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All valuations (discounted cash flow, instrument pricing, option pricing)
and other financial calculations require an estimate of the evolution of the risk-free rates
as implied by the term and volatility structures. This presumes that one has, if not
perfect knowledge, at least very good estimates of these market term structures. In this
paper we review and compare the existing methodologies for deriving zero-curves (spot

rates, forward rates and discount factors) and volatility estimates.
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Term and volatility structures are the corner stone to practically all valuations of
fixed income financial instruments and consequently affects, or should affect, significantly
the trading and the management of financial holdings; they are also used to help shape
monetary policy by Central Banks. Part I is devoted to a review and a comparison of
the methods that have been suggested to construct the term structure associated with a
given collection of fixed income financial instruments. Part II addresses the problem of
determining the (associated) volatility structure that has been given only scant attention
in the literature.

Part 1
TERM STRUCTURE

1 An example

Let’s begin with the following simple, but fundamental, issue: Find the zero-curves
(= term structure) associated with a given portfolio. We use the term zero-curve in a
generic sense to designate all or any one of the following financial curves: spot rates,
forward rates, discount factors and discount rates; any zero curve completely determines
the others. Indeed,

Aty = €™ 84 = m~"In dims  ftom = Stym + MSem,
where s; ,, is the spot rate at time ¢ for all bonds of maturity m, d; , is the corresponding
discount factor, and f;,, is the (instantaneous) forward rate a time ¢, again for bonds of
maturity m; the upper dot on $;,, stands for the time derivative.

Since the valuation of all fixed income financial instruments rest on starting with the
‘right’ zero-curves, it may come as a surprise that the zero-curves associated with a
well-defined portfolio, derived using different methodologies, might vary significantly?
This can best be illustrated by an example: On their web-site, TechHackers described
a portfolio that includes Eurodollar Deposits, Eurodollar Futures and Swaps from June
10, 1997; see Tables A—1,... A-3 in Appendix A. The seven pairs of spot and forward
rates curves in Figure 1 are derived using

e three different implementations of BootStrapping,
e Svenson’s extension of the Nelson-Siegel model,
e the updated Adams-Van Deventer maximum smoothness approach,

e Kortanek’s derivation of the forward rates via geometric programming,



and finally, a novel approach based on Approximation Theory, implemented by EpiSo-
lutions Inc. (ESI: www.episolutionsinc.com),

e relying on the construction of EpiCurves.

0.08

0.075

0.065

Forward Rates

Financial Provider no.1

0.06 - Bootstrap 1
Partial data set (17)
0.055 L . v v L
0 20 40 60 80 100 120
T T T T T T
0.14f b
0.13f b
EpiSolutions, Inc.
0.12f b
BootStrap
011f b
Full data set
0.1+ b
0.09 b
Forward Rates
0.08f b
11 Spot Rates
. . . . . .
0 20 40 60 80 100 120
0.074 T T T T T
0.072 ]
.07 Forward Rates
0.068
0.066 Spot Rates
0064 b
0.062 b
0.0 b
Maximum Smoothn:
0058 laximum Smoothness |
Full data set
0.056 b
0.054 L L v L L
0 20 40 60 80 100

0.085

0.075-

0.065

Spot Rates

Financial Provider no.2
Bootstrap g

Partial data set (17)

0.055
0

20

40

60 80 100 120

0.074

0.072

0.068 -

0.066 -

0.064

0.062

0.058

Forward Rates

Spot Rates

Svensson Model

Full data set

0.056
0

7.4

20

40

L
60 80 100 120

721

6.8~

6.6

6.4

6.2

Forward Rates

Sport Rates

via Geometric Programming
Full data set

58
0

60 80 100 120



0.075

Forward Rates

- Spot Rates
0.085]-

EpiCurves

Full data set

0.055 L L L L L
0 20 40 60 80 100 120

Figure 1: Spot and Forward Rate curves: Seven different functionalities

One might wonder if one should have any confidence in any one of these pairs! There are
even noticeable differences between the spot rates curves. To understand the underlying
reasons for these differences, one needs to examine the hypotheses under which these
zero-curves were obtained. To do so, we begin with a description and an analysis of the
BootStrapping methodology, to be followed by each one the alternatives listed earlier.
We shall then proceed with a discussion of the criteria that might be used in evaluating
the ‘quality’ of the generated zero-curves and conclude with a comparison of the results
based on these criteria.

2 BootStrapping

The valuation of fixed-income securities, and derivatives written on fixed-income secu-
rities, requires an estimation of the underlying risk-free term structure of interest rates.
In principle, the term structure of interest rates is defined by a collection of zero-coupon
bond prices (and their respective maturities), spanning the horizon over which a fixed-
income security is to be valued. However, unless a zero-coupon bond exists for every
maturity for which a discount factor is desired, some form of estimation will be required
to produce a discount factor for any ‘off-maturity’ time. In practice, zero-coupon bond
prices are available for a limited number of maturities (typically < 1 year). If zero-
coupon bonds for other maturities are available, a lack of liquidity may prevent the
determination of an accurate or reliable price. As a result, the zero-curve is typically
built from a combination of liquid securities, both zero-coupon and coupon-bearing, for
which prices are readily available. This can include Treasury Bills, Deposits, Futures,
Forward-Rate Agreements, Swaps, Treasury Notes and Treasury Bonds. The list need
not be limited to these securities just noted, though current vendor solutions are limited
to these securities. Given a spanning set of securities, the zero-curve is then built using
one of two forms of BootStrapping.



Under one BootStrapping method, the first step is to construct a larger set of spanning
securities, by creating an ‘artificial’ security that matures on every date for which a cash
flow is expected, and on which no security in the original set matures. For example,
given a b-year and a 6-year swap (paying semi-annually), a 5.5-year swap would be con-
structed, with a fixed-rate somewhere in between (based on some sort of interpolation)
the fixed-rates for the 5-year and the 6-year swaps. Then, ‘standard’ BootStrapping may
be applied to the expanded set of securities, giving discount factors for each maturity
and cash flow date in the security set. This ‘textbook’ description of the BootStrapping
method can be found in [10, §4.4], for example.

Another BootStrapping approach, is to make an assumption about how the instan-
taneous (or periodic) forward rates evolve between maturities in the security set. One
assumption might be that forward rates stay constant between maturities, another might
be that they increase or decrease in a linear fashion. Whatever the form of the forward
rate evolution, some assumption must be made. Under this approach, instead of solving
for a single discount factor for each successive security, a forward rate (or a parameter
governing forward rate evolution) is obtained that will give the appropriate discount
factor(s) between two maturity dates. For the example of the 5-year and 6-year swaps,
given that the discount factors through the 5-year maturity have already been calcu-
lated, a forward rate is determined for the period between 5 and 6 years, that gives a
5.5-year discount factor and a 6-year discount factor that —when combined with the
previous discount factors— will value the fixed side of the 6-year swap at par.

The results of either approach ‘look’ somewhat similar, a set of discount factors and
corresponding dates spanning the horizon from today to the last maturity date in the
security set. However, when using this set of discount factors as a basis for the valua-
tion of other fixed-income securities, it will rarely be true that the cash flows of these
securities will fall directly on the discount factor dates of the newly created zero-curve.
In this case, a discount factor or a zero-coupon rate must be interpolated from the spot-
curve. Typically available interpolation methodologies for this include linear, log-linear,
exponential, cubic-spline, or any of a number of variations on fitting the zero-curve with
a polynomial.

As long as two securities do not share the same maturity date, any combination of
securities may theoretically be used in constructing a zero-curve, even with the Boot-
Strapping methodology. A limitation of the currently available technology, is that the
user must typically ‘switch’ from one security type to another during the BootStrapping
process. For example, given a set of deposits, futures, and swaps, the currently avail-
able methods will not allow for inclusion of a deposit and a futures contract, where the
underlying deposit maturity date of the futures contract is prior to the maturity date of
the deposit (similarly, no ‘overlap’ is allowed between futures contracts and swaps). At
first one might not consider this as a serious limitation, as users may very well wish to
describe different ‘sections’ of the zero-curve using certain types of securities. Almost all
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web-based, commercially available zero-curve construction technologies rely on a form
of BootStrapping, in combination with a variety of interpolation methods. Furthermore,
they are limited to using certain types of securities, and are also limited in the ways in
which these securities may be combined.

DFS-Portfolio (Deposits, Futures and Swaps): We now return to the example found
on the TechHackers web-site. A detailed description of the portfolio is given in Ta-
bles A-1, ..., A-3 in the Appendix, but at this point at brief description will suffice.
There are 36 instruments in the full data set, broken down as follows: 6 Eurodollar
Deposits with term-to-maturities ranging from overnight to 12 months, 24 Eurodollar
Futures with 90-day deposit maturities ranging from 3 months to 6 years, and 6 Swaps
with term-to-maturities ranging from 2 to 10 years. The yields of the deposits vary
from 5.55% to 6.27% with the higher yields corresponding to those with larger maturity.
Similarly, the 24 futures have yields that vary from 5.89% to 7.27%. The yields for the
swaps vary from 6.20% to 6.86%, again with the yields increasing as maturities get larger.

