0 when x ⇥ C, = � otherwise

� discrete or discretization (not based on best approximation of �)

�
�k, k = 1, . . . ,K

 
a partition of �

pk =
R
�k

P (d⇥), k = 1, . . . ,K

{f(⇠, x) =
PK

k=1 pk {f(⇠, x)
���k}

g(k, x) = {f(⇠, x)
���k}

min
PK

k=1 pkg(k, x)
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Scenario Tree Decomposition

Ξ  ,Ξ1 2

Friday, June 21, 13



0. wk
0  such that E wk

0{ } = 0, ν = 0.  Pick ρ > 0

1.  for all k : x1, x 2 = (xξ
2 ,ξ ∈Ξk )

              (xk
1,ν , xk

2,ν ) ∈argming(k; x1, x 2 ) − 〈wk
ν , x1〉

                    x1 ∈C1 ⊂ n1 , x2 ∈C 2 (ξ, x1) ⊂ n2

2. x1,ν = pk
xk

1,ν
k=1

K∑ .  Stop if xk
1,ν − x1,ν = 0 (approx.)

              otherwise wk
ν+1 = wk

ν + ρ xk
1,ν − x1,ν⎡⎣ ⎤⎦,  return to 1. with ν = ν +1

Convergence:  add a proximal term

    f (ξ; x1, x 2 ) − 〈wk
ν , x1〉 −

ρ
2
x1 − x1,ν 2

linear rate in (x1,ν ,wν ) ...  still eminently parallelizable

PH with Bundling
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Arrow-Debreu model
pure-exchange economy: goods ∈L ,   prices p = p1,…, pL( ), free disposal 
agents: i ∈I , | I |  finite  ---- initial holdings: (ei , i ∈I )

demand functions: xi (p) ∈argmax ui (x) p, x ≤ p,ei{ }
utility fcn: ui :  dom ui = Xi → ,  usc, concave /⇒ Xi closed (but convex)
excess supply function: s(p) = ei − xi (p)( )i∈I∑ ,   market clearing: s(p) ≥ 0

                     p ≥ 0 equilibrium ⇔ s(p) ≥ 0
Existence: x = (xm , xg ), xm =  'money'   allows  p = (1, pg ),  under

ample survivability: eim ,eig( )  ⇒∃ (xim , xig ) ∈Xi  

           such that xig ≤ eig ,
xim < eim   and  xigi∈I∑ < eigi∈I∑

+  indispensability  &  unactractiveness 
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Solution Procedures
Walras' law:  p ⊥ s(p) ~ plsl (p) = 0, l = 1,…,L,       s(p) = s(α p) for α > 0

      scaling:  p ∈Δ = p ∈ +
L pl = 1

l∑{ }  since ∀α > 0 : α p, x ≤ α p,ei
find p (∈Δ) such that      0 ≤ p ⊥ s(p) ≥ 0,
0. (very) special instances:  via convex programming 
1. tâtonnement, :  p = −s(p), p(0) = p0 (Adam Smith, Léon Walras)
    variant: 'Global Newton' (S. Smale) : 
                    ∇s(p) p = λs(p), sgn(λ) = (−1)L sgndet ∇s(p)( )
    requires s single-valued and differentiable, 
                  ei ∈  int Xi  or bdry conditions on s

fails, “in general”
source of doubts about economic equilibrium theory

one possible way
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Solution Procedures
2. simplicial methods (based on "pivoting")
    - Scarf (& Hansen) '73: ⇒  find fixed point of p s(p) − p in Δ
          partitioning Δ in a simplicial complex, pivoting á la Lemke-Howson
    - piece-wise linear homotopy methods: Eaves '74, Saigal, ...                             

3. homotopy continuation methods
    - homotopy methods G(x) = 0,  Yorke et  al. ('72, '78)
        variants: Kojima, Meggido and Noma for NCP ('89)
                      Newton homotopy: Wu ('05), ...
    - 'interior point' homotopy method: Dang and Ye ('11)
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a maxinf approach
recall:  s(p) = ei − xi (p)( )i∈I∑ ,   market clearing: s(p) ≥ 0

Walrasian: W (p,q) = q, s(p) ,  W :Δ × Δ→  (a bifunction)

p ∈  maxinf W ,  W p,i( ) ≥ 0 on Δ ⇒ p is an equilibrium point.

under insatiability, p  an equilibrium ⇒ p ∈  maxinf W ,  W p,i( ) ≥ 0 on Δ

Key observation:

Moreover:
pε ∈  ε-maxinf W ,  W pε ,i( ) ≥ −ε  on Δ ⇒ pε is an ε-equilibrium point.

with insat., pε  an ε-equilibrium ⇒ pε ∈  ε-maxinf W ,  W pε ,i( ) ≥ −ε  on Δ

pε : ε-equilibrium point if  ∀l  (good), sl (pε ) ≥ −ε
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... even more moreover
 recall:  max ui (x) p, x ≤ p,ei{ }  i-agent problem, i ∈I

   ui
ν →hypo ui , ei

ν → ei & pε
ν  equilibrium points  and ε 0

   ⇒  every cluster point of pε
ν{ }(ν ,ε )

 is an equilibrium point!

Wε
ν →lop WConsequence of lopsided-convergence

C,Cν ⊂ n{ }, D,Dν ⊂ m{ } K :C × D→ , K ν :Cν × Dν → 

K ν →lop K   (lopsided convergence) if

(a) ∀ y ∈D, (xν ∈Cν )→ x ∈C( ),
            limsupνK

ν (xν , yν ) ≤ K(x, y) for some (yν ∈Dν )→ y ∈D
(b) ∀ x ∈C, ∃(xν ∈Cν )→ x such that for any (yν ∈Dν )→ y

            liminfνK
ν (xν , yν ) ≤ K(x, y) when y ∈D, K ν (xν , yν )→∞ y ∉D

multi-hypoconvergence
⇒ lopsided (Gürkan & Pang)

Attouch & Wets  ’83,   Jofré & Wets ’09
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Cν × Dν

(xν , yν )

(xν , yν )

•

•

(x, y)•

•(x, y)

∃xν ∈Cν → x ∈C

∃yν ∈Dν

→ y ∈D

∀ yν ∈Dν

→ y

∀ y ∈D,∀ xν ∈Cν → x

limsupν K
ν (xν , yν ) ≤ K(x, y) when x ∈C

lim infν K
ν (xν , yν ) ≥ K(x, y) when y ∈D

K ν (xν , yν )→∞ when y ∉D

Cν × Dν

C × D

C × D

Lopsided Convergence
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The maxinf “family” ... 
• saddle-point problems: Lagrangians, zero-sum games, Hamiltonians

• equilibrium: classical mechanics, Wardrop, economic (Walras, etc.)

• variational inequalities: finance, ecological models, complementarity, PDE

• non-cooperative games: pricing, generalized Nash equilibrium

• finding fixed points: Brouwer-type, Kakutani-type (set-valued), MPEC

• solving inclusions (equivalently, generalized equations):  S(x) ∋ 0  

• minimal surface problems, ... , mountain pass solutions, ....

• ...  and the dynamic versions, and the stochastic (dynamic) versions.
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Anci#ary-tightly ~ ‘compact in y’

K
Cν ×Dν
ν →

lop ancillary− tight
KC×D   if  K

Cν ×Dν
ν →

lop
KC×D  and

(b) ∀x ∈C, ∃xν → x,∀ yν ∈Dν  and yν → y :
              lim inf K ν (xν , yν ) ≥ K(x, y)  if y ∈D
               K ν (xν , yν ) →∞   if y ∉D
but also ∀ε>0, ∃Bε  compact (depends on xν → x) :

inf
Bε ∩D

ν K ν (xν ,i) ≤ inf
Dν K ν (xν ,i) + ε , ∀ν ≥ νε

THM.  K
Cν ×Dν
ν →lop. KC×D   &   ancillary-tightly, 

x ∈cluster points of {xν ∈maxinf K
Cν ×Dν
ν }ν∈ ⇒ x ∈maxinf KC×D

certainly satisfied when            is compactD = Δ
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Convergence of ε-solutions
 K

Cν ×Dν
ν → KC×D  lop. ancillary-tightly, 

  (i) xν ∈ε-maxinf K
Cν ×Dν
ν , x  cluster point of {xν}ν∈

           ⇒ x ∈ε-maxinf KC×D
   (ii) xν ∈εν -maxinf K

Cν ×Dν
ν , x  cluster point of {xν}ν∈

            & εν  0 ⇒ x ∈maxinf KC×D   (special case: locally unique)

   (iii) x ∈maxinf KC×D ⇒∃εν  0 & xν ∈εν -maxinf K
Cν ×Dν
ν

            such that xν → x ,    

Under tight-lop:  convergence of the full εν -maxinf sets
                            and convergence of values

including ε = 0

tight-lop when                       are compactC = Δ& D = Δ

Friday, June 21, 13



...back to our Walrasian
W (p,q) = q, s(p)  on Δ × Δ, p-usc and q-convex

Augmented Walrasian: σ augmenting function
Wr (p,q) = infz W (p,q − z) + r ∗e σ

∗(z){ } rσ (r−1z)

            = supz W (p, z) z − q  ≤ r{ } σ = i

, ιB = σ∗

as r→ r < ∞, Wr →lop
Wr =W ⇒  ε-maxinf Wr → maxinf W

choosing i

= i

∞
,B = [−1,1]L     

                     or i

= i 2 ,B = euclidean  unit ball
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first experiments: 10 agents, 150 goods (two blinks)

minimizing a linear form on a ball 
i.e. finding the largest element of s(pk)

