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We reconsider the question of allocating resources in large teams using decentralized pro- 
cedures. Our assumption on the distribution of producers is that it approximates a given 
underlying distribution in producers space; thus we relax prior approaches which utilize replicas 
or iid samplings. We examine when solving the allocation problem for the underlying 
distribution yields an appropriate solution to the specific sample. We then show how market- 
like mechanisms may be used to get a decentralized decision process which is asymptotically 
optimal. 

1. Introduction 

We examine in this paper the possibility of using market-like structures in 
allocation problems with a large number of producers. The model follows 
Arrow and Radner (1979) and Groves and Hart (1982); we now describe the 
motivation. 

While allocating resources in an optimal way is desired, it may result with 
a massive amount of communication if the number of participants is large. A 
market-like structure may help. For instance, prices may be announced, 
according to which the agents adjust their demands and local decisions. 
Under natural conditions such a price mechanism can indeed generate the 
optimal allocation. However, the computation of these prices may require an 
effort, e.g., collecting data from the many agents, a burden that could be 
beyond our means and better be eliminated. 

A situation where this drawback may be overcome is where there is a 
good idea about the statistical distribution of the agents’ characteristics. 
Intuitively at least, if the agents form a good sample of a known population, 
then the parameters of the latter may be used in the allocation process, 
resulting in an approximation to the optimal solution. The, hopefully minor, 
loss in production is then compensated by the simplicity of the process. 
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This idea was pursued by Arrow and Radner (1979) in a framework where 
resources ought to be allocated among a large number of producers, each of 
them is subject to local decisions; the objective being the maximization of the 
total output. The sampling property mentioned above is obtained in Arrow 
and Radner (1979) by letting the producers be independently drawn from a 
given population. The result is that, almost surely, the averaged optimal 
value obtained with full exchange of information coincides in the limit with 
the averaged optimal value when each of the producers makes his/her own 
decision. The common value in the limit is the one obtained by considering 
an optimal allocation for the underlying population with the given density. 
Groves and Hart (1982) complemented the result by providing asymptoti- 
cally optimal allocation schemes. The schemes work, almost surely, as it is 
assumed [like in Arrow and Radner (1979)] that the producers are identi- 
cally distributed and randomly drawn from a given distribution; another 
assumption was that the underlying distribution is known to each of the 
producers. 

In this paper we try to relax the latter two assumptions. We replace the 
probabilistic framework by an assumption that the set of producers forms a 
good sample, how this is done is explained in section 3. This eliminates the 
assumptions of independence and identical distribution, and leads to determi- 
nistic, rather than almost sure, conclusions. 

The improvement is more than a mere technicality; it has a transparent 
economic meaning. Samplings are fundamental to the type of models that we 
analyze. In our model the sampling occurs when producers come to pick 
their allocated resources. Such procedures occur in real life. For instance, a 
government may announce a loan policy for a developing area (policy which 
may be modified in time). Prospective developers, from the space of 
developers, come then to get the loans. There is no reason why the 
developers that show up would form an identically distributed and indepen- 
dent sampling. An assumption concerning the probability distribution is 
more reasonable. (Even in a statistical framework, when a sample is picked 
out of a large population, the validity of the iid assumption in real practice is 
always in doubt.) 

Apparently, Arrow and Radner (1979) were bothered by the strong 
probabilistic assumptions, and gave an example showing that the iid 
assumption cannot be dropped. In this paper we managed to get by without 
the iid assumption by introducing another condition, considerably relaxed, 
which reflects an economic characteristic of the market. We call it p-tightness 
of the sequence, where p is the vector of shadow prices for the allocation 
process. The condition is introduced and explained in section 5. 

A variation of the model allows the optimal policy to be modified as the 
producers come along. This is important in particular when information on 
the distribution of agents is not known beforehand, and has to be accumu- 
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lated during the execution of the allocation - a real life situation. When 
modifying the allocation schemes of Groves and Hart (1982) we develop also 
such adaptive processes. 

We organize the paper as follows. In the next section we introduce the 
basic model, following Arrow and Radner (1979) and Groves and Hart 
(1982) and give the technical assumptions. Our approach to the problem is 
displayed in section 3, and compared with the approach of Arrow and 
Radner. In section 4 an example is constructed, showing that a useful 
property does not hold without the aforementioned additional condition. The 
latter has an economic interpretation, and we assume it in the rest of the 
paper. In section 5 we establish a convergence result. In section 6 we 
consider allocation schemes in our relaxed framework, following and modify- 
ing the schemes suggested in Groves and Hart (1982). The closing section 
displays the adaptive version of the allocation scheme. 

2. The model 

We first set the model, along the lines of Arrow and Radner (1979) and 
Groves and Hart (1982), and describe the optimization problems that arise. 
The technical assumptions follow. 

Producers t i,. . . , t, come from a set T of agents. Each producer, say t, 
when participating in the allocation process, has to choose an element / from 
a given set L(t) of decisions; these are called local decisions and reflect, say, 
labor recruits, facility installments, etc. Then, if provided with the vector x of 
resources, the agent t produces the amount F(x, e, t). To simplify notations 
we allow e to belong to a fixed set L [which contains the union of all L(t)] 
and set the production function F&Z!, t) = - 00 if [#L(t). The vector x of 
resources belongs to a set XC R”, the s-dimensional euclidean space. Thus 

F(x,e,t):XxLxT+[-m,oo). 

