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A product mix problem
Choose x j ≥ 0, j = 1,…, 4,  to maximize:

     cjx j = 12x1 +25x2 +21x3 + 40x4
j=1

4

∑
such that (constraints)
tc1+ tc2 + tc3 + tc4 ≤ dc      (carpentry)
t f 1+ t f 2 + t f 3 + t f 4 ≤ d f    (finishing)

dc(d f ) = total time available for carpentry (finishing)
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Linear Programming Sol’n

 

max c, x  such that Tx ≤ d, x ∈ +
n        with

T =
tc1 tc2 tc 3 tc 4

t f 1 t f 2 t f 3 t f 4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

4 9 7 10

1 1 3 40

⎡
⎣⎢

⎤
⎦⎥

,
dc

d f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

6000

4000

⎡
⎣⎢

⎤
⎦⎥

Optimal: xd = 1,333.33, 0, 0, 66.67( )
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Linear Programming Sol’n

 

max c, x  such that Tx ≤ d, x ∈ +
n        with

T =
tc1 tc2 tc 3 tc 4

t f 1 t f 2 t f 3 t f 4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

4 9 7 10

1 1 3 40

⎡
⎣⎢

⎤
⎦⎥

,
dc

d f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

6000

4000

⎡
⎣⎢

⎤
⎦⎥

Optimal: xd = 1,333.33, 0, 0, 66.67( )
but ... "reality": tcj = tcj+ηcj , t fj = t fj+η fj

     

entry values
dc +ζ c 5,873 5,967 6,033 6,127
d f + ζ f 3.936 3.984 4,016 4,064

10 random variables ⇒  L  = 1,048,576 possible pairs T l , dl( )
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Taking recourse into account
What if (tcjj=1

4∑ +ηcj )x j > dcj +ς cj  ??
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Taking recourse into account
What if (tcjj=1

4∑ +ηcj )x j > dcj +ς cj  ?? ⇒  overtime

 

With ξ = (η{⋅,⋅},ζ {⋅} ), recourse : (yc(ξ ), yf (ξ ))@cost (qc ,qf )

max 〈c, x〉 − p1〈q, y1〉 − p2 〈q, y2 〉 − pL 〈q, yL 〉
s.t. T 1x −y1 ≤ d1

T 2x −y2 ≤ d 2

  

T Lx −yL ≤ dL

x ≥ 0, y1 ≥ 0, y2 ≥ 0,  yL ≥ 0.

Structured large scale l.p.  (L ≈106 )
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Equivalent Deterministic Program

 

Define Ξ = ξ = (η,ζ ){ }, pξ = [ξ = ξ ]

Q(ξ, x) = max 〈−q, y〉 Tξx − y ≥ dξ , y ≥ 0{ }
EQ(x) = E{Q(ξ, x)} = pξ

ξ∈Ξ
∑ Q(ξ, x)

(DEQ)  max〈c, x〉+ EQ(x) such that x ∈ +
n

non-smooth convex optimization problem

EQ concave
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Robust Solutions !!!
DEQ Optimal : x* = (257, 0, 665.2, 33.8)

while xd = 1,333.33,  0,   0,  66.67( )
Expected profit x*:$18.051,    xd :$17,942

xd   not close to optimal (- 6.5%)
xd isn't pointing in the right direction
x* robust, considered all  106 possibilities.
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NewsVendor Problem
max − cx + (c + r)y, x ≥ 0, 0 ≤ y ≤ min{x,ξ}
         Ξ = [0,150]
         c = 10, r = 15
Pick ξ1,…,ξ L (scenarios),  and find :

(xl , yl )∈argmin
x≥0,y≥0

−cx +(c + r)y y ≤ min ξ l , x⎡⎣ ⎤⎦{ }
Wait-and-see sol'ns: xl = ξ l .  "Reconciliation"
no help in choosing x*  optimal!
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ξ: Estimated Density h
ξ   log-normal: h(z) = zτ 2π( )−1

e
− (ln z−θ )2

2τ 2

θ = 4.43, τ = 0.38; H (z) = h(s)ds
0

z

∫
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Maximize expected return
                max − cx + E{(c + r)yξ}
         such that  x ≥ 0, 0 ≤ yξ ≤ min[ξ, x ]
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Maximize expected return
                max − cx + E{(c + r)yξ}
         such that  x ≥ 0, 0 ≤ yξ ≤ min[ξ, x ]