W (p,q) = q, s(p)  on Δ × Δ, p-usc and q-convex
Wr (p,q) = supz W (p, z) z − q  ≤ r{ }

qk+1 = argmax
q∈Δ

maxz z, s(p
k ) z − q  ≤ rk⎡⎣ ⎤⎦

pk+1 = argmin
p∈Δ

maxz z, s(p) z − qk+1

≤ rk+1

⎡
⎣

⎤
⎦

as rk ∞, pk → p   

augmented Walrasian strategy

Bagh, Lucero & Wets ≈ ’03
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CMM-implementation
Center for Mathematical Modeling --- Universidad de Chile

Deride,
  Jofré 

& Wets
’06 -- ’12

σ =
1
2
i
2
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Scarf ’s example
ui (x) = (ail )

βi
−1

(xl )
1−βi

−1

l=1

L∑( )βi (βi −1)−1

 CES-utility

           i ∈I = 5 agents, L = 10 goods             (2000 simplicial pivots)

prices and excess supply convergences

constant elasticity
substitution
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just, ... one more example
same CES-utility function ( ≠ βi ),  I = 10 agents,  rk = 1.21k

excess supply convergence

L = 25 L = 50

L = 75 L = 100

L =  # of goods
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A dynamic model
max(x0 ,y, x1 ) ui

0 (x0 ) + ui
1(x1)

such that     p0 , x0 + Ti
0y ≤ p0 ,ei

0

                   p1, x1 ≤ p1,ei
1 + Ti

1y

                    x0 ∈Xi
0 , y ∈Yi , x

1 ∈Xi
1

with solutions: xi
0 (p), yi (p), xi

1(p)( ), i ∈I{ }, p = (p0 , p1)

excess supply: s0 (p) = ei
0 − xt (p) + Ti

0yi (p)( )( )i∈I∑
                         s1(p) = ei

1 + Ti
1yi (p)( ) − x1(p)( )i∈I∑

equilibrium: p ∈ΔL × ΔL  such that s0 (p) ≥ 0, s1(p) ≥ 0 (=)

Walrasian: W (p,q) = (q0 ,q1), s0 (p), s1(p)( )  on ΔL
2 × ΔL

2

⇒ augmented Walrasian, ...
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Exploiting separability
ri (y, p) = sup

x0 ∈Xi
0
ui

0 (x0 ) p0 , x0 + Ti
0y ≤ p0 ,ei

0⎡
⎣

⎤
⎦

+ sup
x1∈Xi

1
ui

1(x1) p1, x1 ≤ p1,ei
1 + Ti

1y⎡
⎣

⎤
⎦

i-agent problem:   find yi (p) ∈ +
ni  that maximizes  ri (y) Ti

0y ≤ ei
0{ }

Example: ui
0,1  are of Cobb-Douglas type: ui (x) = xl

βl , β ∈Δ
l=1

L

∏

       xl
0 (p0 , y) = βl

pl
0 pk

0 ek
0 − (Ti

0 )k , y( )k=1

L∑ , l = 1,…,L, Xi
0 =  +

L

       xl
1(p1, y) = βl

pl
1 pk

1 ek
1 + (Ti

1)k , y( )k=1

L∑ , l = 1,…,L, Xi
0 =  +

L

substituting ⇒ ri  linear in y :  i-agent's problem is a linear program!

substantial gain in processing time 
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Stochastic Environment

a ‘minimal’ model
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Chap.7 -- Theory of Value
max
x0 , xi

1∈M
E ui (x

0 ,x
ξ1
1 ,x

ξ1 ,ξ2
2 ,…){ }

     such that pξ
t , e

ξ1 ,…ξτ
τ − x

ξ1 ,…ξτ
τ( )τ≤t∑ ≥ 0, ∀ ξ = (ξ1,ξ 2 ,…),   t = 0,1,…

e
ξ1 ,…ξτ
τ − x

ξ1 ,…ξτ
τ( )τ≤t∑( )i∈I∑ ≥ 0, ∀ ξ, t

G. Debreu, ’59

i-agent

Clearing the market

Key Assumption (via K. Arrow): all contingencies available at time 0
                     ⇒ complete market, i.e., all ξ's can be dealt with separately

∃ pξ = (pξ
0 , pξ

1,…( )  

(∀ ξ)  equilibrium prices.

ξ1 ξ2

ξ1,1
ξ1,2

ξ2,1,2ξ1,1,2

ξ2,1
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i-Agent: stochastic case

x0 ∈Xi
0 , y ∈ +

ni , xξ
1 ∈Xi,ξ

1 , ∀ξ ∈Ξ

Stochastic program with recourse: 2-stage
Well-developed solution procedures

Well-developed “Approximation Theory”

max
x0 , y , xi

1∈M
ui

0 (x0 )+ Ei ui
1(ξ;xξ

1 ){ }
   so that  p0 ,x0 +Ti

0 y ≤ p0 ,ei
0

pξ
1, xξ

1 ≤ pξ
1,ei,ξ

1 + Ti,ξ
1 y , ∀ξ ∈Ξ

Ei{.}  expectation w.r.t.  i-agent beliefs

an engineer’s
viewpoint?
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  Simplest-classical assumptions
Ξ finite (support)
ui

0 : Xi
0 → , ∀ξ ∈Ξ, ui

1 ξ,i( ) : Xi,ξ
1 →  concave

      continuous,   numerical experiments:  differentiable
Ti

0 ,Ti,ξ
1 : input-ouput matrices 

      (savings, production, investment, etc.)
Xi

0 ,Xi,ξ
1 : closed, convex, non-empty interior  (survival sets

      ei
0 ∈int Xi

0 , ei,ξ
1 ∈int Xi,ξ

1   for all ξ       (or as on first slide)
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              Market Clearing
Agents:  i ∈I ,   | I| finite ("large"),     p = p0 ,( pξ

1 ,ξ ∈Ξ)( )

excess supply:

 ei
0 − (xi

0 (p) + Ti
0yi (p))( )i∈I∑ = s0 (p0 ,{pξ

1} ξ∈Ξ{ } ) ≥  0  

∀ξ ∈Ξ :

ei,ξ
1 + Ti,ξ

1 yi (p) − xi,ξ
1 (p)( )i∈I∑ = sξ

1 (p0 ,{pξ
1} ξ∈Ξ{ } ) ≥  0 

xi
0 (p), yi (p), xi,ξ

1 (p){ }ξ∈Ξ( )∈argmax i-agent problem{ }
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Existence: via Ky Fan Inequality

W (p ,q ) = q , s(p )

    = (q0 ,{qξ
1}ξ∈Ξ ), s0 (p0 ,{pξ

1}ξ∈Ξ ), sξ
1 (p0 ,{pξ

1}ξ∈Ξ ){ }ξ∈Ξ( )
W : Δ

1+ |Ξ|
∏ × Δ

1+ |Ξ|
∏ →  a Ky Fan function: usc, convex

      linear w.r.t. q , continuous w.r.t. p
      and also  W (p , p ) ≥ 0.
provided s(i) continuous w.r.t. p

another lecture series
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   Incomplete → ‘i-Complete’ Market
∀ξ ∈Ξ   (separately),
i-agent's problem:

xi
0 , yi , xi,ξ

1( )∈argmax ui
wi ,ξ ξ; x0 , y, x1( ) on 


Ci,ξ (p0 , pξ

1 ){ }
          for {wi,ξ}ξ∈Ξ  associated with (p0 , pξ

1 )

clearing the market:
s0 (p0 , pξ

1 ) ≥  0, sξ
1 (p0 , pξ

1 ) ≥  0

Arrow-Debreu ‘stochastic’ equilibrium problem
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Cobb-Douglas utilities
ui
t (x) = xl

βi
t

, β t ∈Δ
l=1

L

∏ , t = 0,1

r(ξ; y, p) =α 0 (p0 ) pk
0 ek

0 − Tk
0 , y( )k=1

n∑( )
                   + α1(pξ

1 ) pk ,ξ
1 ek ,ξ

1 − (Tξ
1)k , y( )k=1

n∑( ),       α(p) = βl

pl

⎛
⎝⎜

⎞
⎠⎟l=1

L

∏
βl

yξ
ν+1 ∈argmax rν (ξ; y) − wν , y −

ρ
2
y − yν 2

T 0y ≤ e0 , u ∈ +
n⎧

⎨
⎩

⎫
⎬
⎭

“agent’s optimization”  (skipping  ) i
taking advantage

of separability

“outer loop”, calculating                       :p0 ,(pξ
1,ξ ∈Ξ)( )

augmented Walrasian
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Convergence: 
exploiting separability

prices excess supply

L = 2
|Ξ | = 3
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4. Variational Inequality

to be dealt with now in glorious detail 
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back ... Arrow-Debreu model
i-agent demand: xi (p) ∈argmax ui (x) p, x ≤ p,ei{ }
ui = Xi → 

L ,  usc, concave /⇒ Xi closed (but convex)
excess supply: s(p) = ei − xi (p)( )i∈I∑ ,   market clearing: s(p) ≥ 0

(under ample survivability, indispensability, unactractiveness)

i-agent optimal xi (p) ⇔ ∃λi ≥ 0 such that
   λi ⊥ p,ei − xi (p) , p,ei − xi (p) ≥ 0,
   xi (p) ∈argmaxx∈Xi

ui (x) − λi p, x

when Xi =  +
L , ui  smooth: 

   0 ≤ xi (p) ⊥ λi p − ∇ui (xi (p) ≥ 0

   utility
scaling
λi
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via Variational Inequality
xi (p)∈argmax ui (x) p, x ≤ p,ei , x ∈Xi{ }

ei − xi (p)( )i∑ = s(p) ≥ 0

ND (z ) = v v, z − z ≤ 0,∀z ∈D{ }
G p,(xi ),(λi )( ) = (ei − xi ); λi p − ∇ui (xi )( ); p,ei − xii∑⎡⎣ ⎤⎦
            D = Δ × Xii∏( ) ×  +i∏( )

−G p,(xi ),(λi )( )∈ND p,(xi ),(λi )( )
  D unbounded → D̂ bounded

ND (z )

D

z

suggests
LCP, NCP
J.-S. Pang,

M.Ferris, ..