We wish to examine the case where the total amount of resources to be 
allocated in the process is large for a large number of producers. Since we 
plan to consider the case where n+co, it is convenient to express the 
products in terms of averages. We denote by 

the vector of average of quantities to be allocated. 
Let N=(tl,..., t.} be a set of producers. (Here ti denotes both the ith 

producer and the parameter in T assigned to the ith producer. We leave this 
formal ambiguity; no confusion in the interpretation of the results should 
arise.) The objective of the allocation procedure is to maximize the total 
output, or equivalently, the average output. We assume that F(x, e, t) is non- 
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decreasing in x, which reflects free disposal; therefore the optimization 
problem facing the ensemble N is 

J’(N) I maximize k i$l F(Xi, ei, ti) 

subject to i ,$i xi = 4’ and ei E ~5. 
I 

We denote by o(N) the supremum of the problem P(N). 
A centrally monitored allocation with full control over the choices !i and 

Xi can achieve the value o(N), or get output as close to v(N) as desired if 
P(N) does not have an optimal solution. As explained in the introduction, we 
wish to come up with a value close to u(N) using a process which does not 
require centrally monitored decisions. We examine a case where T, the set of 
potential producers, is equipped with a probability distribution (and the 
sample ti,..., t, will eventually be related to this probability distribution). 
Given a probability distribution p on T, we consider the optimization 
problem 

P(P) 
maximize j F(x(t), e(t), t) dp(t) 

T 

subject to J x(t) dp(t) = q”. 
T 

We denote by o(p) the superemum of P(p). [Needless to say, the functions 
(x(&e(t)) participating in the problem are assumed measurable, and so that 
x(t) and F(x(t),e(t),t) are integrable. Such pairs are called admissible 
policies.] 

The previous setting is for any probability measure on T; we denote by /J* 
the specific distribution that T originally is equipped with. Trying to follow 
the motivation given in the introduction, we face two questions. First: 

Is u(p*) a good approximation of u(N) for n large? 

If the answer is positive we ask: 

How can a solution of P(p*) be employed in simplifying the 
allocation process for N, yielding a good approximation of u(N)? 

The analysis of the first query is done in the next three sections, and that 
of the second question in the final two sections. Here we display the 
technical conditions. 
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Assumptions 

(i) T is a complete separable metric space, considered with its Bore1 
structure. 

(ii) L is a complete separable metric space. 
(iii) X is closed convex subset of R”, bounded from below. 
(iv) ~7’ is in the interior of X. 

In Arrow and Radner (1979) and Groves and Hart (1982), X = R”,, the 
non-negative orthant of R”, and q’>>O. The appeal of allowing negative 
entries is clear, yet the boundedness from below is essential (as we shall see), 
therefore (iii) is not much of a generalization. 

Assumptions (cont.) 

(v) p* is a probability measure on T. 
(vi) F(x,/, t) is a Bore1 measurable function on X x L x T, and non- 

decreasing in the variable x. 
(vii) - cc < u(p*) c co. 

We introduce assumption (vii) to avoid trivial pathologies. The part 
v(P*) < cc is implied, e.g., by the assumption [adopted in Groves and Hart 
(1982)] that F(x,/, t)Sa+blxl for some a and b. 

For the next three assumptions we need the following notation: Let G(t) 
be the set in RSfl, defined by 

G(t) = closure ((x, a): x E X, a 5 F(x, L, t) for some /E L}. 

We consider the collection of closed subsets of RS+l as a metric space with 
the metric generated by closed convergence [see Hildenbrand (1974)], namely 
Ak converges to A if every cluster point of {a,}, with CQE Ak, is in A, and 
every point a E A is a limit of a sequence uk with uk E Ak. 

Assumptions (cont.) 

(viii) G(t) has a bounded selection. 
(ix) If t is an atom of p* then G(t) is convex. 
(x) The mapping t-+G(t) is continuous. 

The first of the previous three conditions amounts to normalization. The 
second is standard in the economic literature and it is not a serious 
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restriction in our model. Indeed, when producers are sampled, and several of 
them represent the same atom, then in the limit we have the convexification 
effect; namely, in the limit the system behaves, as far as computing the value, 
as if it satisfies the assumption. We leave out these details and assume (ix). 
The difference may arise in the allocation process and we comment on this 
when discussing allocation schemes (Remark 6.5). Assumption (x) looks 
strong [in Groves and Hart (1982) the set T is merely a measure space], but 
actually it is not a restriction at all, and we adopt it here for convenience of 
presentation only. The reason is that the analysis can anyway be done on the 
space of agents characteristics; namely, what counts is not the name t, but 
rather the type as expressed in the production function F(x,/, t), and any 
sample from T can be interpreted as a sample of production functions. 
Whatever natural topology is taken on the space of production functions, the 
mapping t+G(t) [or rather, F+G(F)] will turn out to be continuous. Rather 
than introducing this machinery and prove the continuity at the level of the 
agents’ characteristics, we prefer to assume it at the level of the producers’ 
names. 

Some notations: p. x denotes the scalar product of p and x; the norm 1x1 is 
the Euclidean norm, i.e., 1x1 =(x * x)“‘; inequalities between vectors are 
interpreted coordinatewise. Domains of integration under an integral sign, 
and arguments of integrands, will be supressed when obvious. 

3. The approach 

Pursuing the motivation that if N ={tl,. ..,t.} is a good example of T then 
v(P*) is a good approximation of u(N), Arrow and Radner (1979) came up 
with the following result. It has been established later by Groves and Hart 
(1982) under relaxed conditions. 

Proposition 3.1. Zf t,, . . . , t, are drawn as iid (independently and identically 
distributed) with the common distribution being p*, then v(N) converges almost 
surely to v(p*), as n tends to infinity. 

Two conceptual drawbacks of the previous approach are apparent. The 
first is the probabilistic nature of the conclusion. The convergence holds only 
almost surely, and may fail at a given realization, or in a specific example. 
The second condition is the independence condition which seems very 
restrictive from the point of view of applications. 