DEQ:  max - cx + EQ(x) = 

                  - cx + c + r( ) ξH (dξ )+ xH (dξ )
x

∞

∫0

x

∫( )
sol'n: x* = H −1 r

c + r
⎛
⎝⎜

⎞
⎠⎟ = H

−1(0.6) = 99.2; c = 10, r = 15
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Maximize expected return
                max − cx + E{(c + r)yξ}
         such that  x ≥ 0, 0 ≤ yξ ≤ min[ξ, x ]
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... but is maximum expected
return the “real” objective?
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The “returns” densities
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Choosing: “returns”distribution
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Decision criteria: 
! ! ! from a distribution ⟹ a number
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Decision criteria: 
! ! ! from a distribution ⟹ a number

maximize expected return   (scaled?)

max. E{return} & minimize customers lost

minimize Value-at-Risk (V@A, CV@R)

minimize probability of any loss

minimize a “safeguarding” measure, ...
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maxE f (ξ, x){ }⇒maxE u f (ξ, x)( ){ }
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V@E: Value-at-Risk

  

F(v;x) = prob −cx +Q ξ,.x( ) ≤ v⎡⎣ ⎤⎦
Value-at-Risk(V@R) for α ∈(0,1) :

V@R α;x( ) = F−1(α;x) = sup v F−1 (α;x){ }( )
Objective:  find x that maximizes V@R α;x( )  given α
Challenge:  xV@R α;x( )isn't concave!

Heuristic:  F   is N µ(x),σ (x)2( )   and

            V@R α;x( ) = N α;µ(x),σ (x)2( )

Monday, October 28, 13



V@E”: the NewsVendor
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CV@R: Conditional Value-at-Risk

CVaR(  ;x)_

VaR(  ;x)_

_ _F(  ;x)
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CV@R: Conditional Value-at-Risk

 

G(v;x) = E −cx +Q ξ,.x( ) −cx +Q ξ,.x( ) ≤ v{ }
Conditional Value-at-Risk(CV@R) for α ∈(0,1) :

CV@R α;x( ) = G−1(α;x) = sup v G−1 (α;x){ }( )
                  = minr r + (1−α )−1E −cx +Q(ξ, x)− r[ ]+{ }
Objective:  find x that maximizes CV@R α;x( )  given α
xCV@R(α;x) is concave    (convenient u)
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Stochastic Programs
with Recourse
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.. with Simple Recourse

⇒ explicit sol’n

decision: x observation: ⇥  recourse cost evaluation.

cost evaluation ‘simple’ ⇥ simple recourse, i.e.,

min

x2S⇢ n f0(x) + {Q(⇥, x)} Q ’simple’

Product mix problem. With ⇥ = (T, d),
f0(x) = ⇤c, x⌅, S =

4
+, Q(⇥, x) =

P
i=c,f

max [ 0, �
i

(⇤T
i

, x⌅ � d
i

) ]

NewsVendor: cost: �, sale price ⇥,
⇠, demand distribution P , order x,
expected “loss”: �x+ {Q(⇠, x)}
Q(⇤, x) = �⇥ · min{x, ⇤}
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Extensive formulation
min ⌅�c, x⇧ +p1⌅q, y1⇧ +p2⌅q, y2⇧ · · ·+ pL⌅q, yL⇧
s.t. T

1
x �y

1 ⇥ d

1

T

2
x �y

2 ⇥ d

2

...
. . .

...
T

L
x �y

L ⇥ d

L

x ⇤ 0, y

1 ⇤ 0, y

2 ⇤ 0, · · · y

L ⇤ 0.

Deterministic Equivalent Problem
Q(�, x) = min

�
⌅q, y⇧

��T�x+ y ⇥ d�, y ⇥ 0

 

EQ(x) = {Q(⇠, x)} =

P
�2� p�Q(�, x)

the equivalent deterministic program:

min⌅�c, x⇧+ EQ(x) such that x ⇤ n
+

EXF

DEP
product mix problem
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Network capacity expansion
Deterministic Version:

min

Pn
j=1 ⇤j(xj), such that 0 � xj � ⇥j , j = 1, . . . , n

|yj | � �j + xj , j = 1, . . . , n,
P

j2�(i) yj ⇥ ei, ı = 1, . . . ,m
.

<

<

<y1

3

2
6

4
1

5+x

7+x

2+x

y3

y
2 1

2

3

ï9
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Network capacity expansion
Deterministic Version:

min

Pn
j=1 ⇤j(xj), such that 0 � xj � ⇥j , j = 1, . . . , n

|yj | � �j + xj , j = 1, . . . , n,
P

j2�(i) yj ⇥ ei, ı = 1, . . . ,m
.