geometric V.I. via smoothing: L. Qi, X.Chen, ...
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adding Firms
i-agent: ei → ei +θij z j      share θij  of production z j ∈Z j of firm j ∈J

θij ≥ 0, θij = 1
i∈I∑ j = 1,…, J

zj (p) ∈argmax p, z z ∈Z j{ }
excess supply: ei − xi (p)( )i∈I∑ + z j (p) ≥ 0

j∈J∑   (equilibrium)

functional V.I.  −G p, xi( ),(λi ),(zj )( )∈∂f p, xi( ),(λi ),(zj )( )
f p, xi( ),(λi ),(z j )( ) = ι

+
L (p) − ui (xi ) + ι+

(λi ) + ιZ jj∈J∑i∈I∑i∈I∑ (z j )

f  convex ⇒∂f  monotone operator   (yields existence of solution)

G p, xi( ),(λi ),(z j )( )
= (ei − xi ) + z jj∑ ; λi p( ); p, ei + θij z jj∑ − xi( ); − pj( )i∑⎡⎣⎢

⎤
⎦⎥

Jofré, Rockafellar & Wets ’07 

(a parenthesis)
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 Path Solver .. (M.Ferris, D.Ralph et al)
−G(z )∈ND (z ), z = (p,(xi ),(λi ))

D = Δ × Xii∏( ) ×  +i∏( ) = z Az ≥ b{ }

Complementarity problem:
−G(z) = AT y, y ≥ 0, Az − b ⊥ y

 

with K = N ×  +
M :

(z, y) ∈K , H (z, y) ∈−K ∗, (z, y) ⊥ H (z, y)

H (z, y) =
G(z) + AT y
Az

⎡

⎣
⎢

⎤

⎦
⎥ −

0
b

⎛
⎝⎜

⎞
⎠⎟
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 Equivalent nonsmooth mapping

 0 = H (prjK (z, y)) + (z, y) − prjK (z, y)

(CP) 0 ≤ x ⊥ F(x) ≥ 0  Complementarity Problem
(NS) 0 = F(x+ ) + x − x+  Nonlinear system

  x  sol'n (CP) ⇒  x sol'n (NS): 
      xk = xk  if Fk (x ) = 0, xk = −Fk (xk ) if Fk (x ) > 0
  x sol'n (NS) ⇒ x+  sol'n (CP):
      x+ ≥ 0, F( x+ ) = x+ − x ≥ 0 & x+ ⊥ x+ − x

❏ with simplified K
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PATH Solver:

•  PATH: Newton method based on nonsmooth 
normal mapping:

•  Newton point: solution of piecewise 
linearization:

H (x+ ) + x − x+

x = (z, y),  x+ = prjK (x, y)

H (x+
k ) + ∇H (x+

k ), x+ − x+
k + x − x+ = 0
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The “Newton” step
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V.I.-Extensive Formulation

G p0 , pξ∈Ξ
1( ), xi0 , xi,ξ∈Ξ1( )

i∈I
, λi

0 ,λi,ξ∈Ξ
1( )

i∈I( ) =
(ei
0 − xi

0 ), (ei,ξ
1 − xi,ξ

1 )
i∑ ξ∈Ξi∑( ); λi

0 p0 − ∇ui
0 (xi

0 )( )i∈I , λi,ξ1 pξ1 − ∇ui
1(ξ; xi,ξ

1 )( )
i∈I ,ξ∈Ξ( ); p0 ,ei

0 − xi
0 , pξ

1,ei,ξ
1 − xi,ξ

1( )
i∈I ,ξ∈Ξ( )⎡

⎣⎢
⎤
⎦⎥

D = Δ × Δ
ξ∈Ξ∏( ) × Xi

0 × Xi,ξ
1

i∏( )
ξ∈Ξi∏( ) ×  + ×  +i∏( )

ξ∈Ξi∏( )

discrete distribution:

−G(z )∈ND (z ) = v v, z − z ≤ 0,∀z ∈D{ }
z = p0 , pξ∈Ξ

1( ), xi0 , xi,ξ∈Ξ1( )
i∈I
, λi

0 ,λi,ξ∈Ξ
1( )

i∈I

Ξ  finite

“Thanks the gods (& M. Ferris) for EMP”

for a special VI handled via smoothing/sampling: later
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    so, let’s go: PATH Solver
•  Economy: (8 goods), 5 types of agents

• Skilled & unskilled workers

• Businesses: Basic goods & leisure

• Banker: bonds (riskless), 2 stocks

•  small # of scenarios 280,  

•  utilities: CES-functions (gen. Cobb-Douglas)

• Utility in stage 2 assigned to financial instruments

unfortunately,	
  ...	
  PATH	
  Solver	
  lets	
  us	
  down
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Back to the
drawing board
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Disaggregation!
initialization: ∀ i ∈I

wi,ξ  such that E wi,ξ{ } = 0

∀ξ  ⇒  equilibrium with ui
wi ,ξ (ξ;i ){ }

i∈I

    yields:  (xi,ξ
0 , yi,ξ , x

i ,ξ

1 ), (pi,ξ
0 , pi,ξ

1 )

STOP ∀i ∈I : xi,ξ
0 , yi,ξ( )  E xi,ξ

0 , yi,ξ( ){ }
  otherwise adjust wi,ξ ,ξ ∈Ξ⎡⎣ ⎤⎦i∈I
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stochastic-pure exchange
for each ξ ∈Ξ :  the  equilibrium problem,      I  agents with

i-agent's problem: max ui
wi ,ξ ξ; x0 , y, x1( ) on 


Ci,ξ (p0 , pξ

1 ){ }
ui
wi ,ξ = ui

0 (x0 ) − wi,ξ ,(x0 , y) −
ρ
2

(x0 , y) − (x 0 , y )
2
+ ui

1(ξ; x1)

clearing the market: s0 (p0 , pξ
1 ) ≥  0, sξ

1 (p0 , pξ
1 ) ≥  0

ξ1 ξ2

ξ1,1
ξ1,2

ξ2,1,2ξ1,1,2

ξ2,1

but now with wi,ξ ~  constraints

   x0 (ξ) ≡  x0   constant

   x1(ξ ξ1) ≡ x1
1 , x1(ξ ξ2 ) ≡ x2

1

   …
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  Disaggregation with PATH Solver
•  Economy: (5 agents - 8 goods)

• Skilled & unskilled workers

• Businesses: Basic goods & leisure

• Banker: bonds (riskless), 2 stocks

•  2-stages,   solved under # of scenarios (280)

•  utilities: CES-functions (gen. Cobb-Douglas)

• Utility in stage 2 assigned to financial instruments

• Financial instruments only used for transfer to time 1

•  used for calibration (-> stochastic model)

              numerically: `blink’ (5000 iterations).

on M. Ferris
semi-slow laptop

using EMP-package
4 min + 2 min for

verification
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Ja! scenario disa%regation, but ...
    i-agent: xi (p) ∈argmax ui (x) p, x ≤ p,ei{ }, i ∈I

          with excess supply s(p) : 0 ≤ p ⊥ s(p) ≥ 0
Multi-Optimization Problem with Equilibirum Constraint

MOPEC-class  maxinf family
xi ∈argmax

x∈ni
fi (p, x, x− i ), i ∈I , xI = (xi ,i ∈I )

               D(p, xI ) ∈∂g(p) or ∈NC (p)[ ]

Examples: Walras, noncooperative games, ..... 
stochastic (dynamic): decentralized electricity markets,

joint estimation and optimization, financial equilibrium, ...

with Michael Ferris ’11-’?? ... ’05?
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Contracts (Assets)
assets (= contract types): k ∈K , K  finite
   zi = zi

+ − zi
− = (zi

1,…, zi
K ) assets 'acquired' by i-agent

   qk  market price of asset k
   Dξ

k   bundle of goods 'delivered' by one unit of asset k
budgetary constraints:

   p0 , x0 + Ti
0y + q, z ≤ p0 ,ei

0

   pξ
1, xξ

1 ≤ pξ
1, ei,ξ

1 + Ti,ξ
1 y + Dξz ∀ξ ∈Ξ

clearing the market:

   s0 p0 , pξ
1( )

ξ∈Ξ
,q( ) ≥ 0, s1 ξ; p0 , pξ

1( )
ξ∈Ξ

,q( ) ≥ 0 ∀ξ, zi = 0
i∈I∑
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The BDE-example
Brown-DeMarzo-Eaves (Econometrica ’96)

3 agents (2-agent & 3-agent of the same type)
2 goods, Ξ = 3 (future states),  no y-activities

ui
1(ξ; x) = − 5.7 − xl( )αi ,l

l=1

2∏( ) = u1
0 (x)

α1 = (0.25,0.75), α2&3 = (0.75,0.25)

asset #1: Dξ
1 =

1
0

⎛
⎝⎜

⎞
⎠⎟

, asset #2: Dξ
2 =

0
1
⎛
⎝⎜

⎞
⎠⎟

  for all ξ

0
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BDEutiity−Agant A
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−27