BootStrapping Sub-portfolio. In this example, there is overlap between the ma-
turity dates for the EuroDollars Deposits (1 day, 1 month, 2 m., 3 m., 6 m., 12 m.)
and the EuroDollars Futures (3 months, 6+ m., 9 m., 12 m., 15 m., ...). Thus not
all instruments can be included in a ‘BootStrapping sub-portfolio.” One possible choice,
the default setting for Financial Provider no.1, is to switch from Eurodollar Deposits
to Eurodollar Futures at the earliest possible time, i.e., include the first available Fu-
tures contract. Similarly, switching from Eurodollar Futures to Swaps occurs at soon as
possible, i.e., at a time corresponding to the Swap with the lowest maturity. With this
selection criteria, the data set used to generate the ‘BootStrapping Sub-portfolio’ is a
subset of the full DFS-Portfolio data set that includes: the first five Eurodollar Deposits,
the 2nd through the 7th Eurodollar Futures contracts and all 6 Swaps — for a total of
17 instruments.

The user may choose any time they wish for making these switches, the point is that
they must be made somewhere along the line. Clearly, Financial Provider no.2 relied on
a different selection criterion to constitute its BootStrapping sub-portfolio.

BootStrapping Results. The first two pairs of Spot and Forward Rate curves in Fig-
ure 1 are those derived from functionalities made available by two Financial Providers.
Although all the Spot Rate curves appear to be relatively similar (except for the time
span from month 20 to month 25), the Forward Rate curves are quite dissimilar. Of
course, this can be traced back to the different BootStrapping implementations that rely
on the selection of different sub-portfolios, as indicated earlier.

The implementation of the BootStrapping technique at EpiSolutions Inc. (ESI) —based

on the simple precept that the instantaneous forward rates are constant between (adja-
cent) maturity dates— for the same BootStrapping sub-portfolio as Financial Provide

5



no. 1 yields the pair of zero-curves in Figure 2; this pair of Spot- and Forward-Rates
curves are similar to those obtained by Financial Provider no.1. The same approach,
but with the full data set, i.e., when there is no mutilation of the given DFS-portfolio,
yields the pair of zero-curves in the first graph of line 2 of Figure 1.

Forward Rates

PR Spot Rates

rates

EpiSolutions, Inc.
BootStrap

I I I I I
0 20 40 60 80 100 120
months

Figure 2: ESI-BootStrapping for the BootStrapping Sub-portfolio

Generalized Bootstrap Method. Deaves and Parlar [6] suggested an approach that
overcomes the need to mutilate a portfolio to be able to apply the ‘textbook’-version
of BootStrapping described above. Their approach, unusual and interesting, consists
in calculating the spot-rates r; associated with each one of the time-dates when there
is a cash flow (of any type). In our example, this corresponds to coupon-, settling-,
delivery- and maturity-dates; in fact, there are 73 such dates. However, there are only
36 instruments that would generate the following 36 pricing-out equations

0= Z %pkte_”'t, Vk=1,...,306,
teT

where the instruments are indexed by k. 7 is an ordered set of all the time-dates at
which cash flow occurs and py; is the cash flow (positive or negative) for instrument k
at time ¢. It’s also assumed that there no repeated maturity-dates for the instruments
in the (given) portfolio. This non-linear system is solvable, but has 37 more variables
than equations and, consequently, will have multiple solutions. In order to generate a
system with (hopefully) a unique solution, Deaves and Parlar add 37 linear equations
that relate the rates at the 37 time-dates that are not maturity-dates, say r37,..., 773, to
the rates at maturity-dates: say r1,...,73. To do so, they rely on a Maple (symbolic)
cubic spline fit functionality; this cubic spline, cs(j consists of 36 different cubics: one
for each of the time-intervals between the different, increasing maturity dates. For each
one of these time intervals,

3 3 3 3
CS(t) = Z GCojTj + (Z 6Clej)t + (Z GCQjTj)tQ + (Z 663j7‘j)t3,
j=1 j=1 j=1 j=1
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where the 144 coefficients {c;;, [ =0,...,3,j =1,...,36} are those calculated by the
(symbolic) cubic spline fit. From this, one can obtain a linear equation for each one of
the 37 non-maturity-dates rates. For our example, the fourth cash flow non-maturity-
date is 0.5147 years after June 10, 1997 (t=0) and the corresponding linear equation
is

40 = .000035671 — .000205675 + .0013674r5 — .0124579r, + 01546575 — 322488
+1.305336477 + .01629117r5 — .0133038r¢ + .01005185715 — .00011317; + .0000272715
— .768069¢°r 3 + .783936e 5114 — .606228e 15 + .556858¢ 116 — .1349305e 717
+.379412e 8115 — .4295145e 8719 + .3402209¢ 8190 — 2493217 %9 + .61491e 1y
— 174375e Yro3 4+ .2176€ 1oy — . 1767913e Mros + 9987116 Mrog — 2495984 1oy
4 .708697e Orgg — .1002684e *ryg + .835819¢ Orgy — .352076e 1 Trg; + .88496e 81y,
— .2281451e *8rg3 4 .420647e 1rgy — .1130008e 2735 + 414996 *%r34.

The 37 equations allow us to replace the 37 non-maturity-date rates in the 36 basic
(non-linear) equations and reduce the system to one involving only 36 equations and 36
unknowns! Such a system can be solved by relying on either Newton’s method, one of its
variants (Quasi-Newton methods), or any other appropriate method; the only drawback
is that the Jacobian of the resulting system would be dense and it wouldn’t be possible
to take advantage of sparsity; Deaves and Parlar rely on Maple’s fsolve function.

The solution of this system yields the 73 spot-rates at all ‘cash-flow’ dates. Some further
interpolation(s) would be required to obtain the yield curve at all times ‘¢’. Although,
Deaves and Parlar don’t suggest any specific interpolation strategy, presumably, one
would rely on the cubic spline cs, after substituting the values for r, ..., rss, to obtain
the spot rates at any time ¢; forward rates and discount factors would be derived, in
turn, from this spot-rates curve.

We tried to implement this approach following the steps suggested by Deaves and Parlar,
i.e., by relying on the functionalities provided by Maple. Such an implementation is
labor intensive, and after a couple of days, we realized that for this relatively simple
36 instruments example, from modeling to the point where you can input the 36-by-36
(non-linear) system might very well take a week’s work. That is expensive and the
delay would be much too long for most potential applications. Moreover, even for this
example, the time required to derive the (symbolic) cubic spline was non-negligible. The
idea of dealing in this manner with a portfolio with 100+ instruments and 2,000 to 3,000
cash-flow dates, is to say the least, intimidating; there is also the requirement that no
instruments can have the same maturity-dates. All these obstacles can be overcome but
to do so one needs to get involved in a major implementation effort and rely on much
more sophisticated procedures to obtain the cubic spline (¢s) and to solve (dense) non-
linear systems than the spline and fsolve Maple-functionalities. Because we could not



handle portfolios of reasonable (practical) size, it has not been possible to include this
intriguing approach in our analysis.

3 Nelson-Siegel and Svensson’s extension

Under all the limitations mentioned in the previous section, BootStrapping strives to
accomplish the (presumably) desirable goal of pricing the securities used in the zero-curve
estimation exactly. In most cases, however, it does not produce believable forward rates
and even the spot rates-curve fails to be smooth, the norm for such curves. There can
be many technical reasons for this, that are not inherent to the BootStrapping method
itself, such as liquidity, tax effects, and /or missing data points. Regardless, practitioners
would like a method of estimating zero-curves that is robust and reasonable, across many
different markets and market conditions. One criterion that is especially desirable for
those using zero-curves for strategic planning purposes, is smoothness, particularly with
regard to the evolution of the implied forward-rate curve. There are many ways to
estimate zero-curves whose associated forward-rate curves are smooth, one of which is
to posit a functional form that is smooth by definition, and try to find best-fit parameters
for this function. In 1987, Nelson and Siegel [17] did just this by proposing the following
formula for the evolution of the instantaneous forward rate (at time )

frm = Buo + Bire” ™™ + Byo(m/7y1)e ™ ™

where m is the time-to-maturity and B, o, 8.1, Bt2, 7,1 are the parameters to be estimated
to fit as well as possible the available data. Integrating the forward rate curve —and
dropping the index t— yields the spot rate

Sm = Bo+ (11/m)(B1 + Bo) (1 — e ™ ™) — Boe ™™,

Typically, this expression for the spot rates will generate a curve with one ‘hump’, to
allow for a second ‘hump’ Svensson [19] proposed, in 1994, an extension to this formula
that generally increased the flexibility for fitting a given set of securities and their market
prices

fmn = Bo+ Bre™™™ + Bo(m/m)e” ™™ + B3(m/my)e” ™™

where [y, 01, B2, T1, B3, T2 are the parameters to be estimated. The corresponding spot
rate curve is

Sm = BotBr—t(1— e ™M) + By <_—T1(1 —e ™) — em/TI>
m m
+ 53 <__7-2(1 _ e—m/m) _ e—m/Tg) )
m

One or the other of these two formulas is in use at a large number of central banks
[2], where the resulting zero-curves are used to help shape monetary policy; clearly, a
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strategic planning activity.

Both the Nelson-Siegel and the Svensson models yield smooth zero-curves. That, and
the fact that one can explicitly calculate spot- and forward-rates at any time time in
terms on a relatively simple formula are certainly desirable attributes. But, these are
also the basis for the shortcomings of this approach. The fact that the rate-curves come
with a precise analytic expression that depends on either four or six parameters might
very well result in a ‘fit’ that doesn’t take full account of the market structure, i.e., it
will be difficult to match market prices with a high level of precision: there is an inherent
lack of flexibility.