<

<

<y1

3

2
6

4
1

5+x

7+x

2+x

y3

y
2 1

2

3

ï9

Stochastic Version: � l, l = 1, . . . , L,
min

x,y

l

P
L

l=1

⇥
p
l

P
m

i=1 ⇤i
�
⌅ l

i

�
P

j2�(i) y
l

j

�⇤

s.t.

P
n

j=1 ⌃j

(x
j

) ⇥ �, 0 ⇥ x
j

⇥ ⇧
j

, j = 1, . . . , n,

|y l

j

|� x
j

⇥ ⇥
j

, j = 1, . . . , n, l = 1, . . . , L

monitoring function

go2

2b

b

g

o

e

0
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Aggregation Principle in
Stochastic Optimization
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Here-&-Now vs. Wait-&-See
 Basic Process: decision --> observation --> decision

 Here-&-now problem!
    not all contingencies available at time 0
                    cannot depend on ξ!

 Wait-&-see problem
    implicitly all contingencies available at time 0
    choose                after observing ξ

 incomplete information to anticipative information ?

x1 ξ xξ
2↝ ↝

x1

(xξ
1, xξ

2 )
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Stochastic Optimization: 
! ! Fundamental Theorem
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Stochastic Optimization: 
! ! Fundamental Theorem

A here-and-now problem can be “reduced” to 
a wait-and-see problem by introducing the

appropriate ‘information’ costs
(price of non-anticipativity)
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Price of Nonanticipativity
    Here-&-now

min E f (ξ, x1, xξ
2 ){ }

       x1 ∈C1 ⊂ n ,
     xξ

2 ∈C 2 (ξ, x1), ∀ξ.
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min E f (ξ, x1, xξ
2 ){ }
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Explicit non-anticipativity
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1, xξ
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       xξ
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2 ∈C 2 (ξ, xξ

1 ), ∀ξ.
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Price of Nonanticipativity
    Here-&-now

min E f (ξ, x1, xξ
2 ){ }

       x1 ∈C1 ⊂ n ,
     xξ

2 ∈C 2 (ξ, x1), ∀ξ.

Explicit non-anticipativity

minE f (ξ, xξ
1, xξ

2 ){ }
       xξ

1 ∈C1 ⊂ n ,

     xξ
2 ∈C 2 (ξ, xξ

1 ), ∀ξ.

xξ
1 = E xξ

1{ } ∀ξ
wξ ⊥ subspace of constant fcns

⇒ E wξ{ } = 0multipliers
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Price of Nonanticipativity
    Here-&-now

min E f (ξ, x1, xξ
2 ){ }

       x1 ∈C1 ⊂ n ,
     xξ

2 ∈C 2 (ξ, x1), ∀ξ.

Explicit non-anticipativity

minE f (ξ, xξ
1, xξ

2 ){ }
       xξ

1 ∈C1 ⊂ n ,

     xξ
2 ∈C 2 (ξ, xξ

1 ), ∀ξ.

xξ
1 = E xξ

1{ } ∀ξ
wξ ⊥ subspace of constant fcns

⇒ E wξ{ } = 0

min E f (ξ, xξ
1 , xξ

2 ) − 〈wξ , xξ
1 〉 + 〈wξ ,E{xξ

1}〉{ }
such that xξ

1 ∈C1, xξ
2 ∈C2 (ξ, xξ

1 )

multipliers
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Price of Nonanticipativity
    Here-&-now

min E f (ξ, x1, xξ
2 ){ }

       x1 ∈C1 ⊂ n ,
     xξ

2 ∈C 2 (ξ, x1), ∀ξ.

Explicit non-anticipativity

minE f (ξ, xξ
1, xξ

2 ){ }
       xξ

1 ∈C1 ⊂ n ,

     xξ
2 ∈C 2 (ξ, xξ

1 ), ∀ξ.

xξ
1 = E xξ

1{ } ∀ξ
wξ ⊥ subspace of constant fcns

⇒ E wξ{ } = 0

min E f (ξ, xξ
1 , xξ

2 ) − 〈wξ , xξ
1 〉 + 〈wξ ,E{xξ

1}〉{ }
such that xξ

1 ∈C1, xξ
2 ∈C2 (ξ, xξ

1 )

multipliers
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Adjusted Here-&-Now
min E f (ξ, x1, xξ

2 ){ } such that x1 ∈C1 ⊂ n , xξ
2 ∈C 2 (ξ, x1), ∀ξ

x1  must be G-measurable, G = σ -{∅,Ξ}
x2  is A-measurable, A ⊃G, 

in general, interchange E & ∂ is not valid
required:∀ξ, x1 ∈C1, C 2 (ξ, x1) ≠ ∅  G-measurability of constraints