BDEutilityB.eps
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The BDE-example
3 agents, 2 goods, Ξ = 3,  no y-activities

ui
1(ξ; x) = − 5.7 − xl( )αi ,l

l=1

2∏( ) = u1
0 (x), α

1
= (0.25, 0.75), α

2 & 3
= (0.75, 0.25)

asset #1: Dξ
1 =

1
0

⎛
⎝⎜

⎞
⎠⎟

, asset #2: Dξ
2 =

0
1
⎛
⎝⎜

⎞
⎠⎟

  for all ξ

Path Solver solution: p0 = (1, 0.7338) (with scaling & z _ i ≤ 100)
pξ

1 = (1, 0.7158; 1, 0.7182; 1, 0.7205)

    q = (0.9188, 0.6600), z = 72.9868,-100; -36.4934,50; -36.4934,50( )
    sol'n time: not noticeable
value transfer for #1-agent: @t = 0 : −1.0649,
  @t = 1, scn-1:1.403,   scn-2: 1.168,  scn-3: 0.933,         
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The BDE-example
3 agents, 2 goods, Ξ = 3,  no y-activities

ui
1(ξ; x) = − 5.7 − xl( )αi ,l

l=1

2∏( ) = u1
0 (x), α

1
= (0.25, 0.75), α

2 & 3
= (0.75, 0.25)

asset #1: Dξ
1 =

1
0

⎛
⎝⎜

⎞
⎠⎟

, asset #2: Dξ
2 =

0
1
⎛
⎝⎜

⎞
⎠⎟

  for all ξ

BDE- solution: p0 = (1, 0.74) (with scaling)

pξ
1 = (1, 0.7375; 1, 0.7174; 1, 0.6633)

    q = (??, ??), z = (0.94,0; 0.03,0; 0.03,0)
change of variables + add unconstrainted agent: 
    homotopy continuation method (predictor-corrector steps)

all buyers
no sellers
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The Cass trick
q = wξ Dξ

T pξ
1( )ξ∈Ξ∑   for some weights wξ ≥ 0, wξ = 1

ξ∑
or the no-arbitrage condition

maxui x
0 , (xξ

1 )ξ∈Ξ( ) = ui0 (x0 ) + E ui
1(ξ; xξ

1 ){ }
such that p0 ,ei

0 − x0 + q, z ≥ 0

               pξ
1,ei,ξ

1 + Di,ξz − xξ
1 ≥ 0,∀ξ ∈Ξ

maxui x
0 , (xξ

1 )ξ∈Ξ( )    such that

 p0 ,ei
0 − x0 + pξ

1,Dξz − xξ
1

ξ∈Ξ∑ ≥ 0

 pξ
1,ei,ξ

1 + Di,ξz − xξ
1 ≥ 0, ∀ξ ∈Ξ

s0 p0 , pξ
1( )

ξ∈Ξ( ) ≥ 0, s0 ξ; p0 , pξ
1( )

ξ∈Ξ( ) ≥ 0, ∀ξ

    clearing the market 

p0 = p0 , pξ
1 = wξ pξ

1,ξ ∈Ξ

also: zi = 0i∈I∑

solved by BDE
Path Solver ⇒  BDE-sol'n

no Path Solver sol'n!
 via Augmented Walrasian
 for 'money' assets (Deride, Jofré & Wets '09)
 cf. financial equilibrium: Hens & Pilgrim '06
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Further readings
• Jofré, A. & R. Wets,  Variational convergence of bivariate functions: theoretical 

foundations. Mathematical Programming (2006). 

•  Jofré, A., R.T. Rockafellar R.T & R. Wets. Variational Inequalities and economic 
equilibrium. Mathematics of Operation Research (2006?)

•   Jofré, A., RT. Rockafellar & R. Wets, A variational inequality scheme for 
determining an economic equilibrium of classical or extended type. In “Variational 
analysis and applications”, 553--577, Nonconvex Optimisation and Applications, 79, 
Springer, New York, 2005.

• Jofré, A. & R. Wets, Continuity properties of Walras equilibrium points. Stochastic 
equilibrium problems in economics and game theory. Annals of Operations 
Research, 114 (2002), 229--243.

• S. P. Dirkse and M. C. Ferris. The PATH solver: A non-monotone stabilization 
scheme for mixed complementarity problems. Optimization Methods and Software, 
5:123-156, 1995.
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Primary Objective:   
constructive theory

• Exhibits and exploits the interrelation between these problems

• Existence theory: (mostly, not exclusively)

• Aubin & Ekeland, “Applied Nonlinear Analysis” (Chap. 6), 1984

• Facchinei & Pang, “Finite Dimensional Variational Inequalities 
and Complementarity problems” (2003)

• Iusem & Sosa (+ Kasay), “Existence of solutions to equilibrium 
problems” (2005-....)

• Approximation theory ⇒ algorithmic strategies + 
existence
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Saddle functions
Epi/hypo convergence

- Lagrangians (concave/convex) 

- zero-sum games

- Hamiltonians
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Cν × Dν

(xν , yν )

(xν , yν )

•

•

(x, y)•

•(x, y)

∀ x ∈C,∀ yν ∈Dν → x ∈D

∃yν ∈Dν

→ y ∈D

∀ y ∈D,∀ xν ∈Cν → x

limsupν K
ν (xν , yν ) ≤ K(x, y) when x ∈C

lim infν K
ν (xν , yν ) ≥ K(x, y) when y ∈D

Cν × Dν

C × D

C × D

EPI/HYPO-Convergence

∃xν ∈Cν

→ x ∈C

just y dependent: epi-convergence
just x dependent: hypo-convergence

epi- in y & hypo- in x ⇒  epi/hypo
but not a necessary condition!
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Saddle Points:  vs-Convergene

K ν →
e /h
K :C × D→ , εν  0, xν , yν( )∈  εν -sdl(K ν )

    x , y( ) = limν∈N⊂ xν , yν( ),   N   subsequence

⇒ x , y( )∈sdl(K ) & K x , y( ) = limν∈N⊂ K
ν xν , yν( )

in the convex/concave case ⇒  convergence primal/dual solutions

ancillary tight (   y-compact): ∀ε > 0,∃ Bε  compact, νε

∀ν ≥ νε ,sup
Bε ∩D

ν K ν (xν ,i ) ≥ sup
Dν K ν (xν ,i ) − ε

e/h-convergence + ancillary tight ⇒ sv-convergence saddle points
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Zero-Sum Games
x*∈argmaxx∈X u(x, y*), y*∈argminy∈Y u(x*, y)

(x*, y*) ∈  sdl u( )
if X,Y  convex, compact ( ⇒ tight) 
   ∀y, x u(x, y) concave, usc, ∀x, y u(x, y) convex, lsc
  ⇒  the zero-sum game G = X,u( ), Y ,−u( ){ }  has a solution

moreover, Xν → X,Y ν → Y , uν →
e /h
u  (with same properties)

⇒  their solutions (xν , yν ) cluster to solution of G
   also the case for approximate solutions
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Max-Inf ≉ Min-Sup
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•                                               non-empty, convex set

•    find   

•    let     

•     

  C ⊂ n

   G : C → n

  u ∈C  such that − G(u ) ∈NC (u )

  
v ∈NC (u ) ⇔ v,u − u ≤ 0, ∀u ∈C

   C
ν → C, Gν: Cν → n  continuous

Variational Inequalities

Sν solution set of approximating problems 
S   solution of the limit problem. Does Sν → S?
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•  Let

•  then                                       if and only if

•   

•   

•   

•   

•        

  
K(u,v) = G(u),v − u  on dom K = C × C

  −G(u ) ∈NC (u )

u ∈maxinf point of K  with K(u ,i) ≥ 0 

V.I.: The gap function

  
K ν (u,v) := Gν (u),v − u , dom K ν = Cν × Cν

uν ∈arg max−inf K ν  with K ν (uν ,i) ≥ 0

K ν → K   and  …

  
u ∈  cluster points uν{ }⇒ ? u ∈argmin−sup K

?
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⇔ x ∈argmaxinf N , N (x ,i) ≥ 0

a ∈A , payoff: ua (xa ,x−a ) :N → , ∴includes xa ∈C(x−a )

∀a ∈A, xa ∈argmax ua (xa ,x−a )

Nikaido-Isoda function: 
N (x, y) = uaa∈A∑ (xa ,x−a ) − uaa∈A∑ ( ya ,x−a )

Non-Cooperative Games

•  

•   Generalized Nash equilibrium:                        such that

•  

•                                       is a Nash equilibrium
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 Approximating games 

•    

•     

•        

   

Nikaido-Isoda functions of approximating games
N ν (x, y) = ua

ν
a∈A∑ (xa ,x−a ) − ua

ν ( ya ,x−a )
a∈A∑

  
xν ∈arg max−inf N ν , x ∈  cluster points xν{ }

   ⇒ ? x ∈argmax−inf N   equilibrium point

N ν → N   and  …?
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K :C × C→   Ky Fan function if
  (a) ∀ y ∈C: x K(x, y)  usc on C
  (b)∀x ∈C: y K(x, y)  convex on C

K  Ky Fan fcn, dom K = C × C + C  compact
⇒ argmax−inf K ≠ ∅

if K(x,x) ≥ 0 on dom K, x ∈argmax−inf K
⇒ inf y K(x , y) ≥ 0.