Moreover, because the fitting these parameters leads to an highly non-convex opti-
mization problem, one essentially has to resort to global optimization techniques that
are somewhat unreliable unless the search is exhaustive. Equivalently, one could look for
a ‘good’ critical point by solving repeatedly a collection of nonlinear systems by relying
on some heuristics to trim down the number of systems that need to be considered.
This is the approach suggested by Svensson and implemented in various institutions
[2]; a description of our implementation can be found in §7. Thus, the downside of
this numerical approach is, on one end, the uncertainty about having considered a suf-
ficient number of (discrete) possibilities and, on the other end, the need for the user to
‘intervene’ appropriately usually resulting in a time consuming operation.

4 Maximum smoothness

The definition of smooth for a curve might almost be subjective, but it’s certainly appli-
cation dependent. In the world of zero-curves, one is certainly not going to be satisfied
with a ‘smooth’ spot rates curve, or a ‘smooth’ discount factors curve, when an associ-
ated zero-curve, for example the forward rates curve, is seesawing; that this can actually
occur was already pointed out in [18]. In fact, it suffices return to Figure 1 and look
at the Forward Rate curves generated by BootStrapping, even those derived from the
17-instruments sub-portfolio.

In [1], Adams and Van Deventer rely on a criterion used in engineering applications, cf.

[9], in their derivations of spot and forward rates curves with ‘maximum smoothness.’
They propose finding a forward rates curve, fw, such that for each instrument in the

portfolio:
t;
P; = exp <—/ fw(s)ds), i=1,...,1,
0

where P; is the (today’s) price and ¢; the maturity date of instrument 7, and

T
/ [fw"(s)]ds is minimized,
0



[0, 7] is the time span in which we are interested; usually T is the largest maturity of the
instruments in the portfolio. It is shown that the solution is a 4th order spline, certainly
smooth, whose coefficients can be easily computed; ‘maximum’ smoothness is achieved
in terms of a criterion attributed to Vasicek.

The Achilles’ heel of this approach, at least as laid out in [1], is that the only instruments
that can be included in the ‘maximum smoothness’ portfolio are zero-coupon bonds, and
zero-coupon bonds with maturities exceeding one year are extremely rare. In order to
obtain zero-curves that span more than a few months, one possibility is to fabricate ar-
tificial (long term) zero-coupon bonds that have similar financial characteristics to those
instruments found in the portfolio; this requires interpolations of some type. Moreover,
prices P; are present day prices and so no future contracts can be included in the ‘maxi-
mum smoothness’ portfolio. Presumably, this can also be skirted by some adjustments.
In the final analysis, like for ‘standard’ BootStrapping, we have to create a sub-portfolio
and then enrich it by artificial instruments in order to be able to apply the suggested
method.

From our previous examples and analysis, it’s clear that if one is going to derive zero-
curves by taking into account more than just a few well chosen instruments, and one
is going to aim at an acceptable level of smoothness, there is going to be a ‘price’ to
pay for this. In Function Theory, the smoothness of a curve is identified in terms of the
number of times it’s continuously differentiable. A curve z : [0,7] — IR is said to be of
class CY if its gqth derivative is continuous. So, if z is of class C? it means that it can be
differentiated twice and the second derivative is continuous. If it’s of class C° then z is
just continuous, and if it’s of class C* then all derivatives, of any order, exist and are
continuous. It is evident that C® D> C! D --- D C*. One might wish the zero-curves to
be of class C>~, but it is clear that this is a much smaller family of curves than those that
are just continuous, or just continuously differentiable: C'. Consequently, by insisting
that our zero-curve be of class C=, we might very well have excluded those curves that
have the ‘accuracy’ properties we are looking for. Hence, we usually must be content
with smooth curves that are less than infinitely smooth.

5 Forward-rates via geometric programming

A completely novel and tantalizing approach was developed by K. Kortanek [13], in col-
laboration with G. Medvedev [14, 15] and H. Yunianto [16], that’s focused on obtaining
the forward-rates curve. Their motivation, certainly in part, came from the shortcom-
ings of the Nelson and Siegel, and Svensson models. In [14, 15|, a forward rate model
was developed allowing for non-stochastic perturbations

dfw(t)
dt

=a+ Sfw(t)+ov(t), fw(0)=ry, te]0,T],
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where 7, @, f and the perturbation function v : [0,7] — IR are the parameters that
need to be estimated; the interval [0, 7] could be unbounded. The function v is assumed
to be piecewise constant, i.e.,

’U(t) = U; if te (ti—la tz]
where the subintervals (¢;_1, t;] partition (0,7]. For ¢t € (¢;_1, ], one has [15, (9.12)],

eft d

e/B(t_tj—l) — 1
B«

fw(t) = ree’t + g(eﬂt —1)+ 3

. (%4_¢mw+

Uj.

IIMH

If the interval [0.7] has been partitioned in I intervals, fitting the forward-rates curve
will require estimating I + 3 parameters. In setting up this estimation problem, one
can introduce a number of ‘natural’ bounds on all or some of the variables; for example,
requiring 8 € [f, B.] C IR_ would result in a mean reversion property for the spot rates.

Since this formula provides us with the forward rates for any time ¢, the price of any
bond generating a given cash flow, coupons and notional with maturity less than or equal
to T, can be expressed in terms of these parameters, cf. [16, §3.2]. The expression gets
a bit involved because one has to take into account coupons that get paid a times that
fall between the end points of the intervals (¢;_1, ¢;], but this is no more than keeping the
‘bookkeeping’ straight. Anyway, one ends up with an expression that is a posynomial of
the following type:

Jk ng Jk—l
P(tk) = eakroebka(H eajvj)ekaka + (Qk E 6akl'foebkla) H i k1Y) 6kalek

for a bond of notional 1 and maturity ¢ that falls in the interval (¢;,_1,%ts,], ng is the
number of coupons before maturity, and the ‘coefficients’ a;, b;, ... are themselves func-
tions of @ and f3; precise definitions can be found in [13] and [16, §3 & §4].

The strategy is now to find a best fit between the estimated prices P(t;) and the ob-
served prices ﬁ(tk) that respects the no-arbitrage conditions. Taking advantage of some
elegant simplifications, Kortanek show that the problem to be solved is a geometric
program, i.e., an optimization problem whose objective and constraints are posynomi-
als. This would fall in the extended family of convex optimization problems except for
the presence of so-called ‘reversed constraints’ that are part of the formulation if the
collection of securities being considered includes coupon paying bonds. Formulating a
practical problem as a geometric program is called GP modeling. ” GP modeling is not
just a matter of using a software package or trying out some algorithm; it involves some
knowledge, as well as creativity, to be done effectively [3].” This is carried out effectively
by Kortanek et al, cf. [16].
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We haven’t implemented ourselves this procedure but have relied on the results provided
by K. Kortanek, cf. Figure 1. On a number of test problems, this approach came the
closest to the quality of the zero-curves generated by the method described in the next
section, but our lack of an independent implementation means that we could not include
it in the comparisons of §7. Further results, variants and extensions of this method can
be found in [16].

6 EpiCurves

EpiCurves, introduced in [21], come from a large, but specific sub-family of curves that
are of class C? for some ¢ = 1,2,.... EpiCurves could be viewed as ‘constrained’
splines, however their derivation doesn’t follow the standard spline-fitting techniques.
To simplify the presentation, suppose we are interested in finding a C2-curve z on [0, T
given by

1 t T s
2(t) = 2z + vot + §a0t2 +/ / / z(r)drdsdr, tel0,T],
o Jo Jo

where

e z:(0,7) — IR is an arbitrary piecewise continuous function that corresponds to
the 3rd derivative of z;

® ay, Vg, Zg are constants that can be viewed as integration constants.

Once the function x (3rd derivative) and the constants ag, vo, 20 have been chosen, the
function z is completely determined.

Let’s now go one step further. Instead of allowing for any choice for x, let’s restrict
the choice of = to piecewise constant functions of the following type: split [0,7] into
N sub-intervals of length T/N and let the function = be constant on each one of these
intervals, with

xz(t) =z, when té€ (tp_1,t), k=1,...,N

where tg,11,...,%; are the end points of the N sub-intervals. The corresponding curve
z on [0, 7] is completely determined by the choice of

ag, Vo, 20 and T1,To,...,TnN,

i.e., by the choice of a finite number of parameters, exactly N + 3.
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Fork=1,...,N,t € (ty_1,t;] with 6 =T/N and 7 =t — t)_1,

1, 7
2(t) = 2o + vot + zaot” + —xx

2 6
k—1
(1 ; - 2 . o7
+§1$i {g(gﬂk—ﬂ—l)(/ﬂ—ﬁ) +8%7(k—j = 05)+ |,
k—1 7-2
(t)=vo+aot+) (52(/€ —j—0.5)+ 57) + 5,
7j=1
k—1
2'(t) = ao + 521“]- + Tx),
j=1

2" (t) = xy.

By restricting the choice of z to piecewise constant functions, the resulting z-curves are
restricted to those curves in C? that have (continuous) piecewise linear second derivatives.
Designate this family of curves by C??! where pl stands for piecewise linear; whenever
appropriate we use the more complete designation C>P!([0.T], N) with [0, 7] the range on
which these curves are defined and N the number of pieces, but usually the context will
make it evident on which interval these curves are defined. Clearly, not all C2-curves are
of this type. However, Approximation Theory for functions, tells us that any C?-curve
can be approximated arbitrarily closely by one whose second derivative is a continuous
piecewise linear function, i.e., a curve in C??!([0,T], N), by letting N — oco. This pro-
vides us with the justification one needs to restrict the search for ‘serious’ zero-curves
to those in this particular sub-family of C?-curves.

