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A product mix problem

Choose X; 2 0, j=1,...,4, to maximize:

4
D cx; =12x, +25x, +21x, + 40x,
j=1

such that (constraints)
Lt E L oS d o (campentiy)
tott,+t,+1,,=d, (finishing)

d g (d f) = total time available for carpentry (finishing)
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- Linear Programming Sol’'n

max (c,x) such that Tx <d, xeR"  with

=k ¥ o g N 1

ge 710 d,

Bl et e

Optimal: [xd =(1,333.33, 0, 0, 66.67)]
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Linear Programming Sol’n

max (c,x) such that Tx <d, xeR"  with

ge 710 d,

Bl et e

Optimal: [xd =(1,333.33, 0, 0, 66.67)]

" . n. e, il
but ... "reality": ¢, =t +1n_, t,=t+1M,

entry values
d.+¢. | 5,873 5,967 6,033 6,127

d;+C, | 3936 3984 4,016 4,064

10 random variables = L = 1,048,576 possible pairs (Tl o d )
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Taking recourse into account
What if 3, (t,+7,)%,>d;+6,; 72




Taking recourse into account

: 4 :
What it ijl(tcj +1.)X,>d, +¢.; 11 = overtime

With &=(1,.,.0,,), recourse: (y,(€),y,()@cost (q,.,4,)

max {c,x) _p1<q9y1> _p2<Qay2> i pL<q’yL>
S.t. T'x —yl
T x

Structured large scale 1.p. (L =10°)
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Equivalent Deterministic Program |

Define == {5 = (naé,)}v pg == [éj o 5]
O(£.x)=max{(~g.y)|Tsx—y2d,.y 20

ER conecave>

EQ(x)= E{Q(€,x)} = Y p.O(&,x)

CeE
(DEQ) max{c,x)+ EQ(x)such thatx e R"

non-smooth convex optimization problem




Robust Solutions !!!
DEQ Optimal:x* = (O 5] (01 0697 335
while x =(1,333.33, 0, 0, 66.67)
Expected profit x : $18.051, x“:$17,942

x* not close to optimal (- 6.5%)

[xd 1sn't pointing in the right direction]

x robust, considered all 10° possibilities.




NewsVendor Problem

max —cx+(c+r)y, x>0, 0<y<min{x,E}
==10,1350]
c—=10: =105

Pick &',...,E" (scenarios), and find :

Oé e argmin{—cx Hc+ r)y‘ y < min[ﬁl ,x]}

x=0,y=0

Wait-and-see sol'ns: x' = &'. "Reconciliation"

no help in choosing x * optimal!
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- £: Estimated Density /.

-1
¢ log-normal: h(z):(zf 27t) e 20

=443, 1=038; H(z)= ;h(s)ds

0.014

0.012

0.01F lognormal density

Expectation = 90

Strd.Dev. = 36
0.008 |-

0.006 |-

0.004 |-
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Maximize expected return

max —cx+E{(c+r)y:}
such that x>0, 0<y, <min[¢&,x]
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MaX|m|ze expected return

max —cx+ E{(c+ r)yg}

such that x>0, 0 <y, < min[ &, x]

DEQ: max -cx + EQ(x) =

-cx + ((c + r)JOxéjH(df)-l-J‘:xH(dg))

4

soln: x = H 1(

)z H'(0.6)=992; ¢=10,r=15
Gk
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Maximize expected return

max —cx+E{(c+r)y:}
such that x>0, 0<y, <min[¢&,x]

1

Cumulative Distribution
lognormal
Expect.=90, Std.Dev.=36
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The “returns” densities

x 107

Return Densities

l L \~
1000 1500 2000 2500
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Choosmg returns”dlstrlbutlon

1_

*° Distribution

0.8 Functions

0.7
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0
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Decision criteria:

from a distribution = a number
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Decision criteria:

from a distribution = a number

O wmaximize expected return  (scaled?)
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Decision criteria:

from a distribution = a number

O wmaximize expected return  (scaled?)