Ky Fan functions & inequality

Improvements: Iusem, Kasay, Sosa (locals) 
                         Lignola, Nessah, Tian, X. Yu, ...
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  Ky Fan’s inequality: 
an extension 

& if ∀ν : argmax−inf K ν ≠ ∅
    x ∈  cluster-pts {arg max−inf K ν}
⇒ x ∈arg max−inf K  & K(x ,i) ≥ 0

  

K ν → K  lopsided tightly with Cν → C, 
K ν  Ky Fan ⇒ K  Ky Fan fcn

Application: guideline for approximation schemes
   truncations, coercivity, ...
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MOPEC Family

Checking Lopsided 
Tightness 
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Linear Complementarity Problems
LCP:  find z ≥ 0, Mz + q ≥ 0 and (Mz + q) ⊥ z
K(z,v) = Mz + q,v − z  on  +

n ×  +
n ,   Ky Fan fcn

approx. z ∈ 0,rν⎡⎣ ⎤⎦, M νz + qν ≥ 0 and (M νz + qν ) ⊥ z

K ν (z,v) = M νz + qν ,v − z  on 0,rν⎡⎣ ⎤⎦ ×  +
n

  K
ν →lop K  when M ν → M , qν → q, rν ∞

 

 K ν →lop K  ancillary tightly when also

Pν = z ∈[0,rν ] M νz + qν ≥ 0{ }→ P = z ≥ 0 Mz + q ≥ 0{ }
⇒ cluster points of sol'ns of approx. solve LCP

note : intP ≠ ∅,  no row of [M ,q] =  0 ⇒ Pν → P( )
 K ν →lop K  tightly (study of quadratic forms)

Friday, June 21, 13



•    

•   

•   

    

Variational Inequalities
−G(u) ∈NC (u),G continuous, C  convex, compact

bifunction: K(u,v) = G(u),v − u  on C × C,  Ky Fan fcn & K(u,u) ≥ 0

THM:  Cν → C⇒ Cν  compact ν ≥ ν , Gν  continuous
   Gν →cont G : Gν (xν ) → G(x), ∀xν ∈Cν → x

   K ν (u,v) = Gν (u),v − u  on dom K ν = Cν × Cν

lop-converge ancillary tightly to K⇒ sol'ns converge 

    Continuous convergence (?): 
sol'ns Sν = Gν +N

Cν  0 →  sol'ns S = G + NC  0
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 Fixed Points (Set-Valued)
find x ∈C  (convex) : x ∈S(x), S :C⇒ C ⊂ n ,  osc (gph S  closed)
             K(x,v) = sup x − v, z − x z ∈S(x) ⊂ C{ }
K  a Ky Fan fcn, convex in v, usc in x (sup-projection) + K(x, x) ≥ 0

Approx. bifunctions:K ν (x,v) = sup x − v, z − x z ∈Sν (x) ⊂ Cν{ }
THM.  Cν → C , gph Sν →  gph S  (as sets),  C  compact. Then,

∀εν  0, x ∈  cluster points xν ∈εν -maxinf K ν{ }  is a maxinf point of K ,
 i.e., a fixed point of S.        (lop-convergence is tight)

an Application (J.S. Pang) - Cognitive radio multi-user game 
 f :C→ C ⊂ n continuous, C  compact, convex, x  fixed point
Pertubation (ε-enlargement): S(i;ε) :C C,  osc ,  S(i;0) = f
For ε  near 0: existence?  ∃ xε ∈S(xε ,ε) = Sε (x), xε → x ?
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Lop- & Epi/Hypo-convergence

1.  Lν →
lop
L /⇒ Lν →

e /h
L

2. Lν →
e /h
L   & convex-concave ⇒  Lν →

lop
L  

3. epi/hypo- = hypo/epi-convergence
4. Lν →

e /h
L⇒  convergence of saddle points

               ⇒  convergence of approximate sadde points
                      (without ancillary tightness)
5. Existence requires tightness-conditions  (~coercivity, e.g.)
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Uniqueness of
lop- & epi/hypo-limits
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• Lagrangians:   

• Lopsided convergence (maxinf-paradigm) - sufficient conditions

•     

• the collection  

•   

• lop-limit L is unique  

Lν (x, y) = f0
ν (x) + yi

i=1

m

∑ f νi (x) on Xν × s × 
m−s( )

f0
ν , f1

ν ,…, fm
ν  hypo-converge to f0 , f1,…, fm   on  Xν → X

fi
ν ,ν ∈{ }  is equi-usc, i = 0,…,m

Constraint Qualification: Sν = x fi
ν ≥ 0, i = 1,…,m{ }→ S

 Convincing Examples (?)

concave-convex case (epi/hypo): int S ≠ ∅
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 Variational Inequalities
Cν → C, Gν: Cν → n  continuous,  Cν  convex
     −Gν (x) ∈N

Cν , ν ∈

THM:  Cν → C⇒ C  compact ν ≥ ν , Gν  continuous
   Gν →cont G : Gν (xν ) → G(x), ∀xν ∈Cν → x

   K ν (u,v) = Gν (u),v − u  on dom K ν = Cν × Cν

lop-converge ancillary tightly to K⇒ sol'ns converge 

lop-limit:  −G(x) ∈NC (x) uniquely determined
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  MPEC  (generalized?)
maxg(x) such that x ∈S(x), g continuous, S :C⇒ C convex
   bifunction: K(x,v) = g(x)+ supz x − v, z − x z ∈S(x){ }
      V.I.-constraint: S(x) = NC (x)+G(x) +Ix  on  C
      LCP:  S(x) = Mx + q,v − x +Ix  on   +

n

x  ∈argmax infK ⇒ x  solves MPEC.

approximating bifunctions:  Sν :Cν ⇒  C

K ν (x,v) = gν (x)+ supz x − v, z − x z ∈Sν (x){ }
Cν → C,   gph Sν →  gph S,  gν  hypo-converges to g
   then K ν →

lop
K & K  unique
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 K ν (x, y) ≡ yx Uniqueness fails!

Epi/hypo-limits
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III. Random Sets & Mappings
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EG(x) = {G(⇠, x)} = 0 “approximated” by G�
(x) = 0

�1, . . . , �� sample, G�
(x) = 1

�

P�
l=1 G(�l, x)

G : ��D ⇤⇤ E, set-valued G(�, x) ⇥ E, inclusion {G(⇠, x)} ⌅ 0
�1, . . . , �� sample, approximation 1

�

P�
l=1 G(�l, x) ⌅ 0

min {f(⇠, x)}, x � C, {f(⇠, x)} = Ef(x) =
R
� f(�, x)P (d�)

�1, . . . �� sample P �
(random) empirical measure

approx.: min

�{f(⇠, x)} =

1
�

P�
l=1 f(�

l, x), x � C

Why?
G : E ! d

, G

�1
(0) soln’s of G(x) 3 0, approximations?
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Examples:
min f = f0 + ιC ,  optimality: "0 ∈∂f (x ) = S(x)"     ~ 0 = ∇f (x ))
         generally, ∂ f + g( ) ≠ ∂f + ∂g
C.. (Constraint Qualification): − NC (x )∩ ∂∞ f0 (x ) = {0}
v ∈∂∞ f0 (x ) =  horizon subgradient if 

       ∃ xν → x  with f (xν )→ f (x ), vν ∈∂̂f (xν ),λν  0 & λνv
ν → v

 
with  C..     x  locally optimal ⇒∂f0 (x ) + NC (x ) = S(x ) 0 
                     f  convex ( ⇒ regular), ∂f0 (x ) + NC (x ) 0 
                        ⇒   globally optimal (without C.)
When f0 , C  are convex: − ∂f0 (x ) ∈NC (x ),  

a functional variational inequality
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“Variational” Approximations

(E, d) Polish, in paricular E =

n

(cl-sets(E), dl) complete metric space; Polish if E =

n

dl(C� , C) ! 0 () C� ! C

osc-mappings = closed graph

(osc -maps(S), dl) complete, metric space;

Polish if dom ⇢ n, rge ⇢ m

Convergence:

S� !g S if dl(gphS� , gphS) ! 0 =) (S�
)

�1
(0) )v S�

1(0)
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G : E ! d
, G

�1
(0) soln’s of G(x) = 0, approximations?

EG(x) = {G(⇠, x)} = 0 “approximated” by G�
(x) = 0

�1, . . . , �� sample, G�
(x) = 1

�

P�
l=1 G(�l, x)

G : ��D ⇤⇤ E, set-valued G(�, x) ⇥ E, inclusion {G(⇠, x)} ⌅ 0
�1, . . . , �� sample, approximation 1

�

P�
l=1 G(�l, x) ⌅ 0

min {f(⇠, x)}, x � C, {f(⇠, x)} = Ef(x) =
R
� f(�, x)P (d�)

�1, . . . �� sample P �
(random) empirical measure

approx.: min

�{f(⇠, x)} =

1
�

P�
l=1 f(�

l, x), x � C

Why?
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Set- & “Single”-valued

C
C(ξ)

c(ξ)

ξ

(sets(Rn),E,P)

(Rn,B,P)

(Ξ,A,μ)
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Random Closed Sets

•  

(Ξ,A,P),   Ξ ⊂ N & E Polish,  for example n

C :Ξ       E, C(ξ) ⊂ E  closed set for all ξ ∈Ξ

& C−1(O) = ξ C(ξ)∩O ≠ ∅{ }∈A, ∀O ⊂ E,open 

⇒  dom C = C−1(E) ∈A, measurability ~ hit open sets
===============================================

c :Ξ→  cl-sets(E), c(ξ) ~ C(ξ),  FO = F  ⊂ E closed F∩O ≠ ∅{ }
sets(E),E( ), E Effros field = σ - FO ∈  sets(n ),O open{ },            

       C  measurable ⇔ c measurable [c−1(FO ) ∈A]
E = B Borel field when E  Polish (complete separable metric space)

!!
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Measurable selection

s

S

C

• a random closed set C always admits a                     
measurable selection!

C

⇧s : domC ⇥ E, A-measurable,
s(�) ⇤ C(�), ⌅� ⇤ domC � �
s : � ⇥ E a random vector
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Castaing Representation 
• C is a random closed set (& dom C measurable) ⇔ it 

admits a Castaing representation: ∃ a countable family

• Graph measurability

sν :  dom C→ E, meas.-selections{ }
cl sν (ξ)

ν∈ = C(ξ), ∀ξ ∈  dom C ⊂ Ξ

Ξ,A( )  P-complete for some P,
C  random set ⇔  gph C  A⊗Bn -measurable

(negligible sets are P-measurable)
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Castaing Representation

C

s1

s2

s3

s3
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Convergence of Random Elements

• a.s. (almost sure) convergence:

•  convergence in probability:

• convergence in distribution: 

⇠ : (⇥,F , µ) � (�,A, P ), ⇠⌫ �? ⇠

P
�
�
�� lim⌫ ⇠

⌫(⇥) = � 6= ⇠(⇥), ⇥ 2 �
 
= 0

P (|⇠⌫ � ⇠| > �) ⇥ 0 for all � > 0

P ⌫ !D P

(review)
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Outer/Inner Limits
outer limit: LoνC

ν = x ∈  cluster-points{xν} , xν ∈Cν{ } =  LsνC
ν

inner limit:  LiνC
ν = x = limν x

ν , xν ∈Cν ⊂ n{ }⊂  LoνC
ν

     limit:     Cν → C  if C =  LiνC
ν =  LoνC

ν   (Painlevé - Kuratowski)

All limit sets are closed

C1 Cν C=limνC
ν

C⌫ ! C () dl(C⌫ , C) ! 0

(review)
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Characterizing a.s. convergence
n

C;C� : � !! n, � 2
o

random closed sets. Then,

1. C� ! C a.s., dl(C� , C) ! 0 a.s., Lo�(C�) ⇢ C ⇢ Li�(C�) a.s.,

2. 8x 2 n and ⇥ 2 �1 with P (�1) = 1, d(x,C�(⇥)) ! d(x,C(⇥)),

3. 8x 2 n and ⇥ 2 �1 with P (�1) = 1,

lim
⇥%1

Lo�
�

C�(⇥) \ (x, ⇤)
�

⇢ C(⇥) ⇢ lim
⇥%1

Li�
�

C�(⇥) \ (x, ⇤)
�

.
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“Proof  1. ⇔ 2.”