Later on, the implementation will impose further restrictions on the choice of the co-
efficients, not to guarantee ‘smoothness’ in itself since every curve in C?? is clearly
(mathematically) smooth, but to generate zero-curves that would be called ‘smooth’ by
a practitioner.

In summary, the building of EpiCurves starts by selecting the level of smoothness desired
(z € C7), and then a zero-curve is built whose gth derivative is a continuous piecewise
linear function. This requires fixing a finite number of parameters; actually N +q + 1
parameters. If the resulting curve does not meet certain accuracy criteria, the step size
(T'/N) is decreased by letting N — oo.

6.1 Zero-curves from spot rates

To set the stage for finding the zero-curves associated with a collection of instruments
generating cash flow streams, let’s consider an EpiCurves approach to fitting spot rates
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to obtain a spot rates (yield) curve. The data come in a pair of arrays,
s = (s1,892,...,5L), m = (my, mag,...,mp),

that give us the spot rates for a collection of instruments of different maturities, for
example, Treasury Notes. The task is to find a spot rates curve that ‘fits’ these data
points. That is easy enough. Assuming that m; < my < --- < my, one could simply
derive a spot rates curve by linear interpolation between adjacent pairs. That’s actually
a perfect fit. Generally, this is not a ‘smooth’ curve. This usually generates a forward
rates curves that can be quite jagged. So this ‘simple’ solution almost never produces
zero-curves that practitioners would consider acceptable. Of course, one can use another
interpolation method, such as via quadratic or cubic splines, that generates significantly
better results. Another possibility is to set-up an artificial portfolio with coupon-bonds
whose yields would match the given spot rates. The problem is then reduced to one of
finding the zero-curves associated with the cash flow stream of this (artificial) portfolio.
This is dealt with in the next subsection. But, this latter approach, found in the packages
of some financial technology providers, circles around the problem, at least one too many
times, before dealing with it.

The use of the EpiCurves technology provides an elegant solution that generates
smooth zero-curves. The strategy is to find a spot rates curve of the type described in
the previous subsection, say again a C?P!-curve that will match the given spot rates. One
must accept the possibility that we won’t be able to find, for a fixed N, a C*P([0, T, N)-
curve that fits perfectly the given data. So, the problem becomes one of finding the ‘best’
possible fit. Best possible can be defined in a variety of ways but it always comes down
to minimizing the ‘error’, i.e., the distance between the EpiCurves and the given spot
rates. Mathematically, the problem can is

find z € C*"([0,T], N)so that ||s — z(my : mz)||, is minimized ,

where z(my : myp) = (2(mq), 2(my2), ..., 2(mz)) and ||a||, is the fP-norm of the vector a.
With p = 1, one would be minimizing the sum of the (absolute) errors, with p = 2 one
minimize the sum of the squares of the errors, and with p = oo, it would be the maximum
(absolute) error that would be minimized. An implementation by EpiSolutions Inc., has
p = 1 and thus minimizes the sum of the errors, since

L
lIs = z(my s my)lly = |si — 2(my)].
=1

The resulting optimization problem can then be reduced to a linear programming prob-
lem, since, as explained in the previous subsection, the functions z in C>?! are completely
determined by a finite number of parameters.

To illustrate the results, we apply both linear interpolation and the EpiCurves technology

to obtain a spot rates curve that fits the spot rates (for T-bills and Treasury notes) of
October 1982:
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Figure 5: Linear interpolation vs. EpiCurves.

m = (3,6,12, 24, 36,60, 84, 120, 240, 360),
s = (7.97,8.63,9.32,10.19, 10.62, 10.8, 10.88, 10.91, 10.97, 11.17);

the time unit is 1 month. The spot and forward rates curves can be found in Figure 5.
It’s barely possible to see the difference between the spot rates curves, but the difference
between the forward rates curve is more than noticeable. The difference, of course, can
be traced back to the intrinsic smoothness of the spot rates curve when it’s generated
as an EpiCurve.

Let also consider the case spot rates for January 1982, the maturities-array m is the
same, but now

s = (12.92,13.90, 14.32,14.57, 14.64, 14.65, 14.67, 14.59, 14.57, 14.22).

Running EpiCurve yields the result in Figure 6. The forward rates curve is rather
unsettled up to the end of year 1, it actually reflects almost perfectly the ‘unsettled’
market situation at that time (January-February 1982).
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Figure 6: Spot and Forward Rates curves from spot rates.

6.2 Zero-curves from cash flow streams

We briefly review our goals and guiding principles. Given the increased complexity of
the instruments being traded, it certainly is no longer sufficient to be able to build
zero-curves based on just zero-coupon bonds; in fact, the LIBOR (swaps) based zero-
curves seem to occupy, at present, the prominent place . The ultimate objective should
be to build the spot rates curve associated with any collection of instruments, for ex-
ample, AAA- or AA-rated corporate bonds, any mixture of swaps, futures and bonds,
etc. Notwithstanding a relatively large literature devoted to zero-curves, cf. Buono,
Gregory-Allen and Yaari [5], there has never been any serious attempt at dealing with
the building of zero-curves at this more comprehensive level.

Of course, given an arbitrary collection of instruments, each one generating its own cash
flow stream, it might be possible (assuming that maturities occur at different dates) to
generate, via BootStrapping for example, any one of the zero-curves. However, as every
practitioner knows all too well and as was reviewed in §2, some of the resulting curves
will be, to say the least, unwieldy, and have every characteristic except ‘believable.” The
insistence on ‘smoothness’, cf. Vasicek and Fong [20], Shea [18], Adams and Van Deventer
[1], is motivated by the strongly held belief, that’s also supported by historical data, that
zero-curves don’t come with kinks, and spikes i.e., extremely abrupt changes in the rates.

Keeping this in mind, the problem of generating zero-curves could be roughly formu-
lated as follows: Given a collection of instruments, each one generating a given cash flow
stream, find smooth zero-curves so that for each instrument (in the collection), the net
present value (NPV) of the associated cash flow matches its present price.

Although this formulation allows us to include zero-coupon bonds, coupon bonds, swaps,
etc., in our collection of instruments, it does not allow for futures, future swaps, etc.
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To do so, we reformulate the problem in the following more general terms: With each
instrument ¢ in our collection, we associate a

Time Array: (tila ti27 ceey ti,Li)
the dates, or time span, at which cash payments will take place, and a

Payments Array:  (pi1, pios - - -, Pi,L;)

with cash flow p;; received at time %;;, L; is the maturity date. One then interprets p; > 0
as cash received and p; < 0 as cash disbursed. For example, in the case of a coupon
bond, bought today for $100, with semi-annual $3 coupons and a two year-maturity, one
would have:

Time Array: (0,6,12,18,24),

assuming the time unit is ‘1 month’, and
Payments Array:  (—100, 3, 3,3,103).

This allows us to include almost any conceivable instrument in our collection, as long
as it comes with an explicit cash flow stream. For example, in the case of the following
T-bill forward: A bank will deliver in 3 months from now, a 6-month Treasury bill of
face value $100 with a 10% annual forward rate for that 6 months period. The value of
such a contract would be $95.24 that would have to be paid in 3 months. This contract
would then come with the following arrays:

Time Array:  (3,9), Payments Array:  (—95.24,100).

In this frame of reference, the zero-curve problem could be formulated in the following
terms: Given a (finite) collection of instruments that generate cash flow streams, find a
discount factor curve such that

e the net present value (NPV) of each individual instrument (contract) turns out to
be 0 when all cash payments received and all disbursements are accounted for;

e all associated zero-curves (forward, spot, discount rates) are ‘smooth’.

When formulated at this level of generality, the zero-curve problem is usually not fea-
sible. In fact, it’s not difficult to fabricate an ‘infeasible’ problem. Simply, let the
collection consist of two one-coupon bonds that have the same nominal value, the same
maturity and the same price (today). Both coupons are to be collected at maturity
but have different face value. Clearly, there is no discount factor curve so that the net
present value (NPV) of both of these cash flows turns out to be 0! Of course, this is
an unrealistic example, the financial markets wouldn’t have assigned the same price to
these two instruments; arbitrage would be a distinct possibility in such a situation. But
since we allow for any collection of instruments, there is the distinct possibility that
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there are practical instances when one can’t find a ‘smooth’ discount factors curve so
that the NPV of all cash flow streams factors out to 0. So, given that we want to be
able to deal with any eclectic collection of instruments, as well as the ‘standard’ ones,
instead of asking for the NPV of all cash flow streams to be 0, we are going to ask that
they be as close to 0 as possible.

Smoothness is going to be achieved by restricting the choice of the discount factors curve
to C%P i.e., curves whose qth derivative is continuous and piecewise linear as introduced
in this section. To render our presentation more concrete, and easier to follow, we are
going to proceed with g = 2.

The problem is now well defined mathematically:
find a discount factors curve:  df € C*?'([0,7], N)so that |jv||, is minimized .

where ||v]| is the ¢P-norm of v,

L;

v = (v1,v2,...,01), v; = de(til)pil;

=1

v; is the net present value of instrument ‘2’ given that the cash flow is discounted using the
discount factors df (t;). The EpiSolutions Inc., implementation relies on the ¢*-norm,

||U||oo = maXHUlL "UQ‘a .- 'a‘,UI”a

so let’s proceed with this criterion but it should be noted that one can choose any
p € [1,00) that might better represent the decision maker’s preferences or concerns. In
fact, except for extremely unusual portfolio, the differences between the solutions should
be insignificant.

