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1 Formulation

1.1 Problem Description

A contingent claim, also called a derivative security, associated with one or

more financial contracts, is derived from the values of other basic financial

market securities, such as stocks or bonds.

We begin with the discrete time case. In general, the financial environment

can be described by the states of a IRd-valued stochastic process {ξt}
T

t=0
, to

which we refer as the environment process, and for t = 1, . . . , T , let

ξ
→t

= (ξ0, ξ1, ..., ξt) ∈ IRNt, where Nt = (t + 1)d,

so ξ
→t

represents the history of the environment process up to time t. Let’s

denote the market prices process of the basic securities by

St(ξ→t
) = (S1

t , S
2
t , ..., S

n
t )

Without loss of generality, we can choose the risk-free asset to be that with

index 1 and convert others to prices relative to S1
t by Si

t = Si
t/S

1
t . Then,

S1
t = 1 and will play the role of our numeraire.

A contingent claim can be expressed in terms of a collection of functions, for

t = 1, . . . , T , whose values, at time t given the environment ξ
→t

determine the

‘claim’, positive or negative, that will have to be ‘paid out,’ by the writer of

the contingent claim, i.e.,

{Gt : IRNt → R}

One (extremely) simple example is coupon payments but in general Gt can

be a quite involved function that takes into account the full, or simply a part,

of the past history of the environment process.

The writer of the contingent claim shall set up a portfolio to meet these

‘claims’, by choosing an investment strategy {Xt(ξ→t
), t = 1, . . . , T}, the value

of this portfolio at time t is:

〈St(ξ→t
), Xt(ξ→t

)〉
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It’s said to be self-financing if

〈St+1(ξ→t+1
), Xt+1(ξ→t+1

)〉 = 〈St+1(ξ→t+1
), Xt(ξ→t

)〉,

i.e., the value of the new allocation Xt+1 is consistent (equal) with the value

of the portfolio associated with the pre-existing allocation Xt.

1.2 Problem Formulation

The writer of the contingent claim seeks to maximize terminal wealth while

meeting all the claims of the contract:

max E{〈ST (ξ
→T

), XT (ξ
→T

)〉}

so that 〈S0(ξ0), X0(ξ0)〉 ≤ G0(ξ0),

〈St(ξ→t
), Xt(ξ→t

) − Xt−1(ξ→t−1
)〉 ≤ Gt(ξ→t

), t = 1, ..., T

〈ST (ξ
→T

), XT (ξ
→T

)〉 ≥ 0 a.s.

Usually, G0 is positive, that could mean that the writer borrows or receives

an initial investment, G1, .., GT are generally, but not necessarily, negative

quantities, claims that will have to be met, i.e., paid out by the writer. The

first constraint is quite natural, it means that in any case your initial portfolio

value should be less or equal to the initial investment. We can rewrite the

second constraint as

〈St, Xt〉 ≤ 〈St, Xt−1〉 + Gt,

〈St, Xt−1〉 is the actual value of portfolio Xt−1 at time t, remember that you

also have to make payment Gt, therefore the portfolio value at time t should

end up with a value less than or equal to 〈St, Xt−1〉 + Gt. Finally, under no

circumstance are you willing to lose any money, therefore the terminal wealth

should be nonnegative whatever be the observed environment. That’s the last

constraint.

2 Simple Examples

2.1 Example Stock Trading. Let St be the stock prices at time t, Xt the

corresponding quantities of shares of the stocks. Assume the writer of this
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contingent claim (stock contract) borrows $5000 from a buyer to invest in

stocks, and has to make ten monthly payments to the buyer of at least $520

a month, then G0 = 5000, Gt ≡ −520, t = 1, 2, ..., 10.

Detail. So, at time 0, the portfolio value (buying power) is subject to:

〈S0, X0〉 ≤ 5000. In the first month, the stock prices are changing, your ac-

tual wealth value is 〈S1, X0〉, and you also need to pay the contingent claim,

therefore this month’s portfolio value is subject to: 〈S1, X1〉 ≤ 〈S1, X0〉−520,

and so on. In the tenth month, 〈S10, X10〉 ≤ 〈S10, X9〉 − 520.

And the terminal wealth requires 〈S10, X10〉 ≥ 0. Naturally, the writer’s goal

is to maximize his expected terminal wealth, max E{〈S10, X10〉}, under all

the preceding constraints.

In practice, some minor changes may be needed. For example, suppose that

you open a marginal account with $5000, then your buying power is $2 ·5000

instead of just $5000.

2.2 Example Future Contracts A future contract holder has the right to

purchase or sell a specific amount of a commodity at a future market delivery

price.

Detail. Suppose that contracts are initially written at price P0 and the next

day the price becomes P1, and suppose P1 > P0. If one holds a one-unit long

position with price P0, then the profit is simply P1 − P0, otherwise, if one

has taken a short position, the loss is P1 − P0. Except for the context, the

formulation of the problem is similar to that involving stock trading.

In some specific instances, some constraints may need to be revised and

some new constraints may need to be added, but the basic formulation of

the problem remains essentially the same.
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3 Approaches

Contingent Claim Pricing problems are simply stochastic optimization prob-

lems that arise in the context of Mathematical Finance. Many models (Black-

Scholes, Whitney,etc) are based on stochastic differential equations under

some, rather strong, assumptions on the environment and prices processes.

By solving certain partial differential equations many results can be derived,

such as the existence of equivalent martingale measures, hedging, etc., but

some of these assumptions are too far from ‘reality’. Of course, in some

instances, they could be valid simplifications. For example, Black-Scholes

model’s basic assumption is that the market price process is a geometric

Brownian motion, but statistical analysis quickly reveals that this is seldom

the case and thus not close to ‘reality’. Moreover, this model can’t explain

the famous ‘σ-smile’ phenomena. Later, in the 1980’s, people resorted to

some weaker assumptions, such as semi-martingale models, or some new ap-

proaches, such as functional analytic approach. But semi-martingales models

also came with more complex stochastic differential equations, almost impos-

sible to solve in many situations.. Although the functional analytic approach

allows for some elegant results about the first fundamental theorem of asset

pricing, cf. [5], [19], under slightly more general assumptions than those used

here, it is shown that no-arbitrage is equivalent to the existence of equivalent

martingale measures, yet these results are more of a theoreoretical nature and

have do not hold much promise for even a potential computational (efficient)

procedures. Moreover, this approach cannot deal with financial problems in

incomplete market because martingale measures may not be attainable in

incomplete market.

In the 1990’s, people started to analyze the semi-martingale models by op-

timization techniques, such as in [3], [2], by duality or Legendre-transform,

they derived some properties of the dual problem and its relationship with

the original problem, but these approaches yet can’t be used for practical

computation. The greatest contribution of these approaches is that one may

easily think of the possibility of formulating the pricing problems as sto-

chastic optimization problems. Based on [17, 13, 15] on duality in stochastic
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programming, we can finally analyze the pricing problems by stochastic du-

ality techniques. This duality in a stochastic programming framework makes

it possible to connect theory, practice and computation.