Now, suppose wξ are the (optimal) non-anticipativity multipliers (prices)

min E f (ξ, xξ
1, xξ

2 ) − 〈wξ , xξ
1 〉 + 〈wξ ,E{xξ

1}〉{ }
such that xξ

1 ∈C1 ⊂ n , xξ
2 ∈C 2 (ξ, xξ

1 ), ∀ξ

Interchange is now O.K. ,  E 〈wξ ,E{xξ
1}〉{ } = 〈E{wξ},E{xξ

1}〉 = 0,  yields

∀ξ,  solve: min f (ξ, x1, x2 ) − 〈wξ , x1〉 s.t.   x1 ∈C1, x2 ∈C 2 (ξ, x1)

a collection of deterministic optimization problems in n1 +n2
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           Progressive Hedging Algorithm
0. wξ

0  such that E wξ
0{ } = 0, ν = 0.  Pick ρ > 0

1.  for all ξ :
              (xξ

1,ν , xξ
2,ν ) ∈argmin f (ξ; x1, x2 ) − 〈wξ

ν , x1〉

                    x1 ∈C1 ⊂ n1 , x2 ∈C 2 (ξ, x1) ⊂ n2

2. x1,ν = E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              otherwise wξ
ν+1 = wξ

ν + ρ xξ
1,ν − x1,ν⎡⎣ ⎤⎦,  return to 1. with ν = ν +1
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           Progressive Hedging Algorithm
0. wξ

0  such that E wξ
0{ } = 0, ν = 0.  Pick ρ > 0

1.  for all ξ :
              (xξ

1,ν , xξ
2,ν ) ∈argmin f (ξ; x1, x2 ) − 〈wξ

ν , x1〉

                    x1 ∈C1 ⊂ n1 , x2 ∈C 2 (ξ, x1) ⊂ n2

2. x1,ν = E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              otherwise wξ
ν+1 = wξ

ν + ρ xξ
1,ν − x1,ν⎡⎣ ⎤⎦,  return to 1. with ν = ν +1

Convergence:  add a proximal term

    f (ξ; x1, x2 ) − 〈wξ
ν , x1〉 −

ρ
2
x1 − x1,ν 2

linear rate in (x1,ν ,wν ) ...  eminently parallelizable
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Nonanticipativity
Recall minEf(x) = {f

�
⇠, x(⇠)

�
} such that x(�) = {x(⇠)} P–a.s.

Nonanticipativity constraints:
N

a

=
�
x : � ⌅ n

 
⇤ linear subspace of constant fcns

=⇧ ⌥w : � ⌅ “multipliers” � N
a

(⇧ {w(⇠)} = 0) such that

x⇤ ⌃ argminEf =⇧ x⇤ ⌃ argmin
�

{f
�
⇠, x(⇠)

�
+ w(⇠), (x(⇠)� {x(⇠)

�
⌦}
 

=⇧ x⇤ ⌃ argmin
�

{f
�
⇠, x(⇠)

�
+  w(⇠), x(⇠)⌦}

 

P–a.s. =⇧ x⇤ ⌃ argmin
x2E

{f
�
�, x

�
+  w(�), x⌦}

 
, � ⌃ �

w(.): contingencies equilibrium prices, ⇥ ’insurance’ prices
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PH: Implementation issues
implementation: choice of ρ ... scenario (×), ith-decision (i) dependent
(heuristic) extension to problems with integer variables
non-convexities:  e.g. ground-water remediation with non-linear PDE recourse

asynchronous

partitioning (= different information feeds)
minE f (ξ, x){ }  , f (ξ, x) = f0 (x) + ιC (ξ ,x ) (x)

S = Ξ1,Ξ2 ,…,ΞK{ }  a partitioning of Ξ, pk = P(Ξk )

E f (ξ, x){ } = pnE f (ξ, x) Ξn{ }n∑    (Bundling)

defining g(k, x) = E f0 (ξ, x) Ξn{ } if x ∈Ck = Cξ
ξ∈Ξk



solve the problem as: min pkg(k, x)
n=1

N∑

Bundling
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Multistage Stochastic Programs
min

x∈N a E f (ξ, x(ξ)){ }, x(ξ) = (x1(ξ),…, xT (ξ))
filtration :A 0⊂A 1⊂⊂A T=A, A 0 trivial

x ∈N a if xt A t−1-measurable ≈ σ -field( ξ
→ν−1

)  
    (here ξ 0  deterministic, x1(ξ) ≡ x1)

under usual C.Q. (convex case): x ∈X  optimal if
∃ w ⊥ N a ,w ∈X *  such that x ∈argminx∈X Ef (x) − E 〈w, x〉{ }
w ⊥ N a ⇔ E w(ξ) A t−1{ } = 0,∀t = 1,…,T

w non-anticipativity prices 
    at which to buy the right to adjust decision (after observation)
    can be viewed as insurance premiums, ....
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just a bit of “math”
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Expectation Functionals

f : �� n ⇤ , Ef : n ⇤  {⇧}, assume Ef ⌥⇥ ⇧

• Convexity. x �⇤ f(�, x) is convex (resp. a⇥ne, sublinear), then so is Ef .