O wmax. E{return} § minimize customers Lost
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Decision criteria:

from a distribution = a number

O wmaximize expected return  (scaled?)
O wmax. E{return} § minimize customers Lost

O wminimize Value-at-risk (V@A, CVER)
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Decision criteria:

from a distribution = a number

maximize expected return  (scaled?)
max. E{return} § minimize customers Lost
minimize Value-at-risk (V@A, CV@R)

minimize probability of any loss
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Deci

Monday, October 28, 13

sion criteria:

from a distribution = a number
maximize expected return  (scaled?)
max. E{return} § minimize customers Lost
minimize Value-at-risk (V@A, CV@R)
minimize probability of any loss

mintmize a “safeguarding” measure, ...
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max E{ f(£.x)} = max E{u(f(&.x))]




V@E: Value-at-Risk
F(v;x)= probl: cx+Q <v]
Value-at-Risk(V@R) for o € (0,1) :

V@R(Oc;x) = F ' (a; x) (= sup{v‘F_1 (Oc;x)})

Objective: find x that maximizes V@R (o;x) given o

Challenge: x> V@R (o;x)isn't concave!

Heuristic: F is 2N (,u(x),a(x)z) and
V@R (0;x) = N (o5 (x),0(x)*)
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CV@R: Condltlonal Value at- RISk

G(v;x)= E{—cx+ Q(f, )‘—cx+ Q(&, ) < v}
Conditional Value-at-Risk(CV@R) for & € (0,1) :

CV@R (o;x)=G " (0; x) (: SUP{V‘G_l (O‘;x)})

= min, r (l—a)_lE{[—CX Q(fax)—’”L}

Objective: find x that maximizes CV@R (o;x) given o

x— CV@R(o;x)1s concave (convenient u)
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.. with Simple Recourse

(decision: xr ~» observation: £ ~» recourse cost evaluation)
cost evaluation ‘simple’ = simple recourse, i.e.,

mingescre fo(z) + E{Q({,z)} Q ’simple’

Product mix problem. With £ = (T, d),
Jo(z) ={c,z), S = ]Rilra Q¢ x) = Zi:c,f max | 0, v;((1;, ) — d;) |

NewsVendor: cost: 7, sale price 0,
&€, demand distribution P, order x,

expected “loss”: vxr + E{Q(&, x)}
Q(,r) = —0 - min{z, {}

=5 e)qaLLoLt sol’n
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Extensive formulation
= 1 +p2(q,y°) -+ prig,y")

T —y?

yt >0, 7 (0] e )

Deterministic Equivalent Problem

Q(&,z) = min {(q,y) | Tex +y > d¢, y > 0}
EQ(x) = E{Q(&§,x)} = ) cc=peQ(&, x)

the equivalent deterministic program:
DEP min(—c,z) + EQ(x) such that x € R

product MALX problem

Monday, October 28, 13
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Deterministic Version:
min ijl wj(ib‘j)., such that OSCL‘J Sij, ]: 1,...,72,
yil<vi+z, §=1....0 ) icom¥iZeinl=1...,m

6

BARREE /@
y, 1 <24x,

Monday, October 28, 13



Deterministic Version:
min 2?21 wj(ib‘j)., such that 0 = L 4 < Uy, ] = 1, A
yil=yite, §=1L....m ) conm¥i=Ci1=1,...

6

y, 1 <24x, »

xmowltorlwg function
Stochastic Version: & S 1, ity 8
MiNg, , Zlel [pl Do (fz'l = ZjE@(i) y;)}
SHE DR e e 0 S e =, il
i e e el
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He

@ Basic Process: decision --> observation --> decision
1 0
e : E s X;
# Here-&-now problem! X
not all contingencies available at time 0
cannot depend on &!