In 2001, A. King and L. Korf [8] proposed a similar approach as ours, but

they directly used the duality in Rockfellar and Wets [14], [16] in the dual

of L∞ for pricing contingent claims problems, where they had to deal with

singular multipliers by some special techniques, introducing ‘induced con-

straints’, and in order to use that duality they had to make the assumption

that the market price process is essentially bounded, but even if the price

is log-normal, this assumption is not satisfied, and they didn’t provide a

method for practical computation. We deal with musch weaker assumptions,

in particular without restricting market prices to belongs to L1, we derive an

‘operational’ Duality Theorem, that allows us to establish a duality between

pricing contingent claims and finding equivalent martingale measures for a

given stochastic process, that in our context corresponds to a description of

the state of the financial market. And by virtue of this duality we can discuss

no-arbitrage, hedging, equilibrium equation, etc. In practice, for numerical

computational purposes, we have to assume that strictly equivalent martin-

gale measures exist, we shall explain later that actually this assumption is

intrinsically a ‘natural’ one and it makes actual computation possible. In

the follow-up paper [21], we show how to gather information via this duality

and how to discretize efficiently the problem at hand, and incidentally, we

also propose a novel approach for estimating the price distribution from the

historical price data.

This paper is organized as follows. The main result is an operational

duality theorem in §4, in the following sections §5 − 7 this theorem is used

to bring to the fore the relationship between no-arbitrage and equivalent

martingale measures, strictly equivalent martingale measures. Hedging and

equilibrium equations are discussed, and some interesting examples are pro-

vided. In the last sections, a brief overview of the continuous time case is

provided as well as a counterexample to the possibility of extending the re-

sults involving ‘strictly’ equivalent meausre to (‘pure’) equivalent martingale

measures.
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4 An operational duality theorem

In general, duality theory is always related to the existence of saddle points,

which means that both original problem and dual problem have the same op-

timal value and the optimal values could be attained, or equivalently saddle

points of the associated Lagrangian exist. If we want to prove the existence

of saddle points, it may require some additional assumptions or some special

techniques, such as introducing induced constraints, refer to [15]. In some

cases, such as in our problem, we are just going to require that the optimal

values of the primal and the dual are the same and that the minimum of our

primal is actually attained. That’s leads us to develop an operational duality

theorem that in some ways is weaker, but in this situation more useful, than

the ‘standard’ duality results. We begin with a brief introduction followed

by the duality theorem that will eventually lead to implementable procedure

to price contingent claims.

The ‘duality’ will focus on the interchangeability of ‘min’ and ‘sup’ operators

in the Lagrangian function; we are not concerned with the existence of an

optimal solution for the dual problem. Our basic duality scheme rest on

deriving the identity h∗∗ = h. For stochastic optimization problems of the

type

min E{f(ξ, x(ξ))} where ξ is a random variable,

our aim will thus be to obtain (Ef)∗∗ = Ef . If we already know that

f ∗∗ = f and (Ef)∗ = E(f ∗) under some conditions, then one expects that

(Ef)∗∗ = E(f ∗∗) = Ef . Therefore, (Ef)∗ = E(f ∗), the interchangeability of

expectation E{·} and conjugation ‘∗’ becomes the key stone on which rest

the duality results.

For a function ξ 7→ f(ξ, x(ξ)), the first question is under what conditions

is this function measurable when ξ 7→ x(ξ) is measurable? Then, under what

conditions can expectation E and conjugation ‘∗’ be interchanged? The fol-

lowing set-up answers these questions.

Let lsc-fcns(X) denote the space of extended real-valued, lower semicontin-

uous (lsc) functions from X to IR. Given a probability space (Ξ,A, P ), a
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random lsc function is a function f : Ξ → lsc-fcns(X) such that the associ-

ated epigraphical mapping

ξ 7→ Sf (ξ) = epi f(ξ, ·) =
{
(x, α) ∈ X × IR

∣∣ f(ξ, x) ≥ α
}

is a random closed set, i.e., for any open set O ⊂ IRn+1, S−1

f (O) =
{
ξ ∈

Ξ
∣∣Sf (ξ) ∈ O

}
belongs to A.† Further properties of random lsc functions

are set forth in [18, Chapter 14], see also[1, 9, 10, 11], let’s just record some

useful properties used in the sequel.

4.1 Proposition [18, Proposition 14.28, Example 14.29]. When f is a ran-

dom lsc function, then ξ 7→ f(ξ, x(ξ)) is measurable whenever ξ 7→ x(ξ) is

measurable.

Any function f : Ξ × IRn → R such that f(·, x) is measurable for all x

and f(ξ, ·) continuous for all ξ is a random lsc function.

Our contingent claims pricing problem is actually a linear optimization prob-

lem, and all the functions, the objective function and the functions in the

constraints, are random lsc functions.

Denote by (T, T , µ) a measurable space; here T is a non-empty set, T is a

σ−field on T , µ is just some measure on (T, T ), not necessarily a probability

measure.

4.2 Definition (decomposable spaces, [18, Definition 14.59]) . A space L

of measurable functions f : T → IRn is decomposable if for every function

f0 ∈ L, every set A ∈ T with µ(A) < ∞ and any bounded, measurable

function f1 : A → IRn, L also contains the function f : T → IRn defined by

f(t) = f0(t) for t ∈ T\A, f(t) = f1(t) for t ∈ A.‡

Let If(x) :=
∫

f(t, x(t))µ(dt) be a functional with f a random lsc functions

and x ∈ L where L consists of measurable functions. For u ∈ L∗, the

†The concept of a random lsc function is due to Rockafellar [12] who introduced it in
the context of the Calculus of Variations under the name of normal integrand.

‡For example, the Lebesgue spaces Lp(T, T , µ; IRn), with 0 < p ≤ ∞, are decomposable.
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conjugate of If is defined by

I∗
f (u∗) = sup

x

{ ∫
x · u∗µ(dt) − If(x)

}
.

When L is a Banach space, L∗ doesn’t necessarily have to be its dual.

4.3 Theorem ([12, Theorem 2]) . Suppose L and L∗ are decomposable.

Let f be a convex random lsc function, i.e., x 7→ f(t, x) is also convex for all

t ∈ T , and such that t 7→ f(t, x(t) is summable for at least one x ∈ L and

t 7→ f ∗(t, u∗(t)) is summable for at least one u∗ ∈ L∗. Then If on L and If∗

on L∗ are proper convex functions conjugate to each other.