C� ! C () 8x 2 n
, d(x,C�

) ! d(x,C) provided E =

n
.

C� ! C if and only if the hit-miss criterion is satisfied

C hits

o
(x, ⇥) then C�

hits

o
(x, ⇥) for � � �x,⇥

so, C ⇢ Li� C� () d(x,C) � limsup� d(x,C
�
), 8x

C misses (x, ⇥) then C�
misses (x, ⇥) for � � �x,⇥

so, C � Lo� C� () d(x,C) � liminf� d(x,C�
), 8x
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a.s.-Convergence 
via Castaing Representations
Cν :Ξ      d ,ν ∈{ }  random closed sets

Cν → C  P-a.s. and dom Cν =  dom C. Then,
∃ Castaing representations of Cν →  a Castaing representation of C

If s :Ξ→ E  is a measurable selection of C,  then
∃ sν :Ξ→ E  selections of Cν  converging P-a.s. to  s

('Egorov's Theorem': Cν → C µ-a.s. ⇔ Cν → C almost uniformly)

✻

✻

✻

!!
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Building Castaing representations
C : � !! n, a random closed set. Let

A =
n

ak = (a1k, . . . , a
n
k , a

n+1
k )

�

�

�

aik 2 n & a⇥. independent
o

for ; 6= D = D0 closed, define prjD ak = prjDn an+1
k

where Dl = prjDl�1 alk for l = 1, . . . , n
prjD ak is a singleton: intersection of n+1 “a⇥. independent” spheres.
Moreover,

�

prjD ak, ak 2 A
 

also dense in D

sk : � ! n with sk(�) = prjC(�) ak is a measurable selection of C

⇤ When D is a random closed set, so is � 7! prjD(�) a, a 2 n

repeat the argument n+ 1 times to obtain sk measurable. ⇤
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Converging Castaing representations
C� : � !! n random closed sets converging P -a.s. to C, domC� = domC.
Then, 9

�
s�k, k 2

 
Castaing representations of C� converging for each k

to a Castaing representation
�
sk, k 2

 
of C.

⇤ All Castaing representations are built via our earlier “projections”.
Then, 8� 2 �1, s�k(�) ! sk(�), P (�1) = 1 the set of a.s.-convergence.
Since, P -a.s. convergence of C� ! C =) (rely on 2. earlier)

d(a1k, s
�
k(�)) = d(a1k, C

�(�)) ! d(a1k, C(�)) = d(a1k, sk(�)), 8� 2 �1. ⇤

(a) Convergence of Castaing representations 6) convergence of random sets!
(b) v meas-selection of C ) 9v� meas-selection of C� converging a.s. to v.
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Convergence in probability
Let ε oC = x ∈m d(x,C) < ε{ }, Cν ,C random sets

Δε ,ν = Cν \ ε oC( )∪ C \ ε oCν( )
µ-a.s. convergence: µ ξ Cν (ξ)→ C(ξ){ } = 1

in probability: P Δε ,ν
−1 (K )⎡⎣ ⎤⎦→ 0,∀ε > 0, K ∈K =  cpct-sets

Cν converges toC  in probability 
⇔ P(dl(Cν ,C) > ε)→ 0  for all ε > 0
⇔ every subsequence of {Cν}ν∈  

    contains a sub-subsequence converging µ-a.s to C

 i.e., in probability ⇒  in distribution h(ξ)∫ dl(Cν (ξ),C(ξ))P(dξ)→ 0⎡
⎣

⎤
⎦

C

Cν

ε
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wood prices in UF

Distribution functions

P � , P defined on ( ,B)
P � ⇥D P ⇤⌅

R
h(�)P �

(d�) ⇥
R
h(�)P (d�) ⌃h continuous

F �
(z) = P �

�
(�⇧, z)

�
, F (z) = P

�
(�⇧, z)

�
, cumulative distributions

P � ⇥D P ⇤⌅ F � ⇥p F on cont F =

�
all continuity points of F

 

P ⌫ !D P () F ⌫ !h F

(review)
P ⌫ !D P ⇠ distribution fcns converge
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P � !D P () �F � !e � F

b1a1

b2

a2

R

P � , P defined on (

n,Bn) random vectors ⇠� , ⇠
P � ⇧D P ⌃⌥

R
h(�)P �

(d�) ⇧
R
h(�)P (d�)  h continuous

F �
(z) = P �

(�i ⇤ zi, i = 1, . . . , n), F (z) = P (�i ⇤ zi, i = 1, . . . , n)

1. z ⇤ z̃ =⌥ F (z) ⇤ F (z̃) “increasing”

2. limz!1 F (z) = 1, limzj!�1 F (z) ⇧ 0,

3. F is usc (upper sc) lim supz�!z F (z0) ⇤ F (z),

4. R = (a1, b1]⇥ · · ·⇥ (an, bn], V = {a1, b1}⇥ · · ·⇥ {an, bn} vertices of R
 R ⌅ n, P (⇠ � R) =

P
v2V sgn(v)F (v), sgn(v � V ) = (�1)

#a in v

P ⌫ !D P ⇠ distribution fcns converge

(review)
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Distribution of a random set

Borel σ -field: B = σ - F K K  compact{ }  or σ - FO O open{ }…
Distribution P,B( )  regular,      K compact subsets E

    determined by values on F K K ∈K{ } or FK K ∈K{ }
Distribution function (Choquet capacity): 

T :K → [0,1], T (∅) = 0 and  ∀ K ν ,ν ∈{0}∪{ }⊂K :

a) T (K ν ) T (K ) when K ν  K       (~ usc on Rn )
 b) Dν :K → [0,1]{ }ν∈  where  D0 (K 0 ) = 1− T (K 0 )

D1(K
0;K1) = D0 (K 0 ) − D0 (K 0 ∪ K1)  and for ν = 2,…

Dν (K 0;K1,…,K ν ) = Dν −1(K
0;K1,…,K ν −1) − Dν −1(K

0 ∪ K ν ;K1,…,K ν −1)
(~  rectangle condition on n )

(2)

(1,3)

(4)
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Existence-Uniqueness of T
P on B determines a unique distribution function T  on K 

T (K ) = P(FK )

Dν (K 0;K1,…,K ν ) = P(F K 0
∩F

K1 ∩∩F
Kν )

T  on K  determines a unique probability measure P.

Proof. via Choquet Capacity Theorem 
           (refined) via probabilistic arguments 

C :Ξ     d  a random closed set
(P,B) induced probability measure:

 P(FG ) = P C−1(G)⎡⎣ ⎤⎦ ∀G ∈B, T (K ) = P C−1(K )⎡⎣ ⎤⎦ ∀K ∈K

!!

(Matheron)

(Salinetti-Wets)
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Convergence in Distribution
random sets Cν  converge in distribution to C  when 

induced Pν  narrow-converge to P :Pν →n P
⇔ T ν → p T  on K T -cont  (convergence of distribution functions)

K T -cont ?
a)∀Cν ,ν ∈N , ∃ converging subsequence  (pre-compact)
b) K ν  K =  cl K ν  

ν regularly if int K ⊂ K ν  
ν

c) distribution (fcn) continuity: limν T (K ν ) = T (cl K ν ) 
ν

d) convergence T ν → p T  on CT  continuity set ⇒ Pν →n P

e) Pν →n P⇔ T ν → p T  on CT
ub =CT ∩K ub

K ub =  finite union of rational ball, positive radius
f) ε  T (K + εB) :  countable number of discontinuities

= P ⌫ !D P
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a detour about rates
T ν → p T  on CT ⇔ Pν →n P (Polish space:  E,d)

Pν ,P defined on B
probability sc-measures on cl-sets(E): λ
   (i) λ ≥ 0, (ii) λ λ(C1) ≤ λ(C 2 ) if C1 ⊂ C 2

   (iii) λ  is τ f -usc on cl-sets(E),  (iv) λ(∅) = 0,λ(E) = 1

   (v) λ  modular: λ(C1) + λ(C 2 ) = λ(C1 ∪C 2 ) + λ(C1 ∩C 2 )
P and λ = Pcl-sets   define each other uniquely (E  complete ⇒  tight)

Pν ,ν ∈{ }  tight: Pν →n P⇔ λν →h λ  (~ − λν →e −λ) on cl-sets(E)

tightness ~ equi-usc of {λν}ν∈ at ∅
rates: dl(λν ,λ)→ 0 (for -valued r.v., "~" Skorohod distance)
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Random sets
C

C(ξ)

c(ξ)

ξ

(Ξ,A,μ)

c

C(⇠) ⇠ c(⇠)
C ‘covered’ by countable selections

Castaing represnetation

(cl-sets(E), E , P )

(E,B, P )

a.s convergence: P
�
�
�� dl

�
C�

(�), C(�)
�
! 0

 
= 0

) in probability: 8⇥ > 0, P
�
�
�� dl

�
C�

(�), C(�)
�
> ⇥

 
! 0

) in distribution T : cpct-sets(E) ! [0, 1], T (;) = 0,

(a) T (K�
)

&T (K) for K�
)

&K, (b) ‘rectangle cond’n’

P � !D P () T � ! T on cpct-sets(

n
)

or, even, on finite union of closed rational balls.