& Wat-&-see problem

implicitly all contingencies available at time 0

choose (xé ,xé) after observing &

# 1complete information to anticipative information ?

Monday, October 28, 13



Stochastic Optimization:
Fundamental Theorem

Monday, October 28, 13



Stochastic Optimization:
Fundamental Theorem

A here-and-now problem can be “reduced” to
a wait-and-see problem by introducing the

appropriate ‘information’ costs

(price of non-anticipativity)

Monday, October 28, 13



Price of Nonanticipativity

Here-&-now
min B{f(£.x' %)
i e

X ciC (& ) C:

Monday, October 28, 13



Price of Nonanticipativity

Here-&-now Explicit non-anticipativity

min E{f(f,xl,xz)} min *J{f(é,xé,xé)}
eC TR x;€C cR",
x§ SEH(E ) N xé = Cz(ﬁ,xé), i

Monday, October 28, 13



Price of Nonanticipativity

Here-&-now Explicit non-anticipativity

min E{f(f,xl,xz)} min *J{f(é,xé,xé)}
eC TR x;€C cR",
x§ SEH(E ) N xé = Cz(ﬁ,xé), i

= 4){)%} bic
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Price of Nonanticipativity

Here-&-now Explicit non-anticipativity

min B{ £(&,x',x2)} minE{ f(€,x},x})}
eC TR x;€C cR",

x§ SEH(E ) N X, cC (&) Vi
Qx = 4){)%} e

w, L subspace of constant fcns

multipliery ”

:E{wg}zO
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Price of Nonanticipativity

Here-&-now Explicit non-anticipativity
min B{ £(&,x',x2)} minE{ f(€,x},x})}
eC TR x;€C cR",
x§ SEH(E ) N xé = Cz(ﬁ,xé), i

multipliery ”

min {'{f(gaxéaxg) e <W£ ,Xé> - <W§9

such that xé el xé S Cz(f,xé

Monday, October 28, 13

Qx = 4){)%} V¢

w, L subspace of constant fcns

:E{wg}z()

IEAN

)




Price of Nonanticipativity

Here-&-now Explicit non-anticipativity

min B{ £(&,x',x2)} minE{ f(€,x},x})}
eC TR x;€C cR",

x§ SEH(E ) N X, cC (&) Vi
Qx = 4){)%} e

w, L subspace of constant fcns

multipliery ”

:E{wg}z()
min 4}{f(’g',x§ ,xé) — (wg,xé) + (w&jl}{x;p}

such that x, € C;, x; € C,(€,x,)

Monday, October 28, 13



min E{f(&,x',x})] such thatx' € C' ¢ R", x} € C*(£,x"), V&

x' must be G-measurable, G = o-{J,Z}
x”~ is A-measurable, A o G,

in general, interchange & & d is not valid
required: V €,x' e C',C*(€,x') 2 @ G-measurability of constraints

Now, suppose w, are the (optimal) non-anticipativity multipliers (prices)
min E{f(ﬁ,xig X5 )= Wy X ) + (W, ,E{xé})}

such that x; € C' c R", x; € C*(§,x;), V&
Interchange is now O K. , E{(wé,E{xé})} = (E{wﬁ,E{xé}) =0, yields
(‘v’ &, solve: min f(&,x',x*)— <W€,X1>S.t. e s e G ) J

+n,

a collection of deterministic optimization problems in R™

Monday, October 28, 13
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Progressive Hedging Algorithm

. w{ such that E{w¢ =0, v=0. Pick p>0
. forall ¢:
(x:",x;") € argmin (& x',x%) — (w; ,x)
e G GHRE dnic G ity R
o ]E{xé’v}. Stop if xé’v — x| =0 (approx.)

v+1 o £ o

otherwise w, " = wg + p[xé"’ —x " |, returnto 1. with v=v+1

Monday, October 28, 13



Progresswe Hedgmg Algorlthm

. w¢ such that E{w{ } =0, v=0. Pick p>0
. forall ¢:
(xg axg )eargminf(f;xl,xz)—(wg,f)
e G GHRE dnic G ity R
o )_cl’V:E{xé’v}. ' x5 " —Xx""|=0 (approx.)

v+1

otherwise w, " = w;, + p[xé;" —x" |, returnto 1. with v=v +1

Convergence: add a proximal term

2

1&# Al - Cld g

linear rate in (x"",w") ... eminently parallelizable

Monday, October 28, 13



Recall minEf(x)=E{f(& x(£))} suchthat z(¢) =EE

Nonanticipativity constraints:

s {a: = — ]R”} C linear subspace of constant fcns
—> Jw: Z — R “multipliers” 1 N, (= E{w(&)} = 0) such that

z* cargmin Ef = z* € argmin {E{f (&, z(&)) + (w(§), (x(&) —E{z(&)))
— z* € argmin {E{f (&, z(£)) + (w(€),z(€))}}