By the preceding theorem and ‘perturbation’ theory then we can develop our

duality theory for stochastic optimization problems. We shall use the same

notations as in [14]. We are interested in the two-stage recourse problem:

min f10(x1) + E{f20(ξ, x1, x2(ξ))}

so that f1i(x1) ≤ 0, i = 1, ..., m1,

f2i(ξ, x1, x2(ξ)) ≤ 0, i = 1, ..., m2,

x1 ∈ C1, x2(ξ) ∈ C2.

where x1 ∈ IRn1, x2(ξ) ∈ L∞
n2

, C1 and C2 are bounded, closed, convex and

nonempty, C2 doesn’t depend on ξ, all functions are random lsc functions,

everywhere defined and summable with respect to P our probability measure.

Duality is developed by embedding the problem in a class of ‘perturbed’

problems. Let,

X = IRn1 × L∞
n2

and U = IRm1 × L1
m2

,

where Lp
n denotes the usual Lebesgue space of IRn-valued functions over

(Ξ,A, P ). Notice that the only difference is that here ‘perturbation’ functions

belong to IRm1×L1
m2

instead of IRm1×L∞
m2

as in [14]. However, argument will

proceed along similar lines as in [14]. The function F : X × U → (−∞,∞]

is defined as follows,

F (x, u) = F1(x1, u1) + E{F2(ξ, x1, x2(ξ), u2(ξ))}
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where

F1(x1, u1) =

{
f10(x1) if x1 ∈ C1 and f1i(x1) ≤ u1i, i = 1, 2, ..m1,

∞ otherwise.

and

F2(ξ, x1, x2(ξ), u2(ξ)) =





f20(ξ, x1, x2) if x2 ∈ C2, and

f2i(ξ, x1, x2) ≤ u2i, i = 1, 2, ..m2,

∞ otherwise.

Define,

〈u, y〉 = u1 · y1 + E{u2(ξ) · y2(ξ)}, for y ∈ Y := IRm1 × L∞
m2

,

then the Lagrangian function is defined by

L(x, y) = inf
u
{〈u, y〉+ F (x, u)},

and it’s easy to calculate that

L(x, y) =





L1(x, y) + E{L2(s, x1, x2(ξ), y2(ξ))}, x ∈ X0, y ∈ Y0,

∞, x /∈ X0,

−∞, x ∈ X0, y /∈ Y0,

where

X0 =
{
x = (x1, x2) ∈ X

∣∣ x1 ∈ C1, x2(ξ) ∈ C2 a.s.
}
,

Y0 =
{
y = (y1, y2) ∈ Y

∣∣ y1 ≥ 0, y2(ξ) ≥ 0 a.s.
}
,

L1(x1, y1) = f10(x1) +
m1∑

i=1

y1if1i(x1),

L2(ξ, x1, x2, y2) = f20(ξ, x1, x2) +
m2∑

i=1

y2if2i(ξ, x1, x2).

Let,

inf P := inf
x∈X

sup
y∈Y

L(x, y), sup D := sup
y∈Y

inf
x∈X

L(x, y),

set,

Ih(z) =

∫
h(ξ, z(ξ))P (dξ).

One more assumption is needed to derive our results.
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4.4 Assumption If∗

20
is well defined, i.e., If∗

20
(w) < ∞ for some w ∈ L1

n for

n = n1 + n2.

Since obviously, If20
(w) < ∞ for some w ∈ L∞

n , by Theorem 4.4, the integral

functionals If20
and If∗

20
are conjugate to each other with respect to the

natural paring between L∞
n and L1

n. In particular,

f20(ξ→T
, XT ) = E{〈ST (ξ

→T
), XT (ξ

→T
)〉}

in our contingent claim model, it is easy to see that f ∗
20(ξ→T

, ST (ξ
→T

)) = 0 for

any ξ
→T

. Therefore If∗

20
(ST ) < ∞ and (If20

)∗ = If∗

20
.

We now all set to state the main results.

4.5 Theorem Define ϕ(u) = infx∈X F (x, u), u ∈ U . Then ϕ is a proper

convex function on U which is lsc with respect to the weak topology, and the

infimum is always attained. In particular, ϕ∗∗ = ϕ, min P = sup D > −∞.

The proof requires the following lemma.

4.6 Lemma The functional F on X×U is lsc, convex and not identically ∞,

the lower semi-continuity being not only with respect to the norm topology,

but also with respect to the weak topology on X ×U induced by the pairing

introduced earlier,

〈u, y〉 = u1 · y1 + E{u2(ξ) · y2(ξ)}, for y ∈ Y := IRm1 × L∞
m2

,

Proof. We just need to prove the lower semi-continuity with respect to the

weak topology; for the remaining properties one can refer to [14, Proposi-

tion 3]. That IF2
(z) < ∞ for any z ∈ L∞

n is immediate. Let h(ξ, z) =

f20(ξ, x1, x2), since h ≤ F2, one has h∗ ≥ F ∗
2 . Taking any w ∈ L1

n such that

Ih∗(w) < ∞, one also has IF ∗

2
(w) < ∞. Hence, by Theorem 4.4 IF ∗

2
and IF2

are conjugate to each other, and, in particular, are lsc with respect to the

weak topology from which follows the lower semi-continuity of F .
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Proof of the theorem. The argument is similar to that of the proof of

[14, Theorem 3], only some minor adjustments are required. We begin by

showing that

X ′
0 = {x2 ∈ L∞

n2
|x2(ξ) ∈ C2 a.s.}

is compact in the weak topology induced on L∞
n2

by L1
n2

. Certainly X ′
0 is

relatively compact in this topology, inasmuch as C2 is bounded. There re-

mains to verify that X ′
0 is also closed, and consequently compact. Consider

the function h on Ξ × IRn2 defined by:

h(ξ, x2) =

{
0 if x2 ∈ C2,

∞ if x2 /∈ C2.

This is a convex random lsc function, because C2 is a nonempty, closed,

convex set. The corresponding integral functional Ih on L∞
n2

satisfies

Ih(x2) =

{
0 if x2 ∈ X ′

0,

∞ if x2 /∈ X ′
0.

In particular, Ih(x2) < ∞ for at least one x2 ∈ L∞
n2

. On the other hand, the

conjugate integrand

h∗(ξ, v2) = sup
x2∈IRn2

{x2 · v2 − h(ξ, x2)}

has h∗(s, 0) ≡ 0, and hence Ih∗(v2) < ∞ for at least one v2 ∈ L1
n2

, namely

v2 = 0. It follows that Ih on L∞
n2

and Ih∗ on L1
n2

are convex functionals

conjugate to each other, and this implies, among other things, that Ih is

lower semicontinuous with respect to the weak topology induced on L∞
n2

by

Ih on L1
n2

. But, X ′
0 =

{
x2 ∈ L∞

n2

∣∣ Ih(x2) ≤ 0
}
, is just the level set lev0 Ih of

this lsc function and hence closed as claimed.