Since df belongs to C*P!([0,T], N, it’s of the form: for k = 1,...,N, 6§ = T/N, t €
(6(k—1),0k] and 7 =t — §(k — 1)

1, 7
df(t)=1+vot+§a0t+gxk

Y e 2 572
+;$j [5(§+(k—] —1)(l€—])) +0*1(k — j —()_5)_|_7 :
where ag,vg, T1,To,...,2xy are parameters to be determined; note that the discount

factor at time ¢ = 0 is 1, so we can fix this ‘constant’ (z). But simply being of this form
doesn’t make df a discount factors curve. We already have that df(0) = 1, we need to
add two conditions:
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e df should remain non-negative, thus we have to introduce the constraints: df (t) > 0
for all t € [0,T7;

e df should be decreasing, at least non-increasing, this means that df’(¢) < 0 for all
t € [0,T], a condition that translates into the constraints:

k-1 2
! § : . T
df (t) :1}0+aot+ : ll‘j((sz(k—] —05)+(5T) + Eiﬂk S 0, Vit e (O,T]
]:

Putting this all together with df as defined above, yields the optimization problem:

min 6

L;
so that 6 > df(ta)pa,  i=1,....1,

=1

L;
Hz_zdf(tzl)pzla 7::1,"'515

=1
df(t) >0, tel0,T]
k—1 7_2
vo +aot+ Y (52(k - 05)+ 57) + S <0, te(0,7)
7j=1

?)()SO, 0,020, ZUkER,k':].,...,N;

the restriction vy < 0 means that df’(0) is not positive, and ay > 0 says that the curve
should have positive curvature at ¢ = 0. The constraints involving # tell us that

and by minimizing #, we minimize the max-error; this inequality is split into 2/ con-
straints so that all constraints are linear.

We have a linear optimization problem with a finite number of variables (N + 3), but
with an infinite number of constraints (V¢ € [0,7]). To solve this problem, one could
consider using one of the techniques developed specifically for (linear) semi-infinite op-
timization problems. Because of the nature of the problem, however, one can safely
replace the conditions involving ‘for all ¢ € [0,T] by for all ¢t € {1/M,2/M,...,T/M}
with M sufficiently large; in the EpiSolutions Inc. implementation M is usually chosen
so that the mesh size (1/M) is 1 month. After this time-discretization, the problem
becomes a linear programming problem that can be solved using a variety of commercial
packages. In addition to the constraints described earlier, the version implemented at
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EpiSolutions Inc. also relies on a few additional constraints that will improve the shape
the zero-curves to fit more specifically the context.

One important component of the EpiCurves solution is that all the zero-curves are de-
fined at every time %, there is never any need to resort to interpolations to fill in missing
time-gaps. This, of course, gives us great flexibility in choosing the right approximations
when building pricing mechanisms.

6.3 More examples

Let’s now consider and analyze a few more examples.

DFS-Portfolio. Let’s first go back to the DFS-example of §2. Of course, by just com-
paring the graphs of the forward rates curves provided by Financial Providers no.1 and
no.2 and corresponding EpiCurve, it’s evident that there is the possibility that some
financial factors/indicators might be a little bit too much off. Here is a specific ex-
ample: On June 10, 1997, the June 1999 futures contract settled at $ 93.36. After a
small convexity adjustment, this implies a 90-day forward rate of approximately 6.60%.
This contract was not included in the BootStrapping sub-portfolio (17 instruments) of
Financial Provider No. 1. The forward rate supplied by Financial Provider No. 1 for
this period is 5.10%! Not surprisingly, the forward rate for this period, supplied by the
EpiCurve, that takes into account all 36 instruments, is the more reliable 6.45%.

Bond-Portfolio. The first one is a Bond-portfolio. This data-set includes U.S. Treasury
Bill and U.S. Treasury Bond data from August 3, 2001. There are 7 instruments in all,
including 3 U.S. Treasury Bills with term-to-maturities ranging from 3 to 7 months and
4 U.S. Treasury Bonds with term-to-maturities ranging from 2 to 30 years. This data
was obtained from the Bloomberg U.S. Treasuries web page; details are in Table A4
of the Appendix. As a point of comparison, we use the results of the BootStrapping
technique supplied by Financial Provider no. 2; Financial Provider no. 1 BootStrapping
functionality can not deal with a Bond-portfolio. The results are graphed in Figure 7.
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Figure 7: Spot and Forward Rates associated with a Bonds portfolio.

DFS2-Portfolio. This next example is a relatively challenging one. The portfolio in-
cludes 51 instruments: Deposits, Futures and Swaps from August 3, 2001 with quite a
bit of overlap of maturity-dates. A short description of the composition of this portfolio
follows here; details are in Tables A-5, A-6 of the Appendix. There are 51 instruments
in all, broken down as follows: 3 Eurodollar Deposits with term-to-maturities ranging
from 1 to 6 months, 40 Eurodollar Futures with 90-day deposit maturities ranging from
4 months to 10 years, and 8 Swaps with term-to-maturities ranging from 1 to 10 years.
This data was obtained from the Federal Reserve (Statistical Release H.15) and the
Chicago Mercantile Exchange (CME).
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Figure 8: Discount Factors curve for the 51-instruments portfolio

In the EpiSolutions Inc. implementation of the EpiCurve methodology, there is an option
that allows the user to fine tune the level of accuracy that will be acceptable; accuracy
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being defined in terms of the max-error, i.e. in terms of the objective of the optimization
problem. Asking for a higher level of accuracy will usually result in a more jagged curve
since one must accommodate/adjust more rapidly to even small changes in the cash
flow. This is effectively illustrated by curves graphed in Figure 9. In the first one the
tolerance is 5 base points, in the second one just 1 base point.

Forward Rates

Forward Rates

Yield curve Spot Rates

EpiCurves

EpiCurves
max-Error: 1 base pt

max—error: 4.5 base pts 4 0.045F

L L L L
0 50 100 150 0 50 100 150
months months

Figure 9: Variations of the zero-curves under max-error tolerance

Notwithstanding this fine tuning, EpiCurve is really the only methodology that provides
‘serious’ zero-curves associated with such a portfolio. The only BootStrapping approach
that one could rely on, if one can use the word ‘rely,’ is the one implemented by EpiSo-
lutions Inc. But the results are less than satisfactory, see Figure 10. Both the spot
and the forward rates curves were derived for this portfolio with the forward rates curve
generated by BootStrapping spiking up to 30% at one point and then immediately there-
after going negative! This suggested massaging the portfolio by introducing a convezxity
adjustment and, indeed, this improves substantially the BootStrapping results although
the forward rates curve comes with some abrupt rate changes; note that this convexity
adjustment has only a minor effect on the EpiCurves results.
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Figure 10: Spot and Forward Rates with and without Convexity adjustments

The major objective in developing the EpiCurves methodology was to overcome the
inconsistent assumptions and limitations of the standard BootStrapping technique and
its Maximum Smoothness variant. This is accomplished by allowing for inclusion of the
complete portfolio of term structure instruments, while at the same time providing the
smoothness so crucial to practitioners as a solid foundation on which to build believable
valuations, forecasts and other financial analytics.

7 A comparison for U.S. Treasury curves

In this section we perform an empirical analysis of several different estimation methods
using monthly U.S. Treasury bond data obtained from Mergent’s Bond Record. The
data set covers the period from January 31, 1999 through December 31, 2003, for a
total of 60 observations (with each observation, or portfolio, containing approximately
100-110 bonds). In particular, we focus on the following methods:

e EpiCurves, run for accuracy: With this approach we run EpiCurves with the
objective of minimizing the maximum absolute pricing error.
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e EpiCurves, run for smoothness: With this approach we run EpiCurves with
the objective of 'maximizing’ the smoothness of the resulting curves. We employ
Van Deventer’s smoothness criterion, divided by 7', to facilitate comparison of the
monthly bond portfolios. We then iterate, relaxing the maximum pricing error
constraint until we have achieved an acceptable level of smoothness (defined to be
0.01, for this analysis).

e Van Deventer’s maximum smoothness approach: With this approach the
primary control variable is the number of spline segments. Too many segments
may result in more accurate pricing, with a resulting loss in smoothness, while too
few may result in a spline that is too stiff, with a resulting loss in pricing accuracy.
To address this, we set the initial number of spline segments to be approximately
equal to the square root of the number of bonds in a given portfolio. We then
iterated, reducing the number of spline segments by one, until the number of
segments giving the best pricing results was found.

e Svensson’s extension of the Nelson-Siegel model: With this approach we
used a number of different sets of starting values, solved for each, and selected
the solution with the best pricing results. [y, and (5; were held constant, with
Bo set to the yield-to-maturity of the bond with the longest maturity in a given
portfolio, and B; set to the difference between this and the yield-to-maturity of the
bond with the shortest maturity in the portfolio. This left us with 4 parameters
(B2, B3, T1,T2) each of which we allowed 5 possible values, giving us a total of 625
sets of starting values.