Plass e argglEin{f(g,x) + (w(é),z)}}, €€

w(.): contingencies equilibrium prices, ~ ’insurance’ prices

Monday, October 28, 13



implementation: choice of p ... scenario (X), ith-decision (1) dependent
(heuristic) extension to problems with integer variables

non-convexities: e.g. ground-water remediation with non-linear PDE recourse
asynchronous

partitioning (= different information feeds)
minBq{f(&.x)} .  f(&x)= fi(x)+1g, (%)
S={E,.8,.....E, } apartitioning of B, p, = P(E,) BI/LV\zd LLW@
E{f¢&x}=)Y, pE{f(&x)|E,} (Bundlng)
defining g(k,x)=E{ £,(£,0)| E, }ifxeC, = [ C,

CeE;

solve the problem as: minz‘nN=1 p.8(k,x)

Monday, October 28, 13
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min__, B{fExE)}, x&)=('),....5 ()
filtration: A c Ac---c A=A, A, trivial

==l

xe N ifx' /A, -measurable = o-field( & )

(here & deterministic, x'(§) = x')

under usual C.Q. (convex case): x € X optimal if

U N E{w®|A,_ t=0,vt=L1..T

Aw 1L N, we X suchthatx e argmin__, Ef(x)— E{(W,)Q}\

J

w non-anticipativity prices
at which to buy the right to adjust decision (after observation)

can be viewed as insurance premiumes, ....
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Expectation of R-valued functions (Fatou, monotone convergence, ... ):

o0 if P([f(€) = oc]) > 0
B{f(@)} = J= H(O)P(dL) = L | Jz f(§)P(d€)  otherwise,
or E{f(§)} = E{max|f(§), O]} — E{max|—f(£),0]}, oo — o0 = co (convention).

f:ExR*—>R, Ef:R*”— RU{co}, assume Ef # co
e Convexity. z — f(&, x) is convex (resp. affine, sublinear), then so is E'f.

e Lower semicontinous. © — f(&,x) Isc & convex or summably bounded
below = E f lsc.

e Subdifferentials. F'f finite near x, for all £ € =, f(&,-) convex, then

—

]
e

v(§) P(d€) ‘ v integrable, v(§) € af(f,a:)}.

OE () = E{0j (€0} = {

Monday, October 28, 13



Theorem. Ef an expectation functional with f(&,-) convex.
Then, 2° € argmin Ef <= Jv:E— R, E{v(&)} =0, v(§) € 0f(§, 2°), i.e.,

z¥ € argmin {fx)—v(&)z} VEE€E
zER

Proof. If v(-) exists, then 0 € OE f ("), i.e., 2° € argmin Ef.

On the other hand, if 0 € OEf(z"), v such that E{v(£)} = 0 and v(§) €
Of(&,2°) is guaranteed by ‘Subdufferential property’. The equivalence

v(§) € 9f(§,2°) & 2° € argmin {f({, ) — v({)z}

is validated by Fermat’s rule.

Monday, October 28, 13



Theorem. Ef an expectation functional with f(&,-) convex.
Then, z° € argmin Ef < Jv:E = R, E{v(&)} =0, v(§) € df(&, 2°), i.e.,

z¥ € argmin {fx)—v(&)z} VEE€E
zER

Proof. If v(-) exists, then 0 € OE f ("), i.e., 2° € argmin Ef.

On the other hand, if 0 € OEf(z"), v such that E{v(£)} = 0 and v(§) €
Of(&,2°) is guaranteed by ‘Subdufferential property’. The equivalence

v(§) € 9f(§,2°) & 2° € argmin {f({, ) — v({)z}

is validated by Fermat’s rule.

Knowing v allows the tnterchange of
minimization and expectation
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Transmission Networ

Figure 1. Topology of the IEEE 300 node system
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- Transmission Network

NE-ISO net
~ 30,000 BUS

VERMONT

— & - -3— L%
CONNECTICUT HODEISLAND
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Federal Energy Regulatory Commission

In the US is an organization that is responsible for moving
electricity over large interstate areas; coordinates, controls
and monitors an electricity transmission grid that is larger

with much higher voltages than the typical power company's
distribution grid.