This, in turn implies that X0 is compact, and hence in the definition of

ϕ(u) = inf
x∈X

F (x, u),

the infimum is always attained, since F is lsc in the weak topology, cf. Lemma

4.6, and

F (x, u) < ∞ implies x ∈ X0.
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Thus, like F, ϕ is not identically ∞ and nowhere has the value −∞, i.e., ϕ

is proper, and the level sets levα ϕ =
{
u ∈ U

∣∣ ϕ(u) ≤ α} are the projection

on U of the corresponding level sets of F :

lev
α

F = {(x, u) ∈ X × U |F (x, u) ≤ α}.

But, the projection of levα F on U is closed in the weak topology. This holds

because (i) levα F is closed by the lower semicontinuity of F , and (ii) for all

α this projection on X is contained in the compact set X0. Therefore ϕ is

lower semicontinuous in the weak topology induced on U by Y . Inasmuch

as ϕ is a proper convex function on U which is lower semicontinuous in a

topology compatible with the paring between U and Y , we have ϕ∗∗ = ϕ. In

terms of the biconjugate ϕ∗∗, one has

ϕ∗∗(0) = sup D,

whereas,

ϕ(0) = inf P,

therefore:

min P = sup D > −∞,

and the infimum is always attained. .

4.7 Remark The key step of proof is to prove that IF ∗

2
and IF2

are conjugate

to each other, or equivalently, that the expectation operator ‘E’ and ‘∗’ are

commutative. The choice of random lsc functions is predicated to render this

interchange possible.

4.8 Remark If we allow for x1 ∈ Ln1, instead of x1 ∈ IRn1, all the preceding

goes through, we just need to adjust some notations. In terms of our con-

tingent claim model, it means that ξ0 does not necessarily have to be fixed,

i.e., it could also be random.

If the probability space Ξ only has finite support, we are then dealing with a

‘discrete case’ duality result. But note that in our proof of duality, we don’t
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have to consider constraint qualifications (such as strictly feasible, for exam-

ple) as is usual. Thus, we have the following even in the finite dimensional

case, of the form

min f0(x)

so that fi(x) ≤ 0, x ∈ IRn, i = 1, ..., m,

x ∈ C.

where fi, i = 0, 1, ..., m, are convex, lsc, proper, and C is a nonempty convex

set, if we add the condition that X ∈ C is bounded, or this is implied by

the constraints, then one still has a duality result: min P = sup D. We,

actually, have infx∈X supy∈Y L(x, y) = supy∈Y infx∈X L(x, y) and the optimal

value for primal problem can be attained, we don’t guarantee the existence

of multiplier y, we just say that ‘inf’ and ‘sup’ are commutative if X is

bounded. Although, a strict feasibility condition in the standard duality

theory also results in commutativity, the boundedness of the feasibility set

is, usually, much easier to check.

5 No-arbitrage and EMM

Arbitrage (= free-lunch) usually boils down to the possibility of positive

returns without any investments. This section, and the next one, is concerned

with arbitrage, and a slightly modified version of arbitrage, in a general

framework. Duality allows us to derive some useful conditions between no-

arbitrage and Equivalent Martingale Measures (EMM).

It’s noteworthy that in some special case, cf. 6.2, one can’t have positive

returns without any investments, one might be able to end up with excessively

large returns with only a very small investment. This is like an ‘almost’

arbitrage. It seems that there is no clear boundary between arbitrage and

no-arbitrage, the details are given in Example 6.2.

No-arbitrage means that if you begin with zero wealth also the terminal

wealth should end up to zero (in all circumstances). This means that the
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optimal value of the following problem is zero:

max E{〈ST (ξ
→T

), XT (ξ
→T

)〉}

so that 〈S0(ξ0), X0(ξ0)〉 ≤ 0,

〈St(ξ→t
), Xt(ξ→t

) − Xt−1(ξ→t−1
)〉 ≤ 0, t = 1, . . . , T, a.s.

〈ST (ξ
→T

), XT (ξ
→T

)〉 ≥ 0, a.s.

Let’s begin with the following simple observation: there is no arbitrage if

and only if the optimal value of the following modified problem is zero,

maxE{〈ST (ξ
→T

), XT (ξ
→T

)〉}

so that 〈S0(ξ0), X0(ξ0)〉 ≤ 0,

〈St(ξ→t
), Xt(ξ→t

) − Xt−1(ξ→t−1
)〉 ≤ 0, t = 1, . . . , T, a.s.

〈ST (ξ
→T

), XT (ξ
→T

)〉 ≥ 0, a.s.

‖Xt‖∞ ≤ M, t = 0, 1, . . . , T.

where M is a positive constant. If there is no arbitrage, i.e., the optimal value

of the original problem is zero. If the optimal value of the original problem

is greater than zero, actually it should then be ∞: assume the optimal

solution X∗ ∈ L∞, then just choose some constant C > 0 large enough so

that X∗/C < M , then the optimal value of the second program should be

greater than E{〈ST , X∗
T 〉}/C > 0. Therefore, there is no arbitrage if and only

if the optimal value of this modified program is also 0. Let’s rewrite max

E{〈ST , XT 〉} as min−E{〈ST , XT 〉}. For this problem, that comes with a

bounded feasibility sets, by the duality theory, one has, sup D = min P = 0,

where

sup D = sup
y∈Y0

inf
X∈X0

E
{

y0〈S0(ξ0), X0(ξ0)〉

+

T∑

t=1

yt〈St, Xt − Xt−1〉 − (yT+1 + 1)〈ST , XT 〉
}

= 0,

where

X0 =
{
X = (X0, . . . , XT )

∣∣ ‖Xt‖∞ ≤ M, t = 0, 1, . . . , T
}
,
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Y0 =
{
y = (y0, . . . , yT )

∣∣ y0 ≥ 0, y1 ≥ 0, . . . , yT ≥ 0
}
.

Grouping terms with respect to the Xt, simplifying and taking iteratively

conditional expectations with respect to ξ
→T−1

, . . . , ξ
→1

, ξ0, yields

sup D = sup
y∈Y0

inf
x∈X0

E
{
〈y0S0 − E{y1S1|ξ0}, X0〉

+ E{〈y1S1 − E{y2S2| ξ
→1

}, X1〉} + · · ·+ 〈(yT − yT+1 − 1)ST , XT 〉
}

= sup
y∈Y0

{
− M(E{| y0S0 − E{y1S1|ξ0} |}

+ E{| y1S1 − E{y2S2| ξ
→1

} |} + · · ·+ E{| (yT − yT+1 − 1)ST |})
}

= 0.

Hence,

inf
y∈Y0

{
E{

∣∣∣ y0S0 − E{y1S1|ξ0}
∣∣∣ } + E{

∣∣∣ y1S1 − E{y2S2| ξ
→1

}
∣∣∣

+ · · · + E{
∣∣∣ (yT − yT+1 − 1)ST

∣∣∣
}

= 0

With ŷT+1 = yT+1 + 1, let

h(ξ, y0, . . . , ŷT+1) =
∣∣∣ y0S0 − E{y1S1|ξ0}

∣∣∣ +
∣∣∣ y1S1 − E{y2S2| ξ

→1
}

∣∣∣

+ · · · +
∣∣∣ (yT − ŷT+1)ST

∣∣∣ .