• Lower semicontinous. x �⇤ f(�, x) lsc & convex or summably bounded
below ⌅ Ef lsc.

• Subdi�erentials. Ef finite near x, for all � ⌃ �, f(�, ·) convex, then

⇥Ef(x) = {⇥f(⇠, x)} =

⇢Z

⌅
v(�)P (d�)

��� v integrable, v(�) ⌃ ⇥f(�, x)

�
.

.

Expectation of -valued functions (Fatou, monotone convergence, . . . ):

E{f(⇠)} =

R
⌅ f(�)P (d�) =

(
⇥ if P ([f(⇠) = ⇥]) > 0R
⌅ f(�)P (d�) otherwise,

or E{f(⇠)} = E{max[f(⇠), 0]}�E{max[�f(⇠), 0]}, ⇥�⇥ = ⇥ (convention).

.
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Characterization of minimizers
Theorem. Ef an expectation functional with f(�, ·) convex.
Then, x0 ⇧ argminEf ⇤⌅ ⌥ v : � ⇥ , {v(⇠)} = 0, v(�) ⇧ ⇥f(�, x0), i.e.,

x0 ⇧ argmin
x2

�
f(�, x)� v(�)x

 
⌃� ⇧ �

Proof. If v(·) exists, then 0 ⇧ ⇥Ef(x0), i.e., x0 ⇧ argminEf .

On the other hand, if 0 ⇧ ⇥Ef(x0), ⌥ v such that {v(⇠)} = 0 and v(�) ⇧
⇥f(�, x0) is guaranteed by ‘Subdu⇥erential property’. The equivalence

v(�) ⇧ ⇥f(�, x0) & x0 ⇧ argmin
x

{f(�, x)� v(�)x}
is validated by Fermat’s rule.
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Unit Commitment SCUC
 (PH with binary variables)
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Transmission Network
IEEE 300 bus network. 300 nodes, 411 edges.

Figure 1. Topology of the IEEE 300 node system

has 411 branches, and average degree (< k >) of 2.74.
Two of the branches are parallel lines, so the graph size
is: |G300| = {300, 409}. The Eastern Interconnect (EI)
data come from a NERC planning model for 2012. The
NERC EI planning models are known as MMWG (Multire-
gional Modeling Working Group) cases, and are classified
as “Critical Energy Infrastructure Information” by the US
Department of Energy. The authors have obtained permis-
sion to use these data for research purposes. The EI model
has 49,907 buses, though in our model 310 of these are
isolated from the larger sub-components. After removing
the isolates and parallel branches, we obtain a graph (GEI )
with 49,597 vertices, 62,985 links and an average degree
< k >= 2.54.

2.2. Synthetic networks

To show how power grids differ from other network
structures we generate three graphs with similar sizes to the
IEEE 300 and EI graphs: A small-world [3], preferential at-
tachment (PA) [2], and a random graph [1]. Each graph is
generated to have the same number of nodes and nearly the
same number of branches as the power grid.

The random graph is generated using the standard algo-
rithm [1, 4] with a fixed number of nodes and links.

To generate a preferential attachment/scale-free (PA)
graph with roughly n nodes and m links we modify the al-
gorithm described in [2] somewhat. For each new node a
we initially add one link between a and an existing node b
using the standard roulette wheel method. Specifically node
b is selected randomly from the probability distribution
Pa⇥b = kb/

⌅
c kc. After adding this initial link a second is

added with probability m/n� 1. Thus the addition of each
new node results in an average of 1 + (m/n � 1) = m/n
new links, producing a preferential attachment graph with

n nodes and roughly m links.
The small-world model is argued in [3] to bear some re-

semblance to power grids. To test this we generate a regular
lattice with n nodes and approximately m links. The initial
links in the regular lattice are created in roughly the same
way as the modified PA graph above. With each new node,
a link is created to a neighboring node (for node a, the first
link is to a � 1). A second link is then created to node
a� 2 with probability m/n� 1, thus giving approximately
m links in total. Note that a � 1 and a � 2 need to be ad-
justed for the first two nodes in the graph. After generating
the regular lattice in this manner random re-wiring proceeds
according to the method described in [3] until the diameter
is approximately the same as the corresponding power grid.