Is an organization formed at the direction or recommendation

of the FERC, in the areas where an ISO is established, it
coordinates, controls and monitors the operation of the

Monday, October 28, 13

electrical power system, usually within a single US State, but
sometimes encompassing multiple states.

1SO New England Inc. (ISO-NE) is an independent, non-profit RTO,
serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode
Island and Vermont. Its Board of Directors and its over 400 employees
have no financial interest or ties to any company doing business in the
region's wholesale electricity marketplace.
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nuclear energy
hydro-power
thermal plants (coal, oil, shale oil, bio, rubish, ...)

gas turbines (natural gas, from ”cracking’)

renewables (wind, solar, ..., ocean waves)

different characteristics
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ncertainties

e WEATHER: demand & supply (especially renewables
e industrial-commercial environment (demand
e seasonal, day of the week, time of the day

e contingencies: transmission lines, generators

El Cerrito, California (94530) Conditions & Forecast http://www.wunderground.com/cgi-bin/findweather/getForecast...

SN 125 P R
Settings Link To

Saturday Night, Jun 30

_,b‘/f;r

Y
y

30 Jun 2012 07:40 GMT / 30 Jun 2012 03:40 AM EDT

e, S
7
Pomt‘Re{;%
Nationali” &
Conditions Sgashore;;‘h ;

- £y

Drakes Bay.
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file://localhost/Users/rjbw/Desktop/CADAR6
file://localhost/Users/rjbw/Desktop/CADAR6

Uncertainties
WEATHER: demand & supply (especially renewables)
industrial-commercial environment (demand)

seasonal, day of the week, time of the day

contingencies: transmission lines, generators

ey, =

"L;
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Uncertainties
WEATHER: demand & supply (especially renewables)
industrial-commercial environment (demand)

seasonal, day of the week, time of the day

contingencies: transmission lines, geperators



MarkEt time Iine Operating day

commences.

Da Vv a head- Re- RAC process closes;
bidding new units notified.
fior |
Post operating Clear DA market RAC Post-DA RAC
reserve requirements using SCUC/SCED using SCUC

Prepare and 1100 1600 1700 DA —day ahead
submit DA bids RT —realtime

Post results SCUC — security constr.

(DA energy wnit commitment

and reserves) SCED - security constr.
economic dispatch

Operating day: RAC — reliabiity ass.

commimenit

Intraday RAC Clear RT market using
using SCUC SCED (every 5 min)

Prepare and Chperating hour
submit RT bids Post results
(RT energy

and reserves)

MISO NYTSO PJM ERCOT l CAISO

Marlket timeline DA offers due: DA offers due: 5 | DA offers due: DA bi-:.is. d-ue DA -:?-ﬂ’ers:.lﬂam Ref: A. Botterud, J. Wang, C. Monteiro, and
1lam am noon (reserves): DA results: 1pm

DA results: 4pm | DA results: 11 DA results: 4pm | lpm/'dpm RT offers: OH - V. Miranda “Wind Power Forecasting and
Re-bidding due: | am RT offers due: DA results 75 min Electricity Market Operations,” available at

Spm RT offers due: | 6pm DA (reserves): www.usaee.org/usaee2009/submissions/Onl
ET offers due: OH -75 mun 1.30pm/6pm

OH -30 min RT offers due: ineProceedings/Botterud_etal_paper.pdf
OH -60 min
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RT: deterministic optimigation withv LMP (dual
vouritables associated withv demandA's) covustraints).

SCUC/SCED: Lagrangiowv reloaxation with conservative
reliability constrointy

SCUC/SCED: deterministic MIP withv covservative RUT

ARPA-"E (project): “take into-account uncertainty”



=

A collection o
stochastic-programs

DA-SCUC/SCED unit commitment  binartes
DA-RAC rebidding assessment bidding (binaries)

DA-RUT - reliability commitments (spinning, N-1)
RT - 3 min (real time adjustments) LMP’s

SCED2 - 3 or 4 hours schedule to foresee ramp ups/down, etc.