(review)
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 Expectation 

Artstein, Vitale, Hart, Wets, 
Cressis, Hiai, Weyl, ...
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“Simple” random sets

C : ⇥ !! n is a simple random set if rgeC is finite.
C is a closed random set () C = P -a.s. limit of simple random sets.

⇤ (: the limit of a sequence of random sets is a random set
): let C� = C \ � , unif. bounded closed random set, C = Lm� C�

build (via ”prj”) Castaing representations
�
r�k
 
k2 of the C�

let
�
s�k
 
k2 0 =

S
⇥�

�
r⇥k
 
⇥2 , also Castaing for C�

D�
k =

S
jk s

�
j dl-converge uniformly to C� as k ! 1

since each s�k = liml!1 s�kl uniformly, s�kl simple random variables
��

kl =
S

jk s
�
jl is a simple random set, C(⇥) = Lm� Lmk Lml ��

kl(⇥)

��
kl !u D�

k !u C� allows diagonalization to find ��
k� l� ! C. ⇤
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Sierpiński-Lyapunov Theorems
(�,A) a measure space

Sierpiński (1922). Suppose P is an atomless probability measure.
Given A0, A1 ⇧ A with 0 ⇥ P (A0) ⇥ P (A1) ⇥ 1, then

⌃� ⇧ [0, 1], ⌥ A� ⇧ A such that P (A�) = (1� �)P (A0) + �P (A1).
In particular, it implies ⌃� ⇧ [0, 1], ⌥ A ⇧ A such that P (A) = �;

choose A0 = � and A1 = �.

Lyapunov (1940) µ : A⌅ n atomless, ⇥-additive measure.
For A ⇧ A, define rgeµ(A) =

�
µ(B)

��B ⇤ A  A
 
. Then,

rgeµ(�) ⇤ n is convex and if µ is also bounded, it’s compact.
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Expectation: simple random set 
C : � ⇥⇥ n a simple random set, i.e., rgeC =

�
zk ⌅ n

�� k ⌅ K, |K| finite
 

Given r̄, s̄ ⌅ EC = {C(⇠)} =⇤
⌃ simple selections r, s : � ⇥ n with {r(⇠)} = r̄, {s(⇠)} = s̄.

Let � ⌅ [0, 1]. Define v : � ⇥ n as follows:
1. partition � into subsets A= and A ⇥=
2. A= =

�
⇥ ⌅ �

�� r(⇥) = s(⇥)
 
⌅ A

3. A =
�
⇥ ⌅ �

�� r(⇥) = zk, s(⇥) = zl, k ⇧= l
 
⌅ A ⇥=, a finite collection

4. split each A ⌅ A ⇥=, P (Ar) = �P (A) & As = A \Ar (Sierpiński)

set v(⇥) =

(
r(⇥) on

S
A�A 6=

Ar ⌥ A=

s(⇥) on
S

A�A 6=
As

then v̄ = {v(⇥)} = �r̄ + (1� �)s̄ =⇤ EC convex.
Clearly EC is bounded and it’s easy to show it’s also closed =⇤ compact.
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Expectation of random set

C : ⌅ !! n
a closed random set

=) C = P -a.s. limit of simple random sets,

say C⌫ !
a.s.

C with C⌫ %
without loss of generality

EC⌫
= {C⌫

(⇠)}%
are convex, compact )

EC = {C(⇠)} =

S
⌫ EC⌫

=) EC convex

=) EC closed if C is integrably bounded

=) compact if rgeC is bounded
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Random set: Expectation
EC = E C(ξ){ } = s(ξ)P(dξ) s(i) P-summable selection

Ξ
∫

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

   ..not necessarily closed even when C  is closed-valued

Convexity:
C  P-atom convex ⇒ EC  is convex   

        (certainly when P is atomless).
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Expectation: Bounded Random Sets

-4
.8 -4

-3
.2

-2
.4

-1
.6

-0
.8 0

0.
8

1.
6

2.
4

3.
2 4

4.
8

-2.4

-1.6

-0.8

0

0.8

1.6

2.4

c=(1,1), r=1

c=(3,-2), r=1

c=(-1,0), r=0.5

c=(-1,3) r=0.5

c=(0,.8) r=.25

EC

Random Sets
equal prob. 0.2

EC: c(.41,.21), r=.502
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Expectation:  Unbounded Random Sets

EC

ray C(�1) 

ray C(�2)
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Some properties: {C(⇠)}
(Richter, Lyapounov,...)• measure P atomless, then EC = {C(⇠)} is convex

• P is P -atom convex =⇥ EC is convex; [an atom contains no (measurable)

subset of positive probability]

• C a random set, ⌃ ⇧= EC = {C(⇠)} contains no line, then

conEC = {conX(⇠)}

this essentially requires that C(�) � a pointed cone

• in general, the expectation of a (closed-valued) random set is not closed

• if |C| =
�
sup [ |s(�)|

�� s(�) ⌅ C(�) ]
 
< ⇤ then EC is closed;

C is then integrably bounded.

Friday, June 21, 13



LLN: Random Sets    (Artstein & Hart)

C :Ξ     m  measurable, ξν ,ν ∈{ }  iid Ξ-valued random variables

C(ξν ) iid random sets (i.e. induced Pν  independent and identical)

EC = E C(i){ } = x(ξ)µ(dξ) x µ-summable C(ξ)-selection
Ξ∫{ }

independence ⇒  all (measurable) selections are independent

C(ξν ) :Ξ     m ν ∈{ }  iid with EC ≠ ∅. Then, with 

Cν (ξ∞ ) = ν−1 C
k=1

ν

∑ (ξ k )⎛
⎝⎜

⎞
⎠⎟
→  C = cl con EC µ∞ -a.s.

LoνC
ν (ξ∞ ) ⊂  C  ⇔ limsupν σCν ≤ σC  support functions

LiνC
ν (ξ∞ ) ⊃ C  relies on LLN for (vector-valued) selections

!!

!!
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S :Ξ × E m , E ⊂ n

A⊗Bn -jointly measurable: S−1(O) ∈A⊗Bn , O open
⇒∀ x :ξ S(ξ, x) a random set
             random closed set when S  is closed-valued
ES :E m  with ES(x) = E S(ξ, x){ }  expected mapping
ES  convex-valued when ξ S(ξ, · ) P-atom convex
Law of Large Numbers for random sets 

                                                          applies pointwise

Random mappings
!!

!!
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stochastic variational problem: S (x) = E S(ξ, x){ } 0
S :Ξ × n      m  random set-valued mapping
ξ  random vector with values ξ ∈Ξ ⊂ N

solution (a 'stationary point')    x ∈S −1(0)


sample ξ
→ν

= (ξ1,…,ξν ) of ξ
1
ν

S
k=1

ν∑ (ξ k , x)( ) = Sν ( ξ
→ν

, x) 0,  approximating system?

i.e., Sν( )−1
(0)→

?
S −1(0) a.s.

Sample Average Approximation (SAA)

!!
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A few examples ...
(from the MOPEC fanily)
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min Ef (x) = E f (ξ, x){ }   --stationary point--  ∂Ef (x) 0
assuming  E ∂f (ξ, x){ } = ∂Ef (x) (not generally correct)
     could  ∂Ef (x) 0  get replaced (?) by

               ν−1 ∂f (ξ k , x)
k=1

ν∑( ) 0 from sample ξ
→ν

dom Ef ≈ dom f (ξ,·)
ξ∈Ξ ,

unless ξ  dom f (ξ,·) constant, 
interchanging E & ∂ is only exceptionally valid

Stochastic Optimization
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Stochastic V.I.  (variational inequality)

ξ = (ξ1,ξ 2 ,…), Gν (·, x) σ -(ξ1,…ξν ) measurable
−Gν (ξ, x) ∈NC (x), C  compact, convex
NC (x ) + G

ν (ξ, x) = Sν (x) 0, Sν  closed set-valued mapping

Gν (ξ, ·)→? G(ξ, ·)

xν (ξ) solution of −Gν (ξ, x) ∈NC (x) for sample ξ ≈ ξ
→ν

does xν (ξ) →  a solution of −G(ξ, x) ∈NC (x)?  a.s.

what if C  depends on (ξ,ν) : sequence of random sets Cν (ξ)?