In this paper we suggest another approach. We consider the empirical 
distribution of the sample N = (tl,. . ., t,}, and try to examine whether 
closeness of this empirical measure to /,J* guarantees closeness of v(N) to 
v(P*). If, or rather when, the implication holds, we have convergence that is 
deterministic and does not depend on the process in which the sample is 
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formed. We comment later on how to recover Proposition 3.1 from our 
results. This approach of, essentially, comparing the distributions of the 
agents’ characteristics is of course not new in the economics literature; it is 
used extensively in general equilibrium theory of large economies, see 
Hildenbrand (1974). 

We need the following notions: Given a sample N = {ti,. . . , t.], we denote 
by pL, the empirical measure generated by N, namely pL, is a probability 
measure and p”(A) is equal to n-l times the number of indices i for which 
tie A. As a convergence notion among probability measures on T we take 
the weak convergence of measures, or equivalently, the Prohorov distance 
will serve as a metric, see Billingsley (1968, p. 11 and p. 238), or Hildenbrand 
(1974, p. 48). 

With the previous conventions, our approach is to investigate the conti- 
nuity of the values v(N) with respect to the measures K. To this end it may 
be natural not to restrict the argument to be an empirical measure, namely 
to examine the continuity of u(p) on p, and as ~1 converges to p*. Indeed, 
that is what we do in section 5. But before that, we show in the next section 
that what may appear intuitive is not correct; namely, without an additional 
condition, u(N) may not converge to u(p*) as the empirical measures 
converge to the underlying distribution. 

4. Counterexamples 

We start with a simple example in which the empirical measures p(. 
converge, yet the value of the limit economy is inferior to the limit values of 
the samples. We then provide modifications of the same example, this to 
eliminate possible false conjectures as to the source of the phenomenon. 

Example 4.1. Only two types of producers participate, say T= {a, b}. There 
are no local decisions, and the production functions (from which the variable 
/ is absent) are F(x,a) =2x and F(x, @=3x. Here x is a scalar and 
X=[O, co). We set q”= 1. Let the sample N have one producer of type 6 and 
n- 1 producers of type a. The optimal solution of P(N) is obviously to 
provide the producer of type b with all the resources, thus getting v(N) =3. 
The limit distribution p* is, however, concentrated on {a}, and thus u&*)=2. 
(Indeed, continuing the discussion in section 2, it would be foolish in our 
case to use an optimal solution of the limit economy in any of the samples.) 

The lack of convergence in the previous counterexample should not be 
attributed to the fact that each of the samples has some positive weight far 
from the support of the limit distribution. Nor is the reason that the 
production function is linear. In the following counterexample the support of 
each of the samples is included in the support of the limit distribution, and 
the production function of each producer is bounded. Yet the value of the 
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limit variational problem is not a good approximation of the limit of the 
values. 

Example 4.2. Again x is scalar, X = [0, co) and q” = 1. There are no local 
decisions. The space T is (0, l] and F(x,t)=(l -t/2)min(x,~t-‘/2). Let the 
limit distribution p* be the uniform distribution over T. Notice that there is 
a unique solution to P(p*), namely x(t) =ft- 1/2, and the optimal value is 

Consider now a sequence of samples as follows. The sample N = {ti, . . . , t.} 
is defined by t1 =(2n)-2 and ti= i/n for i=2,. . . , n. The empirical measures 
converge clearly to p*. The optimal solution of P(N) is x(tJ = 0 for i > 1 and 
x(tl) = n. The value is 

v(N)=(l-ne2)n*i 

and as n+oo the values o(N) converge to 1, which is bigger than 5/6. 
The previous counterexample can be further modified so that F(x,t) is 

strictly concave in the x-variable. We leave out the details. 
In both examples we have that limo(N) is bigger than u(p*). We show in 

the next section that this reflects a general property. However, this property 
relies on the technical assumptions, in particular assumptions (viii) and (x). 
Without these the case lim u(N) < u(P*) may occur. 

What causes the discontinuity phenomenon in the examples is, roughly, 
that in the samples a small portion dominates in the efficient production, and 
it is small enough to be washed away in the limit. The condition in the next 
section eliminates such a possibility, and yields the convergence. 

5. Convergence 

We start with the definition of p-tightness, which is the condition that 
guarantees the convergence, and explain the measure theory and the 
economic interpretation of it. Then we state the convergence result, revisit 
the examples of last section in light of this result, and prove it. We conclude 
with some comments including recovery of the Arrow and Radner result. 
Although in the applications we are interested in a sequence of empirical 
measures, we give the definition and prove the result for general probability 
measures. 

The following function will be used. For p E R”, a vector of prices, we set 
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(5.1) 

For any given measure on T, say v, the function S(. ,p) is measurable with 
respect to the completion of the measure v. This is a standard application of 
the projection theorem, see Hildenbrand (1974, p. 44). In particular we can 
always integrate S(t,p) against probability measures on T, with the integral, 
in view of (viii), being finite or + co. 

Definition 5.1. Let PER” and let pj be a sequence of probability measures 
on T. We say that the sequence ccj is p-tight if for every E>O there exists a 
compact subset T, of T such that S( * ,p) is bounded on T, and 

r,l,!S(t, p)j dpj < E for all j. (5.2) 

The p-tightness condition reflects an economic situation, and thus has an 
economic interpretation, as follows. The vectors p in the sequel are price 
vectors for the goods x. Given a vector p of prices, the amount S(t,p) is the 
maximum (infinitesimal) profit that the producer t can make. If p-tightness 
holds, then although high profits by a small portion of the producers are 
possible, the effect of this on the whole economy is small; namely, in the 
aggregate, a small portion of the producers can with the given p, collect only 
a bounded portion of all profits. 