DA = day ahead

Monday, October 28, 13



P

Pre-defined

LP

\ constraint list

Nodal Injections

SCUC enforces
limited number
of transmission
constraints on
the commitment
solution.

Each hourly SCED
performs SFT, which
tests all contingencies
in a list and for
violations, imposes
appropriate constraints
in SCED and resolves it.

L

Constraint & loss
Sensitivities

\i—'"f___

DA market

zolntions

DA Market Clearing

. DARA
Commnmt.

Ref: Xingwang Ma, Haili Song, Mingguo Hong, Jie Wan, Yonghong Chen, Eugene Zak, “The Security-constrained
Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized Energy and Ancillary Service Market,”
Proc. of the 2009 IEEE PES General Meeting.
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Each hourly SCED
performs SFT, which
tests all contingencies
in a list and for
violations, imposes
appropriate constraints
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The specific nature of II is model-dependent.

Monday, October 28, 13



Minimize Y > ¥ (k) + ¢} (k) + ¢§(k)

ke K jEJ
J generating units

k), Vke K

k) + R(k), Vke K

p;(k),p;(k) €II, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



Minimize Y > ¥ (k) + ¢} (k) + ¢§(k)

keEK j EJ
K time periods @ J generating units

k), Vke K

k) + R(k), Vke K

Wl el glie JE Sl e i

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



production cost

Minimize ) Sur P(k) + ¢ (k) + (k)

keEK j EJ
K time periods @ J generating units

k), Vke K

k) + R(k), Vke K

Wl el glie JE Sl e i

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



production cost startup cost

Minimize ) ) :\éf (k) + c;%({c) + (k)

: keK jeJ ; :
K time periods @ J generating units

> p;i(k) =D(k), Vke K

=y
S " pi(k) > D(k) + R(k), Vke K
=
p;(k),p;(k) €II, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



produc{on cost startup cost shutdown cost
— N / =
Minimize >4 = cf(k) + c;‘({c) + c;l(k) with

: keK jeJ ; :
K time periods @ J generating units

> p;i(k) =D(k), Vke K

=y
S " pi(k) > D(k) + R(k), Vke K
=
p;(k),p;(k) €II, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



produc{on cost startup cost shutdown cost
— N / =
Minimize >4 = cf(k) + c;‘({c) + c;l(k) with

: keK jeJ ; :
K time periods @ J generating units

demand
N pi(k) = D(k), VkeK
e
S " pi(k) > D(k) + R(k), Vke K
ey
pj(k),pj(k) =SB i L e i

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



produc{on cost startup cost shutdown cost
— N / =
Minimize >4 = cf(k) + c;‘({c) + c;l(k) with

: keK jeJ ; :
K time periods @ J generating units

demand
power outputzpj(k) =D(k), Vke K

=y
S " pi(k) > D(k) + R(k), Vke K
=
p;(k),p;(k) €II, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



produc{on cost startup cost shutdown cost
— N / =
Minimize >4 = cf(k) + c;‘({c) + c;l(k) with

: keK jeJ ; :
K time periods @ J generating units

demand
power outputzpj(k) =D(k), Vke K

JEe):

max power OUtPUtZﬁj(k) > D(k) o R(k), Gk
e
p;(k),p;(k) €II, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



produc{on cost startup cost shutdown cost
— N / =
Minimize >4 = cf(k) + c;‘({c) + c;l(k) with

: keK jeJ ; :
K time periods @ J generating units

demand
power outputzpj(k) =D(k), Vke K

el B

spinning reserve

max power OUtPUtZﬁj(kﬁ) > D(k) 4 R(k), eraadss
=

p;(k),p;(k) €II, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



produc{on cost startup cost shutdown cost
— N / =
Minimize >4 = cf(k) + c;‘({c) + c;l(k) with

: keK jeJ ; :
K time periods @ J generating units

demand
power outputzpj(k) =D(k), Vke K

el B

spinning reserve

max power OUtPUtZﬁj(kﬁ) > D(k) 4 R(k), eraadss
=

p;(k),p;(k) €II, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

Monday, October 28, 13



produc{on cost startup cost shutdown cost
— N / =
Minimize >4 = cf(k) + c;‘({c) + c;l(k) with