Network flow equilibrium with stochastic demand and link capacities
Economic equilibrium in a stochastic environment

C

Nc(x)
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Walras Equilibrium: 
stochastic environment

(ca
1 , ya ,ca,ξ

2 )= argmax
x1 , y∈L ,xi

2∈M
ua

1 (x1)+Ea ua
2 (ξ,x2 (ξ)){ }

   such that  p1,xa
1 +Ta

1y ≤ p1,ea
1

                   pξ
2 ,xa,ξ

2 ≤ pξ
2 ,ea,ξ

2 +Ta,ξ
2 y , ∀ξ ∈Ξ

                          xa
1 ∈ Xa

1 , xa,ξ
2 ∈ Xa,ξ

2 , ∀ ξ ∈Ξ

Ea i{ }  expecttion with respect to a-beliefs, Ξ finite support

2-stage stochastic programs with recourse
solution procedures & approximation theory "well-estblished"
Ta

1,Ta,ξ
2 : input-output matrices (production, investments)

ea
1 ∈ int Xa

1 , ea,ξ
2 ∈ int Xa,ξ

2  for all ξ
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Market Clearing ~Equilibrium
excess supply: agent-a:  ca1 , ya

1 , ca,ξ
2{ }ξ∈Ξ( )

ea
1 − (ca

1 + Ta
1ya )( )a∈A∑ = s1 p1,{pξ

2}ξ∈Ξ( ) ≥ 0

∀ξ, (ea,ξ
2 + Ta,ξ

2 ) − ca,ξ
2( )a∈A∑ = sξ

2 p1,{pξ
2}ξ∈Ξ( ) ≥ 0

Variational inequality: −G(p,(xa ),(λa )) ∈ND (p,(xa ),(λa )),

p = p1,{pξ
2}ξ∈Ξ( ), x = x1,{xξ

2}ξ∈Ξ( ), λ = λ1,{λξ
2}ξ∈Ξ( )

S(ξ,(p, x,λ)) = G(ξ,(x, p,λ)) + ND(ξ ) (p, x,λ)),

E S(ξ,(p, x,λ)){ } 0
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Sample Average Approximations

ξ = (ξ1,ξ 2 ,…)   iid,     sample ξ
→ν

= (ξ1,…,ξν )

SAA-mapping: given S :Ξ × E      m  random mapping
                         Sν :Ξ∞ × E⇒ m  with

   ∀ξ ∈Ξ∞ , x ∈E :Sν (ξ, x) = 1
ν

S
k=1

ν

∑ (ξ k , x) = Sν ( ξ
→ν

, x)

Sν  depends only on ξ
→ν

SAA-mappings Sν  are random mappings 
    not necessarily closed-valued 
    (the sum of closed sets is not necessarily closed)

!!
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Pointwise limits: SAA-mappings

ES(x) = E S(ξ, x){ } ≠ ∅,  then
∀x ∈X : Sν (ξ, x)→ cl con ES(x) =:S (x) µ∞ -a.s.

If S( ·, x) is P-atom convex, Sν (ξ, · )→ cl ES(x) =:S (x) µ∞ -a.s.

Proof: LLN for random sets. 
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So far ...
➪ generalized equations

S : ��D ⇤⇤ E, set-valued S(�, x) ⇥ E, inclusion {S(⇠, x)} ⌅ 0

iid-sample
!
�

⌫
= �1, . . . , �⌫ and x ⇧⇤ S(�, x) osc

SAA-mapping S� : �1 ⇥D !! E, random osc mappings

S�(�, x) = 1
�

P�
k=1 S(�

k, x) h S�(
!
�

�
, x), 8� 2 �1

Needed S� !g S̄

⇧x ⇤ D, S(·, x), closed random set,
let S̄ = cl conES, ES(x) = {S(x, ⇠)}
Artstein-Hart LLN applies: S� �p S̄ a.s. when E = m

but �p ⌅⇥ (S�)�1(0) �� S̄

�1(0).

recall:

¯S(x) = clES(x) when P -atom convex, ES(x) closed if � ⇥� S(�, x) is

integrably bounded and compact if rgeS(·, x) is bounded.
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Consistent Approximations ?

Sν (ξ, · )→
point

S µ∞ -a.s.⇒ ? Sν (ξ, · )−1(0)    vS
−1(0)

   sometimes!
graphical rather than pointwise convergence is required
Sν (ξ, · )→

gph
S µ∞ -a.s. is needed

relationship between graphical and pointwise convergence?

!!
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Semicontinuity: osc/isc 

S : D !! m
continuous at x̄ if limx⌫!x̄ dl

�
S(x

�
), S(x̄)

�
! 0

dl(S(x⌫), S(x̄)) ! 0 () dl⇢(S(x
⌫), S(x̄)) ! 0

() d̂l⇢(S(x
⌫), S(x̄)) ! 0.8 � > �̄ � 0

d

ˆ

l⇢

�
S(x

⌫
), S(x̄)

�
= max [ ⇢

�
S(x

⌫
), S(x̄)

�
, ⇢

�
S(x̄), S(x

⌫
)

�
]

S is osc (outer semicontinuous) at x̄ if ⇢

�
S(x

⌫
), S(x̄)

�
! 0 as x

⌫ ! x̄

S is isc (inner semicontinuous) at x̄ if ⇢

�
S(x̄), S(x

⌫
)

�
! 0 as x

⌫ ! x̄

ρ

A

B

⇢(A,B)

(review)
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Equi-osc mappings
S :D     m , D ⊂ n  is osc if gph S  is closed

osc at x :  given any ρ > 0,  > 0

∃V ∈N(x ) : (S(x),S(x )) < ε, ∀ x ∈V

Sν :D    m{ }  are equi-osc at x
given any ρ > 0,  > 0

∃V ∈N(x ) : (Sν (x),Sν (x )) < ε, ∀ x ∈V
V = V (ρ, ) doesn't depend on ν.

!!

⇢

!!

⇢
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Graphical versus Pointwise Convergence

D,Dν : X      m .  Then, Dν→
point

D and Dν→
gph
D (at x)

⇔ Dν ,ν ∈{ }  are equi-osc (asymptotically) (at x)
~ Arzela-Ascoli Theorem for set-valued mappings

S  random mapping, µ∞ -a.s., Sν (ξ, · )→
point

clconES = S

then Sν→
gph
S ⇔ Sν ,ν ∈{ }  are equi-osc (asymptotically)

!!
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gph-convergence of SAA-mappings
S :  Ξ × X     m random mapping, Ξ,A,P( )
P∞ -a.s.: Sν (ξ, · )→

gph
S  at x ⇔ SAA-mappings Sν (ξ, · ){ }  equi-osc at x

⇒ sol'ns of Sν (ξ, · ) 0 ⇒v sol'ns of S ( · ) 0
Sufficient condition: P∞ -a.s.

S(ξ, · ) stably osc & steady under averaging ⇒  Sν (ξ, · ){ }  equi-osc

Law of large Numbers for Random Mappings
S  random osc mapping: Ξ × n     m

   stably osc & steady under averaging  
ξ1,ξ 2 ,…,  iid random variables (values in Ξ),  distribution P

Then, ν−1 S(ξ k , · )→gph S = clconE S(ξ 0 , · ){ }k=1

ν∑ P∞ -a.s.

!!

!!
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Stably osc

0

D(.) @
 0

not stably osc

0

D(.) @
 0

stably osc

S  stably osc near x  if µ-a.s., 
∀ρ > 0,ε > 0, ∃W ∈N(x ) & ηB (η > 0) :

eρ(S(ξ, ′x ),S(ξ, x)) < ε,∀ ′x ∈x +ηB, x ∈W

x

Friday, June 21, 13



Steady under averaging

S(ξ¹, ⋄)

S(ξ2, ⋄)

S(ξν, ⋄)

u ∈Sν ( ξ
→ν

, x)∩ ρB⇒∃ ρ̂ ≥ ρ, uk ∈S(ξ k , x)∩ ρ̂B such that 

u = ν−1(u1 ++ uν ); Sν ( ξ
→ν

, x)∩ ρB⊂ 1
ν

S(ξ k , x)∩ ρ̂B
k=1

ν

∑⎡
⎣⎢

⎤
⎦⎥
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Steady under averaging & Stably osc
rge S  ⊂ B bounded ⇒  steady under averaging
S  cone-valued and rge S ⊂  pointed cone K . Then,
S = ES  and ⇒ steady under averaging.

S,R steady under averaging ⇒  so is S + R
R(ξ, x) = R(x) ⇒ R steady under averaging
rge S bounded + R constant ⇒  steady under averaging
G(ξ, x)+ NC (x) ⇒  steady under averaging (V.I.)

        G :Ξ × X→ n  is bounded

S,R stably osc ⇒ S + R stably osc
although D1,D2 osc /⇒ D1 + D2osc
B closed, convex    x NB(x) osc
    but not stably osc (xν ∈  int B → x ∈  bdry B)
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Implementing SAA ** locally
EG(x) = E G(ξ, x){ }∈S(x)   

(V.I.: S = NC , applied to option pricing, ...)

Gν ( ξ
→ν

, · ) = ν−1 G(ξ k , x).
k=1

ν∑    Assume Gν ( ξ
→ν

, · ), EG ∈C1(n;n ),

x  strongly regular solution [Robinson] of EG(x) ∈S(x),
∃V ∈N(x ), ρ > 0 such that ∀z ∈ρB :

z + EG(x ) +∇EG(x ) x − x( )∈S(x)
has a unique solution x (z) ∈V ,  Lipschitz continuous on ρB, and

Gν ( ξ
→ν

, · ) − EG → 0 µ-a.s.  Then, for ν  sufficiently large

on a neighborhood of x , Gν ( ξ
→ν

, · ) ∈S(x) has a unique solution

x ( ξ
→ν

)→ x µ-a.s.
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Implementing SAA ** example
stochastic program with recourse (simple): ξ  uniform on [1,2]

minx,yξ
E −x x + yξ ≤ ξ, x ∈ 0,2[ ], yξ ≥ 0{ } = min Ef (x) = E f (ξ, x){ }( )

f (ξ, x) = −x + ι[0,2] + ι(−∞,ξ ] = −x + ι[0,ξ ]

to solve 0 ∈∂Ef (x) gets replaced by 0 ∈ν−1 S(ξ k , x)
k=1

ν∑ = Sν ( ξ
→ν

, x)

S(ξ, x) = ∂f (ξ, x) = −1+N[0,ξ ](x),      dom S(ξ, · ) = [0,ξ]

              =
(−∞,−1]  when x = 0,
−1            for x ∈(0,ξ),
[1,∞)        when x = ξ

⎧

⎨
⎪

⎩⎪

Solution of  0 ∈Sν ( ξ
→ν

, x) :  xν = min ξ1,…,ξν{ }→a.s. x = 1 (opt. sol'n)

but xν  is never a feasible solution, 
/∃yξ ≥ 0 such that xν + yξ ≤ ξ  when ξ ∈[1, xν )

Problem: ∂Ef (x) ≠ E ∂f (ξ, x){ }  *** interchange is not valid.

-1

ξ
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