The measure theory behind the definition can be understood best when the 
definition of tightness is recalled, e.g., Billingsley (1968, p. 37) or Hildenbrand 
(1974, p. 49). Indeed, p-tightness implies tightness of the measures Vj with 
dvj(t) = IS(t, p)I dpj. Alternatively, tightness is a special case of p-tightness 
where S(t,p) = 1. Any convergent sequence of measures is tight, but may not 
be p-tight. One can give conditions on F that imply p-tightness for some or 
for all p. For instance, if F(x,e, t) is bounded, or if F(x,e, t) is o((x(( as 
x +CCI uniformly in (e, t), then any converging sequence of measures is 

i-t!ght for all p in R” 
For the statement ‘of the main result we need to recall the notion of 

shadow prices for the underlying problem P(p*). If the latter has an optimal 
solution, say (x*(t), e*(t)), then (it is well-known), it generates prices, say p*, 
such that 

(5.3) 

and (5.3) characterizes optimal solutions. But even when P(p*) does not have 
an optimal solution, the shadow prices p* can be defined, with the property 
that there exists a maximizing sequence (namely a sequence of admissible 
policies with values converging to u(p*)), say (xk(t),e,(t)), such that 

F(xk(t), f,(t), t) -p* . xk(t) converge p* - a.e. to S(t, p*). (5.4) 
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The geometrical interpretation of these shadow prices is that the vector 
(-p*, 1) generates a supporting hyperplane to the closure of the set 

((Sx(t)d~*,SF(x(t),e(t), t)dp*):(x(t),/(t)) admissible} 

at the point (q’,v(p*)); equivalently, if o(p*,q) denotes the supremum of the 
problem IQ*) with constraint condition q, instead of q”, then 

u(p*)-p* .q” =max(u(p*, q)-p* ‘4: qEX}. 

Theorem 5.2. Let pi be a sequence of probability measures on T, converging 
to the underlying probability measure p*. Let V(~j) be the value of the 
variational problem P(pj), then 

lim inf u(pj) 2 u(p*). (5.5) 

Zf in addition the sequence ~j is p*-tight, with p* being the vector of shadow 
prices for IQ*), then 

V(~j) conoerge t0 0(/J*). (5.6) 

Before turning to some lemmas and the proof of the theorem, we wish, in 
light of the convergence result, to examine the two examples of section 4. 

Example 4.1, revisited. Firstly, we see a demonstration of conclusion (5.5), 
with strict inequality. The convergence (5.6) fails. Indeed, the shadow price 
for P(p*) is p* = 2. Any sample described in the example has positive weight 
on type b, and S(b, 2) = co. Hence the 2-tightness fails. 

Example 4.2, revisited. Again (5.5) holds with strict inequality. A possible 
shadow price for P(p*) is p* =$ (actually any 0 5 p* <i will do). For 
t,=(2n)-* we get S(t,,$)=)n, and when integrating S(t,& as required in 
(5.2), on a set containing ti, and with respect to p., we get at least $. Since 
for large n the point tl is close to 0, and, eventually, outside of any compact 
set, we cannot achieve an arbitrary E in (5.2) for a compact T, (although the 
integral is finite), and the sequence of empirical measures is not &tight. [It is 
2-tight, but 2 is not a shadow price for P(p*).] Notice that a slight change in 
the sampling would yield $-tightness. Indeed, if t 1 = l/n, and as before ti = i/n 
for i> 1, then S(ti,f)=a(n/i)“*, and the sequence p” is i-tight. 

We prove the two parts of Theorem 5.2 separately, each part is preceded 
by some lemmas that are needed also in the sequel. 
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Lemma 5.3. Let v be a measure on T, with compact support T,-,. Let Vj be a 
sequence of measures converging to v. Let f(t) be a bounded real-valued 
function, continuous at each to E To (yet not necessarily continuous at t # T,). 
Then s f dvj converge to s f dv. 

Proof. If f were continuous on T the result would follow from weak 
convergence. So let g be bounded and continuous on T, such that g coincides 
with f on To. Such g exists by Tietze Theorem. Then Sgdvj converge to 
jgdv. But in view of the Prohorov metric characterization of weak conver- 
gence [Billingsley (1968, p. 238)], and since both f and g are bounded and 
f(t)-g(t) tends to 0 as t+To, we can conclude that j(f -g)dvj+O as j-co. 
This completes the proof. 

Lemma 5.4. Let To be a compact subset of T such that p*( To) 2 1 --E. Let pj 
converge to p*. Let (x(t),e(t)) b e admissible choices such that: x(t) and 
F(x(t),e(t), t) are bounded, say by the bound b, and both continuous at t E To. 
Then for large j the integrals j x(t) d~j are within an e(3b + 1) neighborhood of 

! x(t) dp*, and J F(x(t), f(t), t) d~j are within e(3b + 1) neighborhood of 

j F(x(t), e(t), t) dp*. 

Proof. We can separate each pi to, say, vj+ai, such that vj converge to PO*, 
the restriction of ,u* to To, and aj( T) <a The separation can be done in view 
of (i) by using standard arguments. Then, by Lemma 5.3, f xdvj and f Fdvj 
converge, respectively, to f xdp$ and f F d& The latter are within Eb 
neighborhoods of J xdp* and J F dp*, and since ai <E the integrals with 
respect to Vj are within 2sb neighborhoods of f xdpj and j F dpj, hence the 
estimates. 

We say that the admissible policy (x(t),e(t)) is an s-solution of P(p*) if 
1 x(t)dp*sqO+(s,..., E) and v(p*) - j F(x(t), d(t), t) dp* -CC. 

Lemma 5.5. Let E >O be specified. There exists an e-solution (x(t),e(t)) of 
P(p*) with the following properties: x(t) and F(x(t),e(t), t) are both bounded, 
say by b; there exists a compact set To with p*(To) 2 1 --Ebb’ and such that 
x(t) and F(x(t),L(t), t) are continuous at each t E To. 