We examined the estimation results along several different dimensions:

e Smoothness: Van Deventer’s smoothness criterion, divided by 7.

e In-Sample Mean Squared Error (IN MSE): the mean squared pricing error
of bonds used to perform the estimation.

e In-Sample Weighted-Average Absolute Error (IN WAE): the weighted-
average absolute pricing error of bonds used to perform the estimation, weighted
by 1/maturity.

e In-Sample Maximum Absolute Error (IN MAX): the maximum absolute
pricing error of bonds used to perform the estimation.

e Out-of-Sample Mean Squared Error (OUT MSE): the mean squared pric-
ing error of the bonds not used to perform the estimation.

e Out-of-Sample Weighted-Average Absolute Error (OUT WAE): the
weighted-average absolute pricing error of bonds not used to perform the esti-
mation, weighted by 1/maturity.
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e Out-of-Sample Maximum Absolute Error (OUT MAX): the maximum
absolute pricing error of bonds not used to perform the estimation.

e Speed: the number of minutes to complete an estimation on a 2.0 GHz machine
running Windows 2000.

All pricing error results are given in basis points. In-Sample bonds were defined by
starting with shortest maturity bond in a given portfolio, and including every other
bond in ascending maturity order — with the caveat that the longest maturity bond was
always in-sample. We did not filter the data in any other way, nor did we employ any
outlier exclusion scheme during the estimations. It should be noted, however, that there
were no Treasury bills or callable bonds in the data set. Some graphical estimation
results can be seen in Figure 11. The numerical results are summarized in Table 1.

We can make some general observations about the results:

e The Van Deventer and Svensson results are always smoother than the EpiCurves
results. This is not surprising, since they are defined to be so, while EpiCurves
allows the user to trade-off important criteria.

e The Van Deventer method performs well in upward-sloping term structure envi-
ronments (2002-2003), and poorly when the term structure is flatter (1999-2001).
This is also not very surprising, since fitting splines to straight lines is difficult.

e Over the entire period studied, the Van Deventer results where more variable than
the results from any of the other methods considered.

e The Svensson results were remarkably stable, while providing relatively good pric-
ing results, in different environments.

e When run for accuracy, EpiCurves always gave the best pricing results.

e When run for smoothness, EpiCurves was able to achieve an comparable level of
smoothness to the other methods, while retaining excellent pricing accuracy.

e EpiCurves allowed for effective trade-off between smoothness (for strategic decision
making) and pricing accuracy (for tactical decision making).

e EpiCurves was always faster than Van Deventer and Svensson, by a wide margin.

The last point deserves further comment. As can be seen in Table 1, even in the worst
case, EpiCurves performed the estimations 4 times faster than either Van Deventer or
Svensson. The original Van Deventer method was specified using a small set of zero-
coupon bond prices, which requires solving a system of linear equations once. In the
extension presented here, we are using large number of coupon-bearing bonds, making
it necessary to iterate in two dimensions. In the first dimension, given a set of knot
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points for the spline segments (also known as term structure vertexes), we iterate to
find the set of zero-coupon bond prices for the knot points that minimizes the over-
all pricing error. In the second dimension, we also iterated over the number of knot
points to determine the optimal trade-off between curve flexibility and pricing accu-
racy. In the best case, this required an average of 27 minutes per estimation (2003). In
the worst case, the speed deteriorated to an average of 46 minutes per estimation (1999).

One of the main criticisms of the Svensson methodology is that the parameters can be
difficult to estimate. This is due to the fact that the spot and forward rate functions,
though linear in the (’s, are non-linear the 7’s. As a result, there are multiple local
minima, making it necessary to run the estimations for many different sets of starting
values. To completely eliminate uncertainty in the results would require running the
estimations over an unwieldy number of sets of starting values. By holding £y, and S,
constant, we reduced the number of free variables to 4. Then allowing these 4 variables
to take on each of 5 different values, we settled on 5%, or 625, sets of starting values.
The f’s are ranged from -(maximum bond yield) to +(maximum bond yield), and the
7’s are ranged from minimum bond maturity to maximum bond maturity. In the best
case, this required an average of 25 minutes per estimation (2003). In the worst case,
the speed deteriorated to an average of 38 minutes per estimation (1999).
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Figure 11: Comparison of Spot and Forward Rate curves.
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1999-2003 ‘ EPI Accurate ‘ EPI Smooth ‘ Van Deventer ‘ Svensson ‘
Smoothness 0.252989 0.005163 0.000282 | 0.000877
IN MSE 442.03 986.59 2230.32 1214.64
IN WAE 8.95 22.42 8.66 20.74
IN MAX 58.44 89.16 145.03 133.38
OUT MSE 501.41 1032.69 2075.52 1040.42
OUT WAE 9.63 22.50 8.86 20.52
OUT MAX 79.54 96.82 151.85 122.77
Speed (min) 2 4 34 30
2003 ‘ EPI Accurate ‘ EPI Smooth ‘ Van Deventer ‘ Svensson ‘
Smoothness 0.731324 0.003204 0.000028 | 0.000559
IN MSE 298.25 1378.76 448.76 | 1647.35
IN WAE 4.51 34.83 5.72 22.80
IN MAX 41.86 97.72 80.70 128.69
OUT MSE 321.82 1291.56 323.74 1496.99
OUT WAE 5.87 34.55 5.89 22.53
OUT MAX 58.23 80.86 72.51 121.62
Speed (min) 4 6 27 25
2002 ‘ EPI Accurate ‘ EPI Smooth ‘ Van Deventer ‘ Svensson ‘
Smoothness 0.357384 0.004697 0.000112 | 0.003827
IN MSE 568.15 1390.76 604.60 | 1549.93
IN WAE 6.42 32.13 6.34 29.42
IN MAX 57.40 111.04 91.89 142.65
OUT MSE 637.45 1463.28 615.65 | 1391.80
OUT WAE 7.55 32.33 6.65 29.42
OUT MAX 85.89 116.09 105.80 152.67
Speed (min) 3 6 30 26
2001 ‘ EPI Accurate ‘ EPI Smooth ‘ Van Deventer ‘ Svensson ‘
Smoothness 0.103716 0.003786 0.000104 | 0.000000
IN MSE 215.98 530.63 2738.24 | 1072.05
IN WAE 8.18 15.11 10.36 26.68
IN MAX 39.54 61.68 151.60 110.96
OUT MSE 355.28 693.17 2376.87 973.28
OUT WAE 9.27 16.11 10.74 26.77
OUT MAX 72.58 91.73 172.03 107.12
Speed (min) 2 4 30 28
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‘ 2000 ‘ EPI Accurate ‘ EPI Smooth ‘ Van Deventer ‘ Svensson ‘
Smoothness 0.02769 0.006766 0.000098 | 0.000000
IN MSE 300.23 539.01 3114.29 623.21
IN WAE 7.47 8.69 9.29 10.99
IN MAX 55.75 67.35 162.62 118.72
OUT MSE 356.57 616.53 2900.21 408.48
OUT WAE 7.63 8.72 9.55 10.46
OUT MAX 74.62 82.71 165.51 81.49
Speed (min) 1 3 34 33
1999 ‘ EPI Accurate ‘ EPI Smooth ‘ Van Deventer ‘ Svensson ‘
Smoothness 0.044831 0.007363 0.001069 | 0.000000
IN MSE 827.53 1093.78 4245.72 1180.67
IN WAE 18.19 21.35 11.59 13.82
IN MAX 97.65 108.00 238.32 165.90
OUT MSE 835.93 1098.92 4161.15 931.56
OUT WAE 17.82 20.81 11.49 13.43
OUT MAX 106.38 112.73 243.38 150.98
Speed (min) 2 3 46 38

Table 1: U.S. Treasury Curve Statistics (Averages)
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Part 1T
VOLATILITY STRUCTURE

8 Setting the stage

The motivation for the EpiVolatility model is to provide a consistent, flexible, and market
calibrated term structure of volatility that, in particular can serve as input to any valua-
tion package, in particular the EpiValuation library of EpiSolutions Inc. No comprehen-
sive comparisons will be made with alternative approaches because, to our knowledge,
the alternative methods that have been suggested are either proprietary (Risk Metrics),
are based on historical data rather than (present-day) market data, are relatively ele-
mentary (regression, linear interpolation, for example) or rely on a BootStrapping type
approach that will be described below; a brief review of this literature was provided by
Dupacovéa and Bertocchi [8, §3], see also an earlier article by these authors and their
collaborators [7].

The primary option pricing models underlying a significant number of valuation pack-
ages, including the EpiValuation Library, are the Black, Derman, and Toy (BDT)(1990)
binomial model and the Black (1976) model for interest-rate derivatives. The approach
outlined in this contribution is in the class of popular interest rate models known as
market models. In particular, our estimation of the term structure of volatility is based
on the standard market model, which is also the basis for volatility estimation in the
LIBOR market model (LMM). In particular, this makes EpiVolatility model consistent
with the LIBOR market model..

The LIBOR market model, also known as the Brace, Gatarek, and Musiela (BGM)(1997)
model, is an extension of the Heath, Jarrow, and Morton (HJM)(1992) model. However,
where the HIM model is based on (unobservable) instantaneous forward rates, the LMM
is based on observable market LIBOR rates that follow a lognormal process. This makes
the LMM consistent with the Black model for pricing interest rate caps and floors, which
is used by market practitioners. A similar model was developed by Jamshidian (1997)
for swap rates that is consistent with the Black model for valuing European swaptions.
This model is known as the Swap market model (SMM). One can refer to Hull [10] for
a detailed description of these market and valuation models.

Although the LMM and the SMM are each internally consistent (neither allows oppor-
tunities for arbitrage), they are not consistent with each other, see [11]. This is because
the LMM is based on a lognormal process for forward rates and the SMM is based on
a lognormal process for swap rates, where swap rates can be thought of as an average
of a series of forward rates. However, the difference in swaption prices between the two
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models is low, see [4], and that the SMM substantially overprices caplets, see [12]. We
want to be clear in stating, therefore, that for practical purposes one can reasonably
assume that the LMM is the preferable model.