2.3. Measures of graph structure

There are many useful statistical measures for graphs.
Among the most useful are degree distribution [2], charac-
teristic path length [3], graph diameter [8], clustering co-
efficient [8], and degree assortativity [2]. These measures
provide a useful set of statistics for comparing power grids
with other graph structures.

The probability mass function (pmf) for node connectiv-
ity, or degree distribution, describes the diversity of connec-
tivity in a graph. While the measure has a long history, re-
cent results showing that many real networks have a power-
law degree distribution (so-called scale-free networks [2])
has emphasized the value of the measure. The extent to
which the degree distribution is fat-tailed indicates the num-
ber of hubs within the network. The degree of node i in a
graph with adjacency matrix A is:

ki =
n⇧

j=1

aij (1)

and the degree distribution is Pr(k = x) = nk/n, where nk

is the number of nodes of degree k. Often it is more con-
venient to work with the complementary cumulative distri-
bution function (ccdf). For scale free networks, where the
power-law tail starts at xmin, the ccdf is:

Pr(k ⇤ x) =
x�

min

x�+1

If the degree distribution is exponential, as found in random
graphs, a minimum value Weibull distribution provides a
better fit to the data:

Pr(k ⇤ x) = e�( x�xmin
⇥ )�

Many real networks show substantial clustering among
nodes. Watts and Strogatz [3] report that the network of
collaborations among film actors and the neural structure of
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Transmission Network
NE-ISO net

~30,000 BUS
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RTO

ISO

FERC Federal Energy Regulatory Commission

In the US is an organization that is responsible for moving 
electricity over large interstate areas; coordinates, controls 
and monitors an electricity transmission grid that is larger 
with much higher voltages than the typical power company's 
distribution grid.

Is an organization formed at the direction or recommendation 
of the FERC, in the areas where an ISO is established, it 
coordinates, controls and monitors the operation of the 
electrical power system, usually within a single US State, but 
sometimes encompassing multiple states.

ISO New England Inc. (ISO-NE) is an independent, non-profit RTO, 
serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode 
Island and Vermont. Its Board of Directors and its over 400 employees 
have no financial interest or ties to any company doing business in the 
region's wholesale electricity marketplace.
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Energy Sources

• nuclear energy

• hydro-power

• thermal plants (coal, oil, shale oil, bio, rubish, . . . )

• gas turbines (natural gas, from ”cracking’)

• renewables (wind, solar, ..., ocean waves)

different characteristics
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Uncertainties
• WEATHER: demand & supply (especially renewables)

• industrial-commercial environment (demand)

• seasonal, day of the week, time of the day

• contingencies: transmission lines, generators

Map data ©2012 Google

10 km

5 mi

Weather Stations Radar

Satellite

Settings Link To

(4) More...

Conditions

Windsor, CA Search
Currently

16.0 °C
Overcast

El Cerrito, California (94530) Conditions & Forecast http://www.wunderground.com/cgi-bin/findweather/getForecast...

1 of 1 6/30/12 4:49 PM
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Uncertainties
• WEATHER: demand & supply (especially renewables)

• industrial-commercial environment (demand)

• seasonal, day of the week, time of the day

• contingencies: transmission lines, generators
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Market time line 

Ref: A. Botterud, J. Wang, C. Monteiro, and 
V.  Miranda  “Wind  Power  Forecasting  and  
Electricity  Market  Operations,”  available  at  
www.usaee.org/usaee2009/submissions/Onl
ineProceedings/Botterud_etal_paper.pdf 

RAC process closes; 
new units notified. 

2000 

Operating day 
commences. 

0000 

2 
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RT: deterministic optimization with LMP (dual 
variables associated with demand(s) constraints).

SCUC/SCED: Lagrangian relaxation with conservative 
reliability constraints

SCUC/SCED: deterministic MIP with conservative RUT

ARPA-”E (project): “take into account uncertainty”

Short history of 
! ! ISO-management techniques
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A collection of 
stochastic-programs

• DA-SCUC/SCED unit commitment

• DA-RAC rebidding assessment bidding

• DA-RUT - reliability commitments (spinning, N-1)

• RT - 3 min (real time adjustments) LMP’s

• SCED2 - 3 or 4 hours schedule to foresee ramp ups/down, etc.

binaries

(binaries)

DA = day ahead
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Day-Ahead Market 

Ref:  Xingwang  Ma,  Haili  Song,  Mingguo  Hong,  Jie  Wan,  Yonghong  Chen,  Eugene  Zak,  “The  Security-constrained 
Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized  Energy  and  Ancillary  Service  Market,”  
Proc. of the 2009 IEEE PES General Meeting. 