Proof. We start with an s/Zsolution of P(p*). It can be made bounded by 
replacing its tail with the bounded selection guaranteed by condition (viii). If 
the tail is chosen small enough the result is, say, an $&-solution, bounded, say 
by b-l. We denote this solution by (xl(t),/,(t)). By Lusin theorem there 
exists a compact set To with p*(TO)zl-aebb1 such that xl(t) and 
F(x,(t),e,(t), t) are continuous on To. The continuity of G(t), assumed in (x), 
enables to choose x(t) and L’(t) on T\T, such that x(t) and F(x(t),/(t), t) are 
bounded by b and such that t+t, and to E To then limx(t)=x,(t,) and 
lim F(x(t),e(t), t) = F(x,(to),r!,(to), to). This can be done by applying a 
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standard measurable selection theorem at a set-valued function which 
pointwise is a subset of G and at each C,,E To it is equal to 
{(xl(tO),F(xl(to),~,(t,), to)}. Such a set-valued mapping can easily be con- 
structed in view of the continuity of x1 and F(xl,G1, t) on T,,. The policy 
(xl(t),l,(t)) for tET, and (x(t),/(t)) for tET\To yields now the desired 
properties for x and F, namely boundedness by 6 and continuity at t E T,,. 
The choice of T,, implies that (x(t),e(t)) yields an output which differs in 
value from that of (x1(t),/,(t)) by only $a, hence (x(t),/(t)) is an a-solution, 
with the desired properties. 

Proof of (5.5) in Theorem 5.2. The idea is to consider the s-solution 
guaranteed in Lemma 5.5, and apply to it the conclusion of Lemma 5.4. This 
would show that u(p*) --E can be obtained in P(~j) for j large, and since E is 
arbitrary, (5.5) holds. There is, however, one flaw: The e-solution may not 
satisfy the constraint q” for P(pj) or for P(p*). We therefore have to modify 
the argument, as follows. 

The resources q” were fixed in the definition of P(p). We can, however, 
consider the problem with various constraints q. We therefore write P(p,q) 
for the variational problem with resources q, and write o&q) for the 
supremum of this problem. 

Consider now P(p*,q). We claim that u(p*,q) is a convex function of q. 
This follows in a standard way from Liapunov convexity theorem [Hilden- 
brand (1974, p. 45)] and condition (ix). Together with condition (iv) the 
convexity of u(p*,q) implies that u(p*,q) is continuous at q”. Therefore, for a 
given .so>O we can choose a q1 =q”-(6,6,. . . ,6) with 6>0, such that 

u(~*,qO)-U(~*,q’)<&o. 
We now use the s-solution guaranteed by Lemma 5.5 with s=min(b, so). 

The convergence that Lemma 5.4 implies, guarantees that for j large 
J x(t) dpj is within a b-neighborhood of ql, in particular it satisfies the q” 
constraint. And that for j large 

G*, q”)-_S F(x(t), f(t), t) dPj<EO, 

in particular u(p*, q”) - u(pj, q”) <eo. Since a0 is arbitrary, (5.5) holds. 

We need two lemmas before proving the other conclusion. 

Lemma 5.6. Let ~j converge to p*, and let p* be a vector of shadow prices 
for P(p*). If ~j is p*-tight then it is p-tight whenever pep* (namely pilp: for 
all the coordinates i = 1,. . . , s). 

Proof. Since S(t,p) is bounded from below [by (viii)] and since pj is tight, 
by the convergence, we can conclude the p-tightness from an economic 
reasoning. For higher cost, pzp*, the profit is less, S(t, p) $S(t,p*). 
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Lemma 5.7. Let p. E R” and To c T be such that S(t, p) is bounded as p ranges 
in a neighborhood of pO, and t E To, then the restriction of S(t,p,) to TO is 
continuous. 

Proof. Notice that S(t,p)=sup{r-p.x:(x,r) E G(t)}. The continuity of G(t) 
implies that S(t,pJ is lower semicontinuous, i.e., if tj+to then S(t,,p,) 5 
liminfS(t,,p,). Continuity will therefore be established when we verify that 
S(t,, p,,) Llimsup S(tj,po). We shall assume the contrary and get a 
contradiction. 

If S(tO,pO) <limsup S(tj, pO) then a subsequence of tj, say tj itself, exists and 
(Xi, rj) E G(tj), such that S(t,,p,) <lim(rj-p,.xj). The sequence (xj,rj) cannot 
be then bounded, since a cluster point (xO,rO) then belongs to G(t,), and by 
continuity S(t,,pJ 2 rO-pO .x0. By boundedness of S(t,p,) it follows then 
that {Xj} is unbounded. But then we can consider pj=po-~xj* Ixjl-‘, with 
E>O fixed so that pj is in the prescribed neighborhood of pO, and clearly 
S(tj, pj) is unbounded. This is the desired contradiction. 

Proof of (5.6) in Theorem 5.2. If (5.6) fails, then, with (5.5), there exists a 
subsequence of ~j, say ~j itself, with u(p*) < lim V(pj). Denote the right-hand 
side by r,,. Let p* be the shadow price of P(p*). Then 

(5.7) 

We plan to show that under the given p*-tightness, (5.7) is impossible. If (5.7) 
holds then also 

(54 

for p. > p* and close enough to p*. [Here we use condition (iii). It is possible 
to construct a counterexample to (5.6) if (iii) fails.] It follows from the 
measurability conditions [see e.g., Hildenbrand (1974, p. 65) for a correspon- 
dence form of this] that 

o(p*)-~Po~~=SS(t,po)d~~*. 
T 

We use now the p*-tightness, and the PO-tightness (Lemma 5.6), and 
construct for &=$(rO -@*)) a set T,c T such that 

J S(t, PO) dPj<E (5.9) 
T\T, 

for all j and such that S(t,p*) is bounded on T, (see Definition 5.1). It is 
clear that S(t,p) is bounded for t E T, also for p in a neighborhood of p. [by 
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boundedness of S(t,p*)]. By Lemma 5.7 S(t,p,,) is continuous on T,. By the 
convergence of ~j to p* and (5.9) it follows that 

lim sup J S( t, ~0) d~j < rg - p. 4’. 