The construction of a BDT binomial interest rate tree requires three inputs: a time ruler,
a yield curve, and a volatility curve. The time ruler is based on the security being priced
(timing of cash flows, options, etc.). In Part I, we have dealt with the construction of
the LIBOR yield curve (or zero-curve) as estimated from current market rates/prices
of Eurodollar deposits, Eurodollar futures, and/or (on market) interest rate swaps. In
principle, the volatility curve (or term structure of volatility) can simply be observed in
the market, since interest rate cap and floor prices are quoted in terms of flat implied
Black volatilities.

Table 2 has the cap volatility quotes from GovPx on October 24, 2002. The term of
of the cap is expressed in years and the tenor of the cap is 3 months (i.e., each cap is
a series of 3 month caplets). The bid and ask volatilities are expressed in percent per
annum. The strike is the at-the-money strike rate of the cap. This means that the cap
strike rate equals the swap rate, for a swap with the same reset dates as the cap.

‘ Term ‘ Bid Vol ‘ Ask Vol ‘ Strike ‘

0.50 92.86 53.86 | 1.722
1.00 50.20 51.20 | 1.894
1.50 49.90 50.90 | 2.201
2.00 48.26 49.26 | 2.533
2.50 45.09 46.09 | 2.826
3.00 42.28 43.28 | 3.073
3.50 40.13 41.13 | 3.287
4.00 37.90 38.90 | 3.481
4.50 36.18 37.18 | 3.628
5.00 34.51 35.51 | 3.769
6.00 31.65 32.65 | 4.046
7.00 29.72 30.72 | 4.265
8.00 28.00 29.00 | 4.456
9.00 26.70 27.70 | 4.594
10.00 25.47 26.47 | 4.730

Table 2: Cap Volatility Quotes

Caps, however, are quoted in terms of flat volatilities. A flat volatility is the implied
volatility of the cap, when that volatility is applied to all the caplets underlying the
cap. As a result, caplets underlying more than one cap (for example, the 9x12 caplet
is common to all caps in the table above, except the 6 month cap), will be priced with
different volatilities depending on the cap being considered. An alternative approach
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is to use a unique volatility for each caplet in the cap series (i.e., for the 9x12 caplet,
a single volatility would be used regardless of the cap being valued). These are called
spot volatilities. Spot volatilities can be deduced from flat volatilities using a standard
BootStrapping approach. With this approach, a series of cap prices is first generated
using the flat volatilities, then the difference between each cap price and the previous
cap price gives a forward caplet price, the Black model can then be inverted to produce
the implied volatility for this caplet. This is the spot volatility of the forward rate with
the same term as the caplet. Figure 12 shows the flat volatilities and spot volatilities
[obtained by BootStrapping| from Table 2, based on mid-market quotes.

— Flat Volatility
—— Spot Volatility
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Figure 12: Flat and Spot Volatility Curves

For some applications, derivation of spot volatilities in this fashion may be acceptable.
But there are some serious limitations to the way this data may be used. We will discuss
these limitations and how the EpiVolatility model attempts to overcome them, but first
the valuation of caps and floors with the Black model, and the Black, Derman, and Toy
interest rate model are briefly discussed.

9 Some tree-based valuation models

An interest rate cap (floor) is simply a portfolio of European call (put) options on for-
ward interest rates.

Consider a caplet with term J,, notional value L, and strike rate Rg. Let Fy ;. ., be

the interest rate for the period between time ¢, and time ¢,,; (where 6, = t, 41 — t,),
observed at time t,. The caplet has a payoff at time ¢, 1 of
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Lon(Fyp oy — Bi)™ (1)

If the rate Iy, ;, ., follows a lognormal process with volatility o, the familiar Black pricing
formula can be used to determine the value of the caplet at time ty < ¢,, as

Cn = LonP(to, tni1) (F, 1,4, N (d1) — RN (d2)) (2)

where

ln(thth /RK) =+ O'Qtn/2

d, =
1 /i

do = ln(ﬂn,tn+1 /RK) - O'Qtn/Q
5 =

o\/tn
and N(+) is the cumulative Gaussian distribution with mean 0 and variance 1. P(to,t,11)
is the price, at time ¢y, of a zero coupon bond maturing at time ¢, ;.

The formula for the corresponding floorlet is

Fn = Lénp(t(), tn+1)(RKN(_d2) - Ftn,tn+1N(_d1)) (3)

Since a cap (floor) is a portfolio of caplets (floorlets), the price of a cap with term
T= t”+1 at time t() < tn is

C= icn (4)

and

F=)F, (5)
i=1
for a floor.

In 1990, Black, Derman, and Toy proposed an algorithm for constructing a binomial
interest rate tree that yields a discretized version of the model:

(t
dinr(t) = [0(t) + UT(t)) In(r)|dt + o (t)dz (6)
o
where o' (t) is the partial derivative of o with respect to ¢, and 6(t) is a time-dependent

parameter used to fit the model to the initial term structure [10]. Therefore, in order to
use this model the volatility function must be differentiable at any time ¢.
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10 The EpiVolatility model

10.1 Guidelines

The following are the desirable properties of a volatility curve, for use as a basis for
interest rate modeling and security valuation (present and future):

e The partial derivative with respect to t, at any time ¢, exists and is continuous.

e The curve is defined with respect to spot (not flat) volatility, also known as forward-
forward volatility.

e Spot volatility may be retrieved for a term of arbitrary length.

e A particular form for the volatility function need not be assumed.

The first three properties are requirements for the successful implementation of the BDT
model in either binomial tree or Monte Carlo form. The last property is desirable from
an implementation perspective, since we are not forced to assume a particular functional
‘shape’ that may or may not be representative of current market conditions. Further,
any assumed functional form will restrict us to a few parameters for fitting the curve to
the market data.

Figure 12 shows that the BootStrapped spot volatility curve does not meet these critieria:

e The partial derivative with respect to ¢, at any time ¢, is not continuous, and might
even fail to exist,

e The forward volatilities retrieved from this curve are only defined for forward rates
with the same start and end times as the caplets used in its construction.

Regarding this second point, if the tenor of the caps in the market data set is 3
months (for example), then the volatility curve only contains information about the
forward volatilities of 3 month LIBOR forward rates that coincide with caplet dates.
The curve says nothing about forward volatilities of 3 month LIBOR forward rates that
do not coincide with caplet dates, nor about forward volatilities of forward rates with
any other term (1 day, 1 week, 1 month, etc.). But when constructing a BDT tree for
arbitrary dt, this is exactly what is needed.

10.2 EpiSolutions Inc.’s approach

Here is a brief outline of an approach to volatility estimation, that is designed to meet
the desirable criteria listed above:

e Start with market data (broker quotes) for interest rate caps or floors.
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e Fit a (smooth) curve to the flat volatility quotes (mid, bid, or ask), using Epi-
Curves, see §6.

e Fit a (smooth) curve to the strike rate curve, using EpiCurves.

e Construct a set of caps or floors with terms every n months (where n depends on
the tenor of the securities in the market data set, typically 3 or 6 months). The
price for each security is determined using the Black model, and flat volatilities
and strike rates read from their respective (smooth) curves.

e Fit a (smooth) curve to the cap or floor prices determined in the previous step
using EpiCurves.

This last curve is the end product of the EpiVolatility model, and is used as the input
to the EpiValuation library. When the EpiValuation library needs a spot volatility for a
given term, it derives a cap or floor price for that term from the price curve, and then
inverts the Black model to retrieve the corresponding implied spot volatility.

Here again, the meaning of 'smooth’ is bound to be mostly subjective. One could take
as definition, the number of times the curve is continuously differentiable. But there
are analytic curves, i.e., of class C*, that don’t ‘look’ smooth; refer to §4, 6 for more
about this issue. Practically, we shall content ourselves with curves that are less than in-
finitely smooth, but where we control the rate of change of the 2-nd, or higher, derivative.

In the next section, we discuss the EpiSolutions criterion and methodology for fitting
’smooth’ curves to market data. Finally, we give an example of the implementation of
the EpiVolatility model.

11 Implementation

Using the cap price data from Table 2, Table 3 shows the results of the first three steps
outlined in §11:

e Fit a (smooth) curve to the flat volatility quotes (mid, bid, or ask), using Epi-
Curves, cf. §6.

e Fit a (smooth) curve to the strike rate curve, using EpiCurves.

e Construct a set of caps or floors with terms every n months (where n depends on
the tenor of the securities in the market data set, typically 3 or 6 months). The
price for each security is determined using the Black model, and flat volatilities
and strike rates read from their respective (smooth) curves.