SCUC enforces 
limited number 
of transmission 
constraints on 
the commitment 
solution. 

Each hourly SCED 
performs SFT, which 
tests all contingencies 
in a list and for 
violations, imposes 
appropriate constraints 
in SCED and resolves it. 
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Day-Ahead Market 

Ref:  Xingwang  Ma,  Haili  Song,  Mingguo  Hong,  Jie  Wan,  Yonghong  Chen,  Eugene  Zak,  “The  Security-constrained 
Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized  Energy  and  Ancillary  Service  Market,”  
Proc. of the 2009 IEEE PES General Meeting. 

SCUC enforces 
limited number 
of transmission 
constraints on 
the commitment 
solution. 

Each hourly SCED 
performs SFT, which 
tests all contingencies 
in a list and for 
violations, imposes 
appropriate constraints 
in SCED and resolves it. 

sto.
SCUC/
SCED
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Day-Ahead Market 
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limited number 
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in a list and for 
violations, imposes 
appropriate constraints 
in SCED and resolves it. 
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Abstract Unit Commitment
Minimize

X

k2K

X

j2J

cPj (k) + cuj (k) + cdj (k) with

X

j2J

pj(k) = D(k), 8k 2 K

X

j2J

p̄j(k) � D(k) +R(k), 8k 2 K

pj(k), pj(k) 2 �, 8j 2 J, 8k 2 K

� region of feasible production, all generating units, all time periods.
The specific nature of � is model-dependent.
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adjust node
balance eq’ns

min. expectation
(actually: risk measure)

with penalties

Monday, October 28, 13



between a rock and a hard place

CPLEX-MIP: can handle a few scenarios

PH : not designed for binary vairables
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           Progressive Hedging Algorithm
0. wξ

0  such that E wξ
0{ } = 0, ν = 0.  Pick ρ > 0

1.  for all ξ :

              (xξ
1,ν , xξ

2,ν ) ∈argmin f (ξ; x1, x2 ) + 〈wξ
ν , x1〉 +

ρ
2
x1 − x1,ν −1 2

                    x1 ∈C1 ⊂ n1 , x2 ∈C 2 (ξ, x1) ⊂ n2

2. x1,ν = E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              otherwise wξ
ν+1 = wξ

ν + ρ xξ
1,ν − x1,ν⎡⎣ ⎤⎦,  return to 1. with ν = ν +1

Review

Implementation: bundling, ⇢ ! ⇢s, ...
Watson & Woodru� (Hart, Siirola, ...)
Chile: Sistemas Complejos de Ingeneria (L.F. Solari, ...)

& Centro de Modelamiento Matematico
Carl Laird (Texas A& M), Ryan Sarah (Iowa), ...
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PH: binary variables
minhc, xi+

P
⇠2� p⇠hq⇠, y⇠i such that

x 2 C1, y⇠ 2 C2(�, x) 8 � 2 �
binary (integer) variables: some x’s, some y⇠’s.
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PH: binary variables
minhc, xi+

P
⇠2� p⇠hq⇠, y⇠i such that

x 2 C1, y⇠ 2 C2(�, x) 8 � 2 �
binary (integer) variables: some x’s, some y⇠’s.

Choice of ⇥ ⌅ ⇥j depending on cj , |xj |, ...

Variable Fixing, in particular binaries, xj(s) = constant (k iterations)
Variable Slamming: aggressive variable fixing xj(s) ⇤ constant (& cjxj(s))
“Su�cient” variable convergence ⇥ for small values of cjxj(s)

Termination criterion: variable slamming when x�
j (�)� x�+1

j (�) small

Detecting cycling behavior: (simple) hashing scheme
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PH: binary variables
minhc, xi+

P
⇠2� p⇠hq⇠, y⇠i such that

x 2 C1, y⇠ 2 C2(�, x) 8 � 2 �
binary (integer) variables: some x’s, some y⇠’s.

Enough variables fixed ⇒ clean up with CPLEX-MIP

Choice of ⇥ ⌅ ⇥j depending on cj , |xj |, ...