T 

But the latter inequality contradicts the definition of 

S(t,po)=SUp{r-poYcr=F(x,e,t), XEX,k!d). 

This implies that (5.8), hence (5.7), are impossible, and completes the proof. 

Remark. The previous proof could be simpler had we known that S(t,p*) is 
continuous. Unfortunately it may not be continuous even if it is bounded. 
We need to pass to an interior vector of shadow prices to get the continuity. 

A natural query now is for conditions guaranteeing the conditions of the 
convergence result, in particular the p*-tightness. Boundedness of F(x, e, t) 
clearly suffices for all p. If F(x,e, t) sa+pex then pi-tightness is guaranteed 
for all p1 zp. But recall that p-tightness may depend strongly on the 
sequence pj (see the revisit at Example 4.2 in this section), or in other words, 
the p-tightness may depend on the way the sample is formed. 

In the Arrow and Radner procedure the samples are formed as indepen- 
dent and identically distributed drawings from p*. It is well-known then, that 
the empirical measures converge almost surely to p*; in particular the 
empirical measures are a.s. tight. It is as easy to check that the empirical 
measures are also almost surely p*-tight; in fact, the empirical measures are 
a.s. p-tight for every p such that S(p,t) is p*-integrable. This almost sure p*- 

tightness allows to derive the Arrow and Radner result from our theorem. 

6. Allocation procedures 

In this section we examine ways to employ solutions of P(p*) in getting 
approximate solutions to P(N); this when the sample is good and the 
conditions of the convergence result hold. We work here under the following 
assumption, used in Groves and Hart (1982). (The assumption is eliminated 
in the next section.) 

Assumption 6.1. The producers and the center know the production func- 
tion F(x, e, t) for all t and know the underlying probability measure p*. 

The allocation pattern. With Assumption 6.1 the approximate solutions 
have the following pattern. A pair (xo(t),eo(t)) is announced, or computed by 
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the agents. The pair does not depend on the specific sample N. The producer 
ti makes the local decision e,(ti) and demands x,(ti) as an input. 

The benefits from such a program are apparent. If 
ti, under Assumption 6.1, can compute 

(xo(ti), e,(ti)) for himself/herself, with no need of communication, i.e., with 
fully decentralized decisions. Even if 

Xo(ti)~q’ 
I 

and 

lim (u(N)- k 
n-‘co 

,il F(xo(tJ, eo(tA ti)) =O* 
I 

The pair (x0(t), e,(t)) is an asymptotic &-solution if (6.1) holds and 

limsw (u(N) - k ,il F(xo(tA eo(ti), ti)) 5 E* 
“‘cc I 

(6.1) 

(6.2) 

(6.3) 

The program that we display is the one behind the procedures suggested 
by Groves and Hart (1982). Our definition of an asymptotic solution differs 
slightly. We require that the inequality in P(N) holds asymptotically, as 
reflected in (6.1), while Groves and Hart demand that it holds for each P(N). 
Both approaches have clear economic interpretations. To take care of the 
case when CXo(ti) exceeds nq, Groves and Hart (1982) provide rationing 
rules. We note, without supplying the details, that these rationing rules can 
be used also under the deterministic framework of this paper. 

Theorem 6.3. Suppose that (x*(t),e*(t)) is an optimal solution of P(p*), and 
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such that both x*(t) and F(x*(t),e*(t),t) are bounded and continuous. Let Nj 
be a sequence of samplings, with empirical measures pj which converge to p*, 
and which are p*-tight, p* being shadow prices for P(p*). Then (x*(t),/*(t)) is 
an asymptotic solution of P(NJ. 

Proof. Property (6.1) is taken care of by the convergence of ~j to p*, which 
also implies that 

i ,$ F(X*(ti),e*(tJ, ti) converge to J F(x*(t),&*(t), t) dp*. 
11 

The latter is equal to v(p*). Property (6.2) follows now from Theorem 5.2 
which implies that V(Nj) converge to v@*). 

Unfortunately, the general conditions that we work under, do not imply 
existence of an optimal solution (x*(t),f*(t)), and even when it exists, it may 
not satisfy the conditions needed in the preceding theorem. In these cases 
(x*(t),/*(t)) cannot be used as an asymptotic solution, but the following 
result may be of use. 

Theorem 6.4. Let Nj be a sequence of samplings, with empirical measures ,uj 
coverging to p*, and which are p*-tight, where p* being shadow prices of P(p*). 
Then for every E>O there is an asymptotic &-solution (x,(t), L,(t)) of P(Nj). 
This asymptotic &-solution can be obtained by taking any e/3-solution of 
P(p*,q,) with q1 <go and close enough to go, and modify it on a set TI of 
small @‘-measure, such that at any tE To with To= T\T,, the functions x,(t) 
and F(x,(t),/,(t), t) are continuous. 

Proof. How to choose q1 is described at the beginning of the proof of 
Theorem 5.2 (and then the strict inequality constraint holds for j large). How 
to construct then (x,(t),e,(t)) is described in Lemma 5.5, with the conver- 
gence of (l/n) CF(xo(ti),do(ti), ti) to v(p*)-E guaranteed in Lemma 5.4. The 
convergence result, Theorem 5.2, implies that (xo(t),eo(t)) is an asymptotic 
c-solution. 