Then,

inf
y∈Y0

E{h(ξ, y0, . . . , ŷT+1)} = 0.

We now claim that ∀ ε > 0, ∀δ > 0,

∃ y0, . . . , ŷT+1 ∈ Y0 such that P (h(ξ, y0, . . . , ŷT+1) > ε) < δ.

If it’s not true, then for some fixed ε0 > 0, δ0 > 0 and any y ∈ Y0,

P (h(ξ, y0, . . . , ŷT+1) > ε0) > δ0.

Then, for any y ∈ Y0,

E{h(ξ, y0, . . . , ŷT+1)} > ε0 · P (h(ξ, y0, . . . , ŷT+1) > ε0) > δ0 > 0,
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and this means

inf
y∈Y0

E{h(ξ, y0, . . . , ŷT+1)} > 0,

a contradiction.

Let’s now choose

ε1 = 1, δ1 = 1 and y1
0, . . . , ŷ

1
T+1 such that P (h(ξ, y1

0, . . . , ŷ
1
T+1) > 1) < 1,

ε2 = 1/2, δ2 = 1/2 and y2
0, . . . , ŷ

2
T+1 such that P (h(ξ, y2

0, . . . , ŷ
2
T+1) > 1/2) <

1/2,

. . . . . . ,

εν = 1/ν, δν = 1/ν and yν
0 , . . . , ŷ

ν
T+1 such that P (h(ξ, yν

0 , . . . , ŷ
ν
T+1) > 1/ν) <

1/ν.

Thus, for any ε > 0 and ν > 1/ε,

P (h(ξ, yν
0 , . . . , ŷ

ν
T+1) > ε) < P (h(ξ, yν

0 , . . . , ŷ
ν
T+1) < 1/ν → 0.

This means that h(·, yν
0 , . . . , ŷ

ν
T+1) converges to 0 in probability. Therefore,

one can find a subsequence, for simplicity’s sake say
{
yν

0 , . . . , ŷ
ν
T+1, ν ∈ IN

}
∈

Y0 such that
{
h(ξ, yν

0 , . . . , ŷ
ν
T+1), ν ∈ IN

}
converges to 0 a.s., or equivalently,

h(ξ, yν
0 , . . . , ŷ

ν
T+1) → 0 approximately uniformly.

Therefore, for any δ > 0, ∃Ξ′ such that P (Ξ′) > 1 − δ,

h(ξ, yν
0 , . . . , ŷ

ν
T+1)} → 0 uniformly on Ξ′.

In other words, ∀ ε ∈ (0, 1/2), δ > 0, ∃Ξ′ and νε such that P (Ξ′) > 1 − δ,

for all ξ ∈ Ξ′, h(ξ, yν
0 , . . . , ŷ

ν
T+1)} < ε, ∀ν ≥ νε.

Recalling that S1
t ≡ 1 for t = 0, 1, 2, . . . , T + 1, one has

yν
T > 1 + yν

T+1 − ε ≥ 1 − ε > 1/2 on Ξ′,

yν
T−1 > E{yν

T | ξ
→T−1

} − ε > (1 − ε)(1 − δ) − ε ∼ 1 − 2ε > 1/2 on Ξ′,

for δ sufficiently small. By a similar argument,

yν
t > 1/2 for t = 0, 1, . . . , T − 2 on Ξ′,
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and from the above, it follows that

|yν
T−1ST−1 − E{yν

T ST | ξ
→T−1

}| = yν
T−1|ST−1 − E{yν

T/yν
T−1ST | ξ

→T−1
}| < ε,

. . . . . .

|yν
0S0 − E{yν

1S1|ξ0}| = yν
0 |S0 − E{yν

1/y
ν
0S1|ξ0}| < ε.

Hence,

|ST−1 − E{yν
T /yν

T−1ST | ξ
→T−1

}| < 1/yν
T−1ε < 2ε on Ξ′,

. . . . . .

|S0 − E{yν
1/y

ν
0S1|ξ0}| < 1/yν

0ε < 2ε on Ξ′,

with yν
0 , y

ν
1 , . . . , y

ν
T ∈ L∞. Therefore,

∃ a constant N > 0, yν
t+1/y

ν
t > n and yν

t+1/y
ν
t ∈ L∞.

In conclusion, one has the following:

5.1 Theorem If there is no arbitrage, then ∃ {yν
0 , . . . , y

ν
T , yν

T+1} such that

|S0 − E{yν
1/y

ν
0S1|ξ0}|, . . . , |ST−1 − E{yν

T /yν
T−1ST | ξ

→T−1
}|, |yν

T − (yν
T+1 + 1)|

converge to 0 approximately uniformly. In other words, for any ε > 0, δ > 0,

there exists ut ∈ L∞ and constant N > 0 with ut > N and Ξ′, P (Ξ′) > 1− δ

such that

|St−1 − E{utSt| ξ
→t−1

}| < ε on Ξ′ for t = 1, . . . , T.

5.2 Remark . The preceding condition is just a necessary one to have no

arbitrage, not a sufficient one, see 6.1 in the next section. δ > 0 can’t be

omitted in certain instances, i.e., the last inequality may not hold on Ξ, the

entire probability space, cf. 6.3.

5.3 Theorem If for any ε > 0, δ > 0, there exists ut ∈ L∞ and constant

N > 0 with ut > N and Ξ′, P (Ξ′) > 1 − δ such that

St−1 = E{utSt| ξ
→t−1

} on Ξ′, t = 1, . . . , T,

then there is no arbitrage.
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Proof. For any ε > 0, since |S0 −E{S1|ξ0}|+ · · ·+ |ST−1 −E{ST | ξ
→T−1

}| is

summable, one can find δ > 0, such that whenever P (A) < δ,

E{{|S0 − E{S1|ξ0}| + · · ·+ |ST−1 − E{ST | ξ
→T

}|} · 1l
{A}

< ε.

From the assumptions, for this ε and δ, there exists ut that satisfies the given

condition. Let

yT = uT · yT−1, . . . , y1 = u1 · y0, y0 = 1/NT on Ξ′,

and on Ξ \ Ξ′, y0 ≡ 1, . . . , yT ≡ 1. Then, yT = uT uT−1 · · · u1/N
T ≥ 1 on Ξ′.

Let yT+1 = yT − 1 then, yT+1 ≥ 0 and

E
{
|y0S0 − E{y1S1|ξ0}| + |y1S1 − E{y2S2|(ξ0, ξ1)}|

+ · · · + |(yT − yT+1 − 1)ST |
}

= E
{

(|y0S0 − E{y1S1|ξ0}| + |y1S1 − E{y2S2|(ξ0, ξ1)}|

+ · · · + |(yT − yT+1 − 1)ST |) · 1l{Ξ′}

}

+ E
{

(|y0S0 − E{y1S1|ξ0}| + |y1S1 − E{y2S2|(ξ0, ξ1)}|

+ · · ·+ |(yT − yT+1 − 1)ST |) · 1l{Ξ\Ξ′}

}
≤ 0 + ε = ε.