Variable Fixing, in particular binaries, xj(s) = constant (k iterations)
Variable Slamming: aggressive variable fixing xj(s) ⇤ constant (& cjxj(s))
“Su�cient” variable convergence ⇥ for small values of cjxj(s)

Termination criterion: variable slamming when x�
j (�)� x�+1

j (�) small

Detecting cycling behavior: (simple) hashing scheme
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Generating Scenarios
Roger J-B Wets

David Woodruff
Kai Spürkel & Ignacio Rios

@ UC Davis
Sarah Ryan & Yonghan Feng

@ Iowa State U.
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Robust decisions in
a stochastic environment 

demand
a robust model

of the uncertainty.
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from predictions on day D-1
to load forecasts on day D
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from predictions on day D-1
to load forecasts on day D
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from predictions on day D-1
to load forecasts on day D
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THE DATA
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THE DATA

Monday, October 28, 13



THE DATA
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THE DATA

NOAA: actuals
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... to load on day D
to be delivered-load: l(t)
=  fcn temp(τ ≤ t), dewpt(τ ≤ t), clcover(τ ≤ t), wind(τ ≤ t)( ), t ≤ 24
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... to load on day D
to be delivered-load: l(t)
=  fcn temp(τ ≤ t), dewpt(τ ≤ t), clcover(τ ≤ t), wind(τ ≤ t)( ), t ≤ 24

But that wouldn’t capture the uncertainty!
one would expect:
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“Realistic” Forecasts
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“Realistic” Forecasts

(artistic conception)
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Troubling Issues
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Troubling Issues
weather prediction @ 11 a.m.               
better @ 11 p.m. ... but too late!
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Troubling Issues
weather prediction @ 11 a.m.               
better @ 11 p.m. ... but too late!

surface wind  =>?   power wind

cloud cover (no historical prediction 
data) -- only actuals are available
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Troubling Issues
weather prediction @ 11 a.m.               
better @ 11 p.m. ... but too late!

surface wind  =>?   power wind

cloud cover (no historical prediction 
data) -- only actuals are available

 model to be used for the stochastic load 
predictions model: SDE, time series, ???    
all inappropriate
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Stochastic Load
Process       Scenarios
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a) segmentation: season + day characteristics
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Stochastic Load
Process       Scenarios

a) segmentation: season + day characteristics
b) functional regression for given segment
c) hourly distribution of errors per segment

HOW THIS IS CARRIED OUT (this p.m.)
d) conditional distribution of errors => process

e) discretization of the process => scenarios
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Segmentation
~ similars, analogs (± standard)                        
to enrich data: Wednesday rule,   zone rule?

seasons: (factor analysis, ‘heuristics’)

± spring & fall : temperature

winter: temperature & cloud cover

summer: temperature & dew point

wind power (at present): handled independently            
based on 3TIER analogs                                       
total load ≈ load scenario - wind power scenario 
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Summer segment “#1”
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Summer segment “#1”
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Summer segment “#1”
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from day d-1 ⇒  possible load on day d d  = 14, ...,18
1. regression(temp. curve, humid. curve) ⇒  'expected' load curve
2. get distribution of the errors (hourly, .... at any time)
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The Regression Problem
find  a function r  that minimizes errors (with respect to  )

r (tmpd ,h ,humd ,h )( ) −  loadd ,hhours h in day∑days d in segment∑

an infinite dimensional problem!
Our approach:  rely on 2-dimensional epi-splines ("innovation")
   - epi-splines approximate with arbitrary accuracy 'any' function
   - epi-splines are completely determined by a finite # of parameters
   - allows (via constraints) to include 'soft' (non-data) information
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The Errors Distributions
Given segment # and associated r,  for fixed hour h
ed ,h = loadd ,h − r (tmpd ,h ,humd ,h )( ), d ∈segment #

⇒ estimate the density fh of the errors (at h in segment #)
     yields an overall estimate of the 'volatility' (in fact, more)
     another infinite dimensional problem & data might be scarce

Our approach: estimation via exponential epi-spline (novel):
    - fh = exp(-sh ), sh  an epi-spline ( ⇒ fh ≥ 0)
    - same properties as epi-spline, could include unimodality restriction
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... et voilà!
regression curve & sampling from errors distribution
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... et voilà!
regression curve & sampling from errors distribution

a. how many samples? 103, 105,...?
b. conditioning: @10 o'clock above or below the regression curve
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Continuation: 
actually

Building Scenario Trees
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Conditioning & Discretization

a. identify all observed load curves in each sub-segment
b. for each sub-segment: re-calculate regression and errors distribution
c. repeat for each sub-segment @ (say, 1 p.m.) ⇒  sub-sub-segment

+ errors

- errors
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