Remark 6.5. The convergence result of the previous section, and the derived 
asymptotic solutions of the present section, make use of the convexity 
assumption (ix). We explained in the previous section why the convergence 
result holds when the ~j are the empirical measures of a sequence tl, t2,. . . of 
agents that are drawn according to the underlying measure p*. In such a 
case it is also possible to modify the allocation pattern of the present section, 
and maintain the optimality without the convexity. This can be done as 
follows [a similar technique was used in Groves and Hart (1982)]. First we 
allow mixed strategies, or relaxed strategies in the languages of the calculus 
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of variations. Namely, we allow an agent of type r to consider pairs 

(%~1),...,(Xs+2, sf2 e ) with, respectively, probabilities aI,. . . ,a,+,. The 
resources exploited by such a choice are interpreted as Caixi, and the output 
as CaiF(xi, ei, z). The set G(r) for the relaxed problem is convex; indeed, it is 
a subset of Rs+ ‘, and by Caratheodory theorem convex combinations of s + 2 
elements (xi, F(xi,ei, 7)) generate the convex hull. The modified problem has 
an asymptotic &-solution, and let (x0(&8,(t)) be one. For the atom z the 
choice (x,(z),e,(z)) may be the relaxed one, but then (x,,(r),F(x0(r),.8,(r),r)) 
is generated as a convex combination of, say, (xo,i, F(xo,i,e,,i,z)), i= 
1 ,..., s+2, with weights ai, i= l,..., s +2. When the agents arrive, a subse- 
quence of them, say til, ti,. . . , is of type z, with proportion p*(r) to the whole 
sequence. What ought to be arranged now in order to get an c-asymptotic 
solution without convexity is that each tij will choose one of the (x,,~,~,J in 
a way that asymptotically each of (xO,i, O,i e ) is chosen with proportion ai. 
This can be arranged in two ways. One mechanism is probabilistic: tij 
chooses one of the (xo,i, e,,i) with probabilities aI,. . . , a,, 2. The decisions are 
decentralized, and the goal is achieved with probability one. A deterministic 
procedure can be arranged, but needs some centralization: As the agents ti, 
arrive, they are assigned one of the (x~,~, e,J by the center, such that the 
correct asymptotic proportions are obtained. 

7. An adaptive procedure 

The complete knowledge of Assumption 6.1 does not occur in many 
realistic situations. Often, the underlying probability p* exists but is not 
known beforehand, and information about it, and about the technologies 
F(x,/,t), has to be collected during the allocation process. An adaptive 
scheme is then in place, and in this section we examine the following 
procedure. 

An adaptive allocation pattern. As the sequence of producers t,, t,, . . . , come 
with their demands, the center collects information about their production 
functions F(x,e,ti). At a given sequence of arrivals, say iI,. . .,ij,. .., the 
center announces, respectively, prices, pi,,. . .,pij,. . . . The producers tk with 
ij<ksij+, choose then (x,,!,) so to maximize F(xk,8,, tk)-pij-xk. 

Definition 7.1. If the outcome of the allocation pattern is that 

limsup i 
n*oo k 

and 

(7.1) 
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k 
(7.2) 

then we say that pi,,pi2,. . . generate an asymptotic solution to P(N) 
(compare with Definition 6.1). 

In Remark 7.6 we comment on the efficiency of this procedure, and on 
alternative procedures. For the allocation pattern to work we need a 
technical assumption which is stronger than what we used before [yet not 
stronger than the assumption used by Arrow and Radner (1979) or the one 
used by Groves and Hart (1982) when dealing with a price mechanism]. 

Technical Assumptions 7.2. The function g(x, t) = sup(F(x, e, t): r! E L} is 
strictly concave in the variable x, and for each (x,t) there is an / such that 
g(x, t) = F(x, L, t). The problem P(p*) has an optimal solution. 

The condition that g(x,t) is attained can be relaxed, see Remark 7.6. Note 
that strict concavity in x of F(x,e, t) is not sufficient for the technical 
assumptions. If, however, e belongs to a vector space [as assumed in Arrow 
and Radner (1979)] and F(x,L, t) is strictly concave in (x,/), and g(x, t) is 
attained, then the strict concavity of g(x,t) follows. Conditions guaranteeing 
existence of solutions for P(p*) are available in the literature [e.g. Aumann 
and Perles (1965)]. 

Recall that p. is a shadow price vector for the problem P(N) if 

u(N)-p;qO=max{u(N,q)-pp,.q:qEX}, 

where u(N,q) is the supremum of the problem P(N) but with constraint q 
rather than q” (see the discussion preceding Theorem 5.2). 

Theorem 7.3. Let tI, tz,. . . be a sequence of producers and suppose that the 
empirical measures ruj, generated by {tI,. . . , tj} converge to p*. Suppose also 
that every shadow price vector p* to P(p*) is in the interior of the set of price 
vectors p for which {pj} is p-tight. Let pij be a shadow price uector for the 
problem P(~il). Then pi,)pi2). . . generate an asymptotic solution to P(N). 

Proof. We first argue that {pi,} is a bounded sequence, and every cluster 
point, say po, is a shadow price for P(p*). This holds under more general 
conditions; in our framework it follows directly from the observation that 
u(N,q) is a concave function and converges to u(p*,q) on a set of q in a 
neighborhood of q”. The concavity of u(N,q) follows from the concavity of 
g(x, t), and the convergence follows from Theorem 5.2 and the condition that 
pj are p-tight for a neighborhood of the shadow prices for P(p*,q’). 
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The strict concavity of g implies that the demand coordinate x*(t) of all 
possible solutions (x*(t),e*(t)) of P(p*), is unique; indeed it is determined by 
the condition 

maximize g(x, t) - p* . x 

with p* any shadow price vector of P(p*). Furthermore, x*(t) is continuous, 
and F(x* (t),e*(t), t) is continuous. This follows from the strict concavity of 
g(x, t) and the continuity assumption (x); indeed, the pairs (x,g(x, t)) form the 
boundary of G(t). 

Let Pj be a shadow price vector to P(pj), and denote by yj(t) the solution 
of 

maximize g(y, t) - pj. y. 