Since ε is arbitrary,

inf
y∈Y0

{
E

∣∣∣ y0S0−E{y1S1|ξ0}
∣∣∣ + E

∣∣∣ y1S1 − E{y2S2|(ξ0, ξ1)}
∣∣∣

+ · · ·+ E
∣∣∣ yT − yT+1 − 1)ST

∣∣∣
}

= 0,

and this means no arbitrage.

5.4 Remark For discrete probability spaces, the condition in Theorem 5.3

is also necessary.

Recall that a measure P̂ on a measurable space (Ξ,A) is absolutely con-

tinuous with respect to another measure P , one writes P̂ << P , if P̂ (A) = 0

for each A ∈ A such that P (A) = 0. Also, P̂ and P are said to be equivalent
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if P̂ << P and P << P̂ , or equivalently, the Radon-Nikodym derivative

dP̂/dP > 0. Finally, P̂ and P are said to be strictly equivalent if there exists

ε > 0 such that dP̂/dP > ε.

5.5 Remark If the infimum is actually attained, then

yT = 1 + yT+1 ≥ 1 a.s.,

ytSt(ξ→t
) = E{yt+1St+1(ξ→t+1

)| ξ
→t
} a.s. for t = 1, .., T − 1,

or

St = E

{
yt+1

yt

St+1| ξ
→t

}
, a.s.

Since S1
t ≡ 1 for t = 1, 2, . . . , T,,

yt = E{yt+1| ξ
→t
} or E

{
yt+1

yt

| ξ
→t

}
= 1,

and since also yt ∈ L∞ then,

yt+1/yt > 1/||yt||∞ > 0.

Such yt may be called strictly equivalent martingale multipliers, then u :=

yT/y0 is a martingale measure for {St}
T
t=0.

We know that in some situations (6.3), under no arbitrage, strictly equivalent

martingale measures may not exist, but what about the existence of equiv-

alent martingale measures? Actually, the first fundamental theorem about

arbitrage-free market [20, Chapter V, §2] tells us that no arbitrage is equiva-

lent to the existence of equivalent martingale measures. There are two ways

to prove this theorem, one way is to prove the existence by a separation theo-

rem, see [4, 5]. Another way is to construct an equivalent martingale measure

by the Esscher transformation, see [19]. We don’t want to go through the

details of the proofs. Here we just record below the general results for further

reference and comparison’s sake.

First of all, let’s introduce some notation. Let
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K(P ) be the (topological) support of a probability measure P , the smallest

closed set carrying P ,

L(P ) be the closed convex hull of K(P ),

Lo(P ) be the relative interior of L(P ),

Qt be the regular conditional distributions of St − St−1 given St−1.

5.6 Theorem [20, theorem A∗]. For our arbitrage-check optimization prob-

lem, the following assertions are equivalent:

(a) there is no arbitrage, i.e., the optimal value is zero;

(b) equivalent martingale measures (EMM) exist;

(c) 0 ∈ Lo(Qt).

5.7 Remark Assertion (c) means that St−1(ξ→t−1
) is included in the relative

interior of con(St(·, ξ→t−1
)) a.s.; con denotes the convex hull. Therefore, if we

want to know if arbitrage exists or not, we just need to check if the present

price lies in the interior of convex hull of all the possible future prices.

5.8 Corollary No arbitrage for multi-stage problems is equivalent to no

arbitrage for any two-stage subproblems.

Proof. It is a immediate consequence of the preceding theorem.

Although strictly equivalent martingale measures don’t always exist, yet

by Theorem 5.3 and Remark 5.4 we know that in the discrete cases they

always exist. In practice, for numerical computational purposes, one always

has to discretize our continuous distribution problem, therefore it’s not out

of line to assume that strictly equivalent martingale measures exist.

Notice that S is a n-dimensional vector, y′s are scalars, which reminds

us of the relatively complete market problem to find the common Brownian

measure via Girsanov Theorem, refer to [6]. But we are dealing with a more

general framework! And by the same argument as above we know that for

each Si
1, maybe we could find martingale measures just for this stock (or

coupon-bond) but you may not get the common martingale measures for all

of them, which means that possiblky you can’t have any positive returns if
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you just buy only one of the financial instruments, but you might be able to

make a profit if you invest in a combination of all of them.

6 Some examples

6.1 Example Assume ξ0 fixed, S0 ≡ 1, and S1 uniformly distributed on

[0, 1], then clearly S0 ∈ con(S1), but arbitrage exists.

Detail. Suppose that there is no arbitrage, i.e.,

inf
y0,y1,y2∈L∞

{E|y0S0 − E{y1S1|ξ0}| + E|(y1 − y2 − 1)S1|} = 0.

Then,

y1 ∼ 1 + y2 ≥ 1, y0 ∼ E{y1},

E|y0S0 − E{y1S1|ξ0}| ∼ E|y1(1 − S1)| =

∫ 1

0

y1(1 − x)dx,

≥

∫ 1

0

(1 − x)dx,

= 1/2 > 0.

So, we are lead to conclude that even in this simple set up arbitrage can

occur.

6.2 Example Assume that S0 is uniformly distributed on: (0, 1) and

S(u, ξ0 = x) = 1, with probability: 1 − x,

S(d, ξ0 = x) = 0, with probability: x.

where u is up, d is down. The claim is that

inf
y0,y1,y2∈L∞

{E|y0S0 − E{y1S1|ξ0}| + E|(y1 − y2 − 1)S1|} = 0.

Detail. Indeed, we just have to solve the following equations,

y0(x) · x = 1 · (1 − x)y1(u, x) + 0,

y0(x) = y1(u, x) · (1 − x) + y1(d, x) · x.
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then,

y0(x) = (1 − x)/x · y1(u, x),

y0(x) = x/(1 − x) · y1(d, x).

If the infimum could be attained, then

y1 ≥ 1, y0(x) = (1 − x)/x · y1(u, x) ≥ (1 − x)/x,

that turns out not to be summable with respect to x, contradicting that

y0 ∈ L∞. And via successive approximation, it’s clear that the infimum is

0. It means that although S0(x) is in the relative interior of con(S1(·, x))),

there is no arbitrage and no strictly equivalent transition probability exists.

We can just choose

y0(x) = 4/(x(1 − x)), y1(u, x) = 4/(1 − x)2, y1(d, x) = 4/x2.

and then,

y0S0 = E{y1S1|ξ0}, y1(u, x), y1(d, x) ≥ 1.

This means that equivalent transition probability exists, but strictly equiv-

alent martingale measure don’t exist because y0 is not integrable. But if

we assume that S0 is uniformly distributed on (ε, 1 − ε), 1 > ε > 0 instead

of (0, 1), it’s immediate that strictly equivalent martingale measures exist.