: keK jeJ ; :
K time periods @ J generating units

demand
power outputzpj(k) =D(k), Vke K

e Girs Ay
spinning reserve
max power OUtPUtZﬁj(kﬁ) > D(k) 4 R(k), eraadss
j€J
p;(k),p;(k) €I, VjeJ Vke K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

"Stochastic Version”

Monday, October 28, 13



min. expectation
(actually: risk measure) HEAE o
with penalties Minimize >4 (B ci (k) + c?(k) with
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between a rock and a hard place

CPLEX-MIP: can handle a few scenarios

PH : not designed for binary vairables
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Progresswe Hedgmg Algorlthm

: wg such thatE{wé}zO, v=0. Pick p>0 ’R.C\/LCW
. forall ¢:

p‘x _—1v12

(", xz") € argmin f(&x',x") + (wy ,x' )+
ee G IR e CH(E ) e R
D — E{xé’v}. Stop if xé " —Xx""|=0 (approx.)

v+1 — 1y

otherwise w; " = w; + p[xg’v —x " |, returnto 1. with v=v+1

Implementation: bundling, p — ps, ...
Watson & Woodruff (Hart, Siirola, ...)
Chile: Sistemas Complejos de Ingeneria (L.F. Solari, ...)
& Centro de Modelamiento Matematico
Carl Laird (Texas A& M), Ryan Sarah (Iowa), ...
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o N = o - e = S v = N = -

" PH: binary variables

min(c, z) + Yz Pe(de, ye) such that
O Oplieun) e e S

binary (integer) variables: some x’s, some y¢’s.
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- e S v = N

" PH: binary variables

min(c, z) + Yz Pe(de, ye) such that
O Oplieun) e e S

binary (integer) variables: some x’s, some y¢’s.

Choice of p — p; depending on c¢;, |z;], ...

Variable Fixing, in particular binaries, z;(s) = constant (k iterations)
Variable Slamming: aggressive variable fixing x;(s) ~ constant (& c;x;(s))
“Sufficient” variable convergence ~ for small values of c;x;(s)

Termination criterion: variable slamming when x% (&) — 2% (£) small

J J

Detecting cycling behavior: (simple) hashing scheme
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Sarah Ryan &“'Yongha'n"'_Feng'
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Robust decisions in

a stochastic environment
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from predictions on day D-1
to load forecasts on day D

Temperature predictions
Boston — Aug. 14, 2012
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from predictions on day D-1
to load forecasts on day D

Dew point: predictions

Boston — Aug.14, 2012
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from predictions on day D-1
to load forecasts on day D

Surface wind: predictions
Boston — Aug.14, 2012
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Temperature predictions
Boston — Aug. 14, 2012
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Temperature predictions
Boston — Aug. 14, 2012

Dew point: predictions

Boston — Aug.14, 2012
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Temperature predictions
Boston — Aug. 14, 2012

Dew point: predictions

Boston — Aug.14, 2012

Surface wind: predictions
Boston — Aug.14, 2012
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Temperature predictions
Boston — Aug. 14, 2012

Dew point: predictions

Boston — Aug.14, 2012

Surface wind: predictions
Boston — Aug.14, 2012

Cloud Cover: predictions
Boston — Aug.14, 2012

NOAA: ACTUALS
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... toload on day D
to be delivered-load: [(¢)
= fcn(temp(T <t),dewpt(7 <t), clcover(7t < t), wind(7T < t)), t <24

Load Forecast (actual)
Boston — Aug.14, 2012
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to be delivered-load: [(¢)
= fcn(temp(T <t),dewpt(7 <t), clcover(7t < t), wind(7T < t)), t <24

BUT THAT WOULDN’T CAPTURE THE UNCERTAINTY!
ONE WOULD EXPECT:
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“Realistic” Forecasts

Load Predictions
Boston — Aug.14, 2012
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“Realistic” Forecasts

Load Predictions
Boston — Aug.14, 2012

(ARTISTIC CONCEPTION)

I
14
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Troubling Issues
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Troubling Issues

O weather preoliotlow @11 a.m..
better @ 11 PM. ... but too Late!
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O surface winod =>7 power wind
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O weather preol'wtiow @11 a.m.
better @ 11 PM. ... but too Late!