We use mid market volatility quotes and the cap tenors are assumed to be 3 months.
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‘ Term ‘ Flat Vol ‘ Strike ‘ Price H Term ‘ Flat Vol ‘ Strike ‘ Price ‘

0.50 | 53.3539 | 1.7222 | 0.000595 5.50 | 33.4571 | 3.9121 | 0.053636
0.75 | 51.9915 | 1.7855 | 0.001613 || 5.75 | 32.7672 | 3.9811 | 0.056743
1.00 | 50.6982 | 1.8943 | 0.002945 6.00 | 32.1487 | 4.0461 | 0.059799
1.25 | 50.3926 | 2.0381 | 0.004590 | 6.25 | 31.6054 | 4.1060 | 0.062867
1.50 | 50.3984 | 2.2025 | 0.006613 || 6.50 | 31.1180 | 4.1615 | 0.066044
1.75 | 49.8694 | 2.3706 | 0.008936 | 6.75 | 30.6629 | 4.2141 | 0.069153
2.00 | 48.7541 | 2.5337 | 0.011497 || 7.00 | 30.2180 | 4.2652 | 0.072157
2.25 | 47.2321 | 2.6858 | 0.014139 || 7.25 | 29.7684 | 4.3160 | 0.075074
2.50 | 45.5900 | 2.8260 | 0.016878 || 7.50 | 29.3227 | 4.3657 | 0.078018
2775 | 44.0749 | 2.9551 | 0.019636 || 7.75 | 28.8948 | 4.4129 | 0.080902
3.00 | 42.7722 | 3.0737 | 0.022441 8.00 | 28.4975 | 4.4563 | 0.083782
3.25 | 41.6809 | 3.1831 | 0.025259 || 8.25 | 28.1391 | 4.4948 | 0.086745
3.50 | 40.6276 | 3.2872 | 0.028185 8.50 | 27.8108 | 4.5296 | 0.089836
3.75 | 39.4827 | 3.3890 | 0.031055 8.75 | 27.5007 | 4.5622 | 0.092862
4.00 | 38.3912 | 3.4817 | 0.034002 9.00 | 27.1973 | 4.5943 | 0.095746
4.25 | 37.4882 | 3.5592 | 0.037239 || 9.25 | 26.8918 | 4.6271 | 0.098460
4.50 | 36.6764 | 3.6283 | 0.040725 9.50 | 26.5841 | 4.6608 | 0.101054
4.75 | 35.8452 | 3.6978 | 0.044101 9.75 | 26.2762 | 4.6952 | 0.103437
5.00 | 35.0100 | 3.7690 | 0.047326 || 10.00 | 25.9700 | 4.7300 | 0.105574
5.25 | 34.2084 | 3.8409 | 0.050472

Table 3: Calibrating Cap Set

The last step is to fit a curve to the price vector from Table 3, using the EpiCurves
technology. The result can be seen in Figure 13.
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Figure 13: Fitted Cap Price Curve

This fitted cap price curve is then used as input to the EpiValuation library, which uses
it to determine spot volatilities in interest rate modeling and option pricing. The steps
the EpiValuation library uses to do this are straight-forward. Given a time step from
time ¢, to time 7,1,

e Read a cap price C}, from the curve with term ¢,.

Read a cap price Cy, , from the curve with term ¢,;.

The forward caplet price Cy,, then simply equals Cy,,, — C},.

tn+1

Invert the Black model for the forward caplet (i.e., solve for volatility instead of
price), assuming the caplet is at-the-money. This means the strike rate is set equal
to the (simply compounded) forward rate Fj, ;, ., for the same period.

Figure 14 shows the results for daily spot volatilities for 3 month Libor rates. This
means that a volatility read from the curve is the volatility for the 3 month Libor rate
starting at that time and maturing 3 months later. Figure 15 shows the results for 1
month Libor Rates.
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12 Summary

The approach to estimating LIBOR spot volatilities outlined in the second part of this
paper arose from a need for a consistent and flexible method for determining quantities
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required by the EpiValuation library. The EpiValuation library is used for a number of
functions, including:

e Current valuation of securities and portfolios.
e Future valuation of securities and portfolios.

e Scenario based total return estimation for securities and portfolios.

And as indicated in the Introduction, scenario-based total returns are themselves input
for our EpiManager, that deals with portfolio optimization by relying on stochastic
programming techniques.
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A Appendix

‘ Settle

| Maturity |

Rate ‘

06,/10/97

06/11/97

0.054688

06/11/97

07/11/97

0.056250

06/11/97

08/11/97

0.057500

06/11/97

09/11/97

0.057344

06/11/97

12/11/97

0.058125

06/11/97

06/11/98

0.061875

Table A—1: Eurodollar Deposits

Settle

| Maturity |

Rate ‘

06/11/97

06,/11/99

0.062010

06/11/97

06,/11,/00

0.064320

06/11/97

06,/11/01

0.065295

06/11/97

06,1102

0.066100

06/11/97

06,/11,/04

0.067860

06/11/97

06/11/07

0.068575

Table A-2:

Swaps

Delivery ‘Maturity ‘ Price H Delivery ‘Matum'ty ‘ Price ‘

06/16/97

09/16/97

94.195

06,/19/00

09/19/00

93.220

09/15/97

12/15/97

94.040

09/18/00

12/18/00

93.190

12/15/97

03/16/98

93.820

12/18/00

03/19/01

93.190

03/16/98

06/16/98

93.725

03/19/01

06/19/01

93.120

06/15/98

09/15/98

93.610

06,/18/01

09/18/01

93.080

09/14/98

12/14/98

93.510

09/17/01

12/17/01

93.050

12/14/98

03/15/99

93.410

12/17/01

03/18/02

92.980

03/15/99

06,/15/99

93.390

03,/18,02

06/18/02

92.980

06,/14/99

00/14/99

93.360

06,/17/02

09/17/02

92.940

09/13/99

12/13/99

93.330

09/16,/02

12/16/02

92.900

12/13/99

03/13/00

93.260

12/16/02

03/17/03

92.830

03/13/00

06/13/00

93.250

03/17/03

06/17/03

92.830

Table A-3: Eurodollar Futures

| Settle | Maturity | Price | | O;/eégljm | gic;?f;i]y?, | ()ngz(;g | — i T;,E)e/gg |
82?83;81 éi?gi;g; ggé 08/03/01 | 05/15/06 | 0.04625 | 99 + 26/32
08 /05 /01 | 02 /o802 | 333 | |0S/03/01 | 02/15/11 | 005000 | 98 + 25/32
: 08/03/01 | 02/15/31 | 0.05375 | 99 + 00/32

Table A—4: Bond portfolio — U.S Treasury Bills and Bonds
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Delivery | Maturity | Price | Convex. || Deliwery | Maturity | Price | Convex.
09/17/01 | 12/17/01 | 96.430 | 0.023 09/18/06 | 12/18/06 | 93.340 | 13.999
12/17/01 | 03/18/02 | 96.295 | 0.117 12/18/06 | 03/19/07 | 93.250 | 15.364
03/18/02 | 06/18/02 | 96.150 | 0.274 03/19/07 | 06/19/07 | 93.290 | 16.794
06/17/02 | 09/17/02 | 95.805 | 0.494 06/18/07 | 09/18/07 | 93.260 | 18.283
09/16/02 | 12/16/02 | 95.420 | 0.775 09/17/07 | 12/17/07 | 93.230 | 19.826
12/16/02 | 03/17/03 | 95.020 | 1.121 12/17/07 | 03/17/08 | 93.140 | 21.444
03/17/03 | 06/17/03 | 94.780 | 1.533 03/17/08 | 06/17/08 | 93.180 | 23.128
06/16/03 | 09/16/03 | 94.514 | 2.005 06/16/08 | 09/16/08 | 93.150 | 24.870
09/15/03 | 12/15/03 | 94.315 | 2.539 09/15/08 | 12/15/08 | 93.125 | 26.665
12/15/03 | 03/15/04 | 94.100 | 3.138 12/15/08 | 03/16/09 | 93.035 | 28.537
03/15/04 | 06/15/04 | 94.030 | 3.803 03/16/09 | 06/16/09 | 93.075 | 30.474
06/14/04 | 09/14/04 | 93.905 | 4.529 06/15/09 | 09/15/09 | 93.050 | 32.468
09/13/04 | 12/13/04 | 93.800 | 5.314 09/14/09 | 12/14/09 | 93.030 | 34.514
12/13/04 | 03/14/05 | 93.660 | 6.166 12/14/09 | 03/15/10 | 92.940 | 36.641
03/14/05 | 06/14/05 | 93.650 | 7.085 03/15/10 | 06/15/10 | 92.980 | 38.831
06/13/05 | 09/13/05 | 93.575 | 8.064 06/14/10 | 09/14/10 | 92.950 | 41.079
09/19/05 | 12/19/05 | 93.505 | 9.183 09/13/10 | 12/13/10 | 92.930 | 43.376
12/19/05 | 03/20/06 | 93.395 | 10.294 | 12/13/10 | 03/14/11 | 92.845 | 45.756
03/13/06 | 06/13/06 | 93.420 | 11.379 || 03/14/11 | 06/14/11 | 92.885 | 48.199
06/19/06 | 09/19/06 | 93.375 | 12.707 || 06/13/11 | 09/13/11 | 92.855 | 50.700
Table A-5: 51-Instruments portfolio — Eurodollar Futures
‘ Settle ‘ Maturity ‘ Rate ‘

08/03/01 | 08/03/02 | 0.0385

‘ Settle ‘ Maturity ‘ Rate ‘ 08/03/01 | 08/03/03 | 0.0444

08/03/01 | 09/03/01 | 0.0366 08/03/01 | 08/03/04 | 0.0491

08/03/01 | 11/03/01 | 0.0359 08/03/01 | 08/03/05 | 0.0523

08/03/01 | 02/03/02 | 0.0360 08/03/01 | 08/03/06 | 0.0547

08/03/01 | 08/03/08 | 0.0576

08/03/01 | 08/03/11 | 0.0598

08/03/01 | 08/03/31 | 0.0632

Table A-6: 51-Instruments portfolio — Eurodollar Deposits & Swaps
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