Later, we shall use this simple fact to construct another example for the

continuous time case.

The interesting part of this example is: if we change a little bit the first

constraint, say, 〈S0, X0〉 ≤ 1 instead of ≤ 0, then the optimal value is infinity!

The optimal solution are X∗
0 = (0, 1/x)), X∗

1 which can be any vector such

that 〈S1, X1 − X0〉 = 0. The solution suggests that you should use all your

money($1) to buy this stock, then your expectation return is unbounded!

Actually, 〈S1, X1〉 = (1 − x)/x, the expectation is obviously infinity. That

is because when x > 1/2 you may lose some money at most $1, but when

x < 1/2 you may earn a lot of money (>> 1). Or say, you may lose money

less that 1 with one half chance, and you could have returns much greater

that 1 with probability 1/2. This is like arbitrage, except that you need to
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invest a small amount of money and you might lose money with positive

probability. For this reason, one should refer to it as almost arbitrage.

6.3 Example Assume S0 uniform on (0, 1), and for each point x ∈ (0, 1),

S1(·, x) is also uniform on (0, 1), then obviously S0(x) is in the relative inte-

rior of con S1(·, x), and we will prove later that there is no arbitrage, i.e.,

inf
y0,y1,y2∈L∞

{E|y0S0 − E{y1S1|ξ0}| + E|(y1 − y2 − 1)S1|} = 0.

Detail. If the infimum could be attained, one would have,

∫ 1

0

y1(u, x)du = y0(x),

∫ 1

0

y1(u, x)udu = xy0(x), y1 ≥ 1, a.s.

Therefore
∫ 1

0

y1(u, x)(x − u)du ≡ 0, a.s., x ∈ (0, 1),

y1 ≥ 1, a.s.

Since y1 ∈ L∞, we can assume that y1 < N for some constant N > 0, then

we have:
∫ 1

0

y1(u, x)xdu ≤

∫ 1

0

Nxdu = Nx,

∫ 1

0

y1(u, x)udu ≥

∫ 1

0

udu =
1

2
.

Therefore, Nx > 1/2 for any x ∈ (0, 1) and that’s impossible. In conclu-

sion even though S0(x) is in the relative interior of con(S1(·, x)), equivalent

transition probability measures don’t exist, and afortiori strictly equivalent

martingale measures don’t exist.

Proof of no-arbitrage:
∫ x

0

(x − u)du =
x2

2
,

∫ 1

x

(x − u)du = −
(1 − x)2

2
.
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Let

ỹ1(u, x) =

{
(1 − x)2, x ≥ u,

x2, x < u.

then,
∫ 1

0

ỹ1(u, x)(x − u)du ≡ 0, for any x ∈ (0, 1),

If we let y1 = ε−2ỹ1 on x ∈ (ε, 1 − ε) for some small ε, y1 = 1 otherwise, let

y2 = y1−1 ≥ 0, y0(x) =
∫ 1

0
y1(u, x)du, then obviously E|y0S0−E{y1S1|ξ0}|+

E|(y1 − y2 − 1)S1| goes to 0 as ε goes to 0, therefore the infimum is 0 and

that means no-arbitrage.

7 Hedging

Hedging is the process of reducing the financial risks. In our model, hedging

is to meet all the contingent claims. Equivalently, the contingent claims

problem has at least one feasible solution. The hedging problem could be

formulated as follows:

min 0

so that 〈S0(ξ0), X0(ξ0)〉 ≤ G0(ξ0)

〈St(ξ→t
), Xt(ξ→t

) − Xt−1(ξ→t−1
)〉 ≤ Gt(ξ→t

), t = 1, ..., T,

〈ST (ξ
→T

), XT (ξ
→T

)〉 ≥ 0, a.e.

‖Xt‖∞ ≤ Mt, t = 0, 1..., T.

where Mt > 0 is a constant. Let’s refer to this problem as (PH). call this

problem (PH). As we did earlier, we add the last constraint in order to use

our duality theory. Obviously, the original problem, cf. §1, is feasible, i.e.,

hedging is possible, if and only if problem (PH) is feasible for large enough

Mt. The dual problem (DH) is the following,

supDH = − inf
y∈Y0

E{{M0|y0S0 − E{y1S1|ξ0}| + M1|y1S1 − E{y2S2| ξ
→1

}|

+ ... + MT+1|(yT − yT+1)ST |} + y0G0 + y1G1 + ... + yT GT}
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or still,

supDH = − inf
y∈Y0

E{{M0|y0S0 − E{y1S1|ξ0}| + M1|y1S1 − E{y2S2| ξ
→1

}|

+ ... + MT |(yT−1ST−1 − E{yTST | ξ
→t−1

}

+ y0G0 + y1G1 + ... + yT GT}

It is easy to see that the optimal value of the primal problem (PH) is either

0 or ∞ when (PH) is not feasible. Thus, by duality also the optimal value

of the dual problem (DH) is either 0 or ∞, and obviously if (PH) is feasible

for some Mt’s, then the given contingent claims problem is feasible. If (PH)

is not feasible for any choice of Mt, then also the original problem is not

feasible, i.e., one has:

(I) minPH = 0 (or supDH = 0) for some selected Mt if and only if the

given contingent claims problem is feasible;

(II) minPH = ∞ (or supDH = ∞) for any choice of Mt’s if and only if

the contingent claim problem is not feasible.

For simplicity sake, we can just consider a two-stage problem. For any

martingale multipliers y0, y1 such that

|y0S0 − E{y1S1|ξ0}| ≡ 0,

if the contingent claim problem is feasible , or supDH is zero, one has,

E{y0G0 + y1G1} = E{y1(G1 + G0)} ≥ 0.

Observing that y1 ≥ 0, hence Ey1 ≥ 0 and Ey1 = 0 if and only if y1 = 0 a.s.,

and when y1 = 0 a.s., obviously E{y1(G1 + G0)} ≥ 0. We just need to

consider Ey1 > 0, let u = y1/Ey1, then E{u} = 1, u is a martingale measure,

therefore a necessary condition for hedging is:

Eu{(G1 + G0)} ≥ 0, for any martingale measures.

For multi-stage, by a similar argument, one arrives at the following nec-

essary conditions for hedging:

G0/S
i
0 + G1/S

i
1 + ... + GT /Si

T ≥ 0, i = 1, 2, ..., n,

Eu{(G1 + G0 + ... + GT )} ≥ 0, for any martingale measures.
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8 Equilibrium equation

Suppose there is no arbitrage, or that equivalent martingale measures ex-

ist, and the original problem (the writer’s problem) is also feasible, then

the writer of a contract would try to maximize terminal expected wealth

E{〈ST , XT 〉} ≥ 0. In terms of the dual problem,

E{yTGT + yT−1GT−1 + ... + y0G0} ≥ 0

for any martingale multipliers yt. The buyer of this contract always looks for

larger ’pay-backs’,

E{yTGT + yT−1GT−1 + ... + y0G0} ≤ 0

for any equivalent martingale measure yt. This brings us to the equilibrium

equation:

inf
y∈Y0

E {yT GT + yT−1GT−1 + ... + y0G0} = 0.