O surface winod =>7 power wind

O clowd cover (no historical prediatiow
data) -- only actuals are available
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O weather preol'wtiow @11 a.m.
better @ 11 PM. ... but too Late!

O surface winod =>7 power wind

O clowd cover (no historical pred'wtiow
data) -- only actuals are available

O wodel to be used for the stochastice Load
predictions model: SDE, time sertes, 222
all tnappropriate
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Stochastic Load
Process — Scenarios
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Stochastic Load
Process — Scenarios

a) segmentation: season + day characteristics
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Stochastic Load
Process — Scenarios

a) segmentation: season + day characteristics
b) functional regression for given segment
c) hourly distribution of errors per segment
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Stochastic Load
Process — Scenarios

a) segmentation: season + day characteristics
b) functional regression for given segment

c) hourly distribution of errors per segment
HOW THIS IS CARRIED OUT (this p.m.)
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Stochastic Load
Process — Scenarios

a) segmentation: season + day characteristics
b) functional regression for given segment
c) hourly distribution of errors per segment

HOW THIS IS CARRIED OUT (this p.m.)

d) conditional distribution of errors => process




Stochastic Load
Process — Scenarios

a) segmentation: season + day characteristics
b) functional regression for given segment
c) hourly distribution of errors per segment

HOW THIS IS CARRIED OUT (this p.m.)
d) conditional distribution of errors => process
e) discretization of the process => scenarios
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~ similars, analogs (* standard)
to enrich data: wedwnesday rule, zowne rule?

seasons: (factor awaLasis, ‘heuristies’)

+ spring § fall : temeperature

winter: temperature § clowd cover

summer: temperature § dew point

wind power (at present): hawndleol lwdepewdewtl,a
based on 3TIER analogs

total Load = Load scenarto - wind POWEY SCenarLo
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Summer segment “#1”

Predicted temperatures
Boston —— August 14-18, 2012
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_ Summer segment “#1”

Predicted humidity levels
Boston —— August 14-18, 2012
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Summer segment “#1”

Observed Loads
Boston —— August 14-18, 2012

18 (Saturday)
without Wednesday rule

Monday, October 28, 13



Predicted temperatures
Boston — August 14-18, 2012

Predicted humidity levels
Boston — August 14-18, 2012

from day d-1 = possible load on day d d=14,..18

1. regression(temp. curve, humid. curve) = 'expected' load curve

2. get distribution of the errors (hourly, .... at any time)

Observed Loads
Boston —— August 14-18, 2012

18 (Saturday)
without Wednesday rule
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The Regression Problem

find a function r that minimizes errors (with respect to HDH)

zdays d in segment Zhours h in day I" ((tmpd’h 4 humd’h )) % loadd’h H

an infinite dimensional problem!

Our approach: rely on 2-dimensional epi-splines ("innovation")

pi-splines approximate with arbitrary accuracy 'any' function

p1-splines are completely determined by a finite # of parameters

llows (via constraints) to include 'soft' (non-data) information
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The Errors Distributions

Given segment # and associated r, for fixed hour &
e,,=load, , — r((tmpd,h,humd,h)), d € segment #

=> estimate the density f, of the errors (at 4 1n segment #)
yields an overall estimate of the 'volatility' (in fact, more)

another infinite dimensional problem & data might be scarce

Our approach: estimation via exponential epi-spline (novel):
-f, =exp(-s,), s, an epi-spline (= f, =20)

- same properties as epi-spline, could include unimodality restriction
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... et voila!
regression curve & sampling from errors distribution

regression curve-

Load Predictions
Boston — Aug.14, 2012
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... et voila!
regression curve & sampling from errors distribution

regression curve-

Load Predictions
Boston — Aug.14, 2012

I | I | I |
8 10 12

a. how many samples? 10°,10°,...2

b. conditioning: @10 o'clock above or below the regression curve
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Continuation:
actually
Building Scenario Trees
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Load level

a.1dentity all observed load curves in each sub-segment
b. for each sub-segment: re-calculate regression and errors distribution

c. repeat for each sub-segment @ (say, 1 p.m.) = sub-sub-segment
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