Observe that for martingale multipliers {yt},

E{yTGT + yT−1GT−1 + ... + y0G0}

= E{y0}E{GT yT/E{y0} + GT−1yT−1/E{y0} + ... + G0y0/E{y0}},

and

E{yT/E{y0}} = · · · = E{y0/E{y0}} = 1,

yT/E{y0}, ..., y0/E{y0} > 0 a.s.

If we consider the set, {E{y0} = 1, yt ≥ 0, t = 0, . . . , T}, it means that

yT/E{y0},..., y0/E{y0} are just martingale measures, not necessarily equiv-

alent, then the infimum should be attained on this closed set. Therefore the

equilibrium equation for pricing the contingent claims is

for some martingale measure u : Eu{GT + GT−1 + ... + G0} = 0.
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9 The Black-Scholes Equation

For continuous time, the constraint 〈S1, X1 − X0〉 ≤ Gt becomes

〈St+4t, Xt+4t − Xt〉 = dGt.

Here we proceed with the ‘=’ version recalling that S1
t represents the risk-free

asset; in any case one can always put extra money into the risk-free asset to

obtain the equality.

For some special case such as European option, dGt = 0, the terminal wealth

is a function of the terminal price ST , i.e., g(ST ), and one has,

〈St+4t, Xt+4t − Xt〉 = 0

which means the the portfolio is self-financing. Let’s consider a simple two-

dimensional case: St = (rt, st), Xt = (ct, xt), where rt is the risk-free rate

at time t —in order to derive Black-Scholes equation’s we don’t need to fix

the numeraire— rt+4t = rt + r · 4t, where r is a constant rate, and let

Vt = 〈St, Xt〉 be the wealth at time t. Then, the terminal wealth V (T, ST ) =

g(sT ). Moreover, assume st is log-normal such that

dst = st(µ4t + σdzt),

where zt is a one-dimensional Brownian motion, µ and σ are constants, and

s0 is given. One can derive the Black-Scholes equation from Itô’s formula [6],

Vt+4t = 〈St+4t, Xt+4t〉

= 〈St+4t, Xt〉

= 〈St, Xt〉 + 〈St+4t − St), Xt〉

= Vt + xtdst + r(Vt − xtst)dt

and, from definition of st above,

dVt = xtdst + r(Vt − xtst)dt

= rVtdt + (µ − r)xtstdt + σxtstdzt.
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Let F (t, st) be the value of the option at time t with F (T, St) = g(sT ), again

by Itô’s formula:

dF = Ft(t, st)dt + Fx(t, st)dst + 1

2Fxx(t, st)(dst)
2

= Ftdt + Fx(ustdt + σstdzt) + 1

2Fxxσ
2s2

t dt,

using the definition of dst and where Ft, Fx represent the partial derivatives

with respect to the first and second variables.

Comparing the coefficients of dzt and dt, one obtains

xt = Fx,

Ft + rFxst +
1

2
Fxxσ2s2

t = rF, (Black-Scholes Equation)

F (T, sT ) = g(sT ).

The solution has this form, F (0, s0) = e−rT E
eP g(sT ), where P̃ is the equiva-

lent martingale measure for {St}
t=T
t=0 . Here, we can see that the key point is

the same, i.e., to find the equivalent martingale measures, but our approach

via stochastic optimization methodology is significantly more general.

10 Multipliers:

Continuous Martingale Measures

As shown in the last section, the usual paradigm way is to assume that St sat-

isfies some stochastic differential equation, say dSt = St(µdt + σdWt), where

Wt is a vector Brownian motion, then one derives some partial differential

equations such as the Black-Scholes equation. Or more generally, assuming

that St is a semi-martingale [7], one can also derive some more involved sto-

chastic differential equations and some similar results. In this paper, we just

posit: For a filtration {Ft}
t=T
t=0 , St ∈ Ft, St is continuous and St ∈ Ln

1 . The

difficulty is that there is no ‘good theory’ for the extension of discrete time

martingales to continuous time martingales, we have an example that may

provide a ‘hint’ on how to potentially improve these results.

One might be tempted to conjecture that if there exists strict martingale

multipliers for any discrete times instead of stopping tines, then there exists
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strict martingale multipliers for the continuous time case. Actually, that’s

not in the cards, one has the following counterexample.

10.1 Example Let S0 be uniform distributed on: (ε, 1 − ε), 1 > ε > 0, and

the support of the distribution of St+∆t(·, St = x) is (x− ε∆t, x + ε∆t) with

density ft(·, x), 0 ≤ t ≤ 1. Then, S1 may take values on (0, 1). Suppose

ft(·, x) satisfies:

• (i)
∫ x+ 1

2
ε∆t

x−ε∆t
ft(y, x)dy = O(x2),

• (ii) ft(·, x) > 0, for any x ∈ (0, 1).

Detail. Condition (i) means that if St = x is approximately 0, then St+∆t

is greater than x + 1

2
ε∆t with approximately probability 1, therefore the

expectation
∫ x+ 1

2
ε∆t

x−ε∆t
yft(y, x)dy > x + ε

3
∆t when x is small. Condition (ii)

guarantees the existence of equivalent martingale measures for the discrete

time case. It is not difficult to find some density functions that satisfy these

two conditions. For the continuous time case, if there exists equivalent mar-

tingale measures ut(·, x), then similarly to Example 6.2, from S1−∆t to S1,

one has
∫ x+ε∆t

x−ε∆t

(y − x)f1(y, x)u1(y, x)dy = 0, for any x ∈ (0, 1),

u1(·, x) > 1, for any x ∈ (0, 1).

By substitution, with y = y + x,
∫ ε∆t

−ε∆t

yf1(y + x, x)u1(y + x, x)dy = 0, for any x ∈ (0, 1),

u1(·, x) > 1, for any x ∈ (0, 1).

Suppose that u1 < N for some constant N > 0, then:
∣∣∣∣∣

∫ ε∆t

2

−ε∆t

yf1(y + x, x)u1(y + x, x)dy

∣∣∣∣∣ ≤ N

∫ ε∆t

2

−ε∆t

f1(y + x, x)dy = NO(x2),

∫ ε∆t

ε∆t

2

yf1(y + x, x)u1(y + x, x)dy ≥

∫ ε∆t

ε∆t

2

yf1(y + x, x)dy >
ε

3
∆t.
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Therefore, one has NO(x2) > ε
3
∆t, which is obviously impossible, since when

∆t is small, x can take values in (ε∆t, 1 − ε∆t). Hence, no continuous

martingale multipliers exist.
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