Then, we claim, yj(t) converge to x*(t) and g(yj(t), t) converge to 
F(x*(t), f*(t), t); furthermore, the convergence is uniform on compact sets. 
The convergence follows from the first observation of the proof, namely that 
pi converge to the price vectors that characterize x*(t), and from the strict 
concavity of g(x, t). The uniformity of the convergence on a compact TO 
follows from the continuity assumption (x), since the latter implies that yj(tj) 
converge to x*(t) if tj+t. 

Suppose we manage to find, for a given E >O, a compact To such that on 
the complement of T,, all the integrals of yk(t), g(yk(t), t), x*(t), 
F(x* (C),8*(t), t) with respect to all pj and p*, are less than E. In the sequel 
we say ‘c-converge to’, and mean ‘converge to an E-neighborhood of’. 

A consequence of the preceding observations is that for the assumed To 

J yj(t)dpj &-converge to J x*(t)dp* 
TO TO 

(7.3) 

and 

S &j(t), t) dpj c-converge to J F(x*(t), f*(t), t) dp*. (7.4) 
TO TO 

This follows from the weak convergence of pj to p*, and the established 
continuity of x*(t), F(x*(t),f*(t), t) and the uniform convergence of 
yj(t),g(yj(t), t) and the properties of To. 

Notice now that as pij are announced, the choices (x,,e,) of the producers 
tk with indices ij < k 5 ij + 1, are xk(t)=yij(t). Therefore (7.3) and (7.4) with the 
uniform convergence imply 

E-converge to jO x*(t) dP (7.5) 
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and 

i 1 ST<. F(x,, ek, tk) =onverge to j. W*(t), l* (t), t) dp*. (7.6) 

fkET0 

Since integration on the complement of To would change the integrals by at 
most a, and if indeed E is arbitrarily small (namely To can be such 
constructed) we may conclude, that 

converge to s x*(t) dp* 
T 

(7.7) 

and 

converge to J F(x*(t), 6’*(t), t) d,u*. 
T 

(7.8) 

However, (x*(t),e*(t)) is an optimal solution of P(p*), therefore (7.7) implies 
(7.1) and (7.2) is implied by (7.8) together with the convergence of u(N) to 
IQ*), which is the content of Theorem 5.2. 

The proof will be complete once we establish the existence of the promised 
set T,. This existence is implied by the p-tightness condition, as follows. 

Let r r,. . . , r,,, be price vectors such that {~j) is ri-tight for all i= 1,. . . ,m 
and the shadow prices of P(p*) are contained in the interior of the convex 
hull of {rr,..., I,,,}, which we denote by R. The concavity of g(x,t) and 
condition (viii) imply that the sets T, guaranteed by the p-tightness (see 
Definition 5.1) can be chosen the same for all p E R. Since pj converges, in the 
weak convergence of measures, if follows that T, can be chosen so that 
JT,cdpj is uniformly small, with c a constant. We choose the constant c such 
that s(t, p) + c is positive for p E R [such a c exists by (viii)]. The p-tightness 
can then be expressed as follows. For every 6 >O there exists a compact Td 
such that 

for all j and p E R. 
Let k be so large that an r] >O exists such that pk+p is in R if IpI 5~ [here 

pk is the shadow price vector of P(P~)]. Recall that 

WY Pk) =&k(t), t) -Pk. Yk(L) (7.10) 

and similarly with x*(t),p*, replacing yt(t) and pk. We claim that 
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(7.11) 

for all j. Otherwise a vector p of norm q can be found such that 

T!Ta~. Yk(t) dpj 2 26, 

hence, by (7.10) and (7.9), 

(7.12) 

but the integrand in the former expression is smaller than S(t,pk-p), a 
contradiction to (7.9). 

Once (7.11) holds, (7.10) and (7.9) imply that 

(7.13) 

and, similarly, (7.11) and (7.13) hold with x*(t) replacing yk(t). 
Given E>O, the 6 can be arranged such that (24-l + 1)61&, then Td can 

serve as the desired T,. This completes the proof of the theorem. 

We produce now two examples, the first shows that the strict concavity of 
g(x, t) cannot be dropped, the second shows that p-tightness for an open set 
around p* cannot be dropped. 

Example 7.4. Let T= [0, 11, X= [0, 00) and q”= 1. Let ,u* be supported on 
the Cantor set C in T. For t E C let F(x, t) (the variable L is absent) be given 
by F(x,t)=x “’ if x< 1 F(x, t)=min(i+ix,2) if x2 1. For t not in C let 
F(x,t)=x= if xs 1 an=d f(x,t)=min(l--a+ax,2) for<2 1, with cc=a(t) such 
that a(t) -cd and a(t) is continuous. The unique optimal solution to P(p*) is 
then x(t)= 1 for t EC, and the shadow price p* is 2. If, however, pj is 
supported outside the Cantor set then pj>2, pj being the shadow price for 
P(pj). The sequence tj can be arranged so that pj satisfies all the conditions 
of the theorem, but supported out of C; then xk converge to 2, which would 
violate the constraint (7.1). 

Example 7.5. Let T= [0, l), X = [O, 03) and q” = 1. Let ,u* be supported at 
(0). For t in a neighborhood of t =0 let F(x, t) =xa, with cr=a(t) strictly 
decreasing and a(O) =f. For t in a neighborhood of 1, let F(x, t)= 
l-a+ax-e-x for x$b(t), and b(t) will be determined later on. The 
sequence ti is such that ti+O except for a subsequence ij such that ~j still 
converge to ,u*. The subsequence tij will converge very fast to 1 so that the 
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following phenomenon happens. For P(p*) the unique shadow price is 
p* = 2. Yet for each ,uj the shadow price pi is greater than 2. The element tij 
is chosen such that xij is very large, say Xij=2ij. This can be arranged with 
b(t) finite, so that xij is well defined. Again the constraint (7.1) is not valid. 
Note that {pj} is 2-tight, but it is not (2+s)-tight for all s>O. 

Remark 7.6. The condition that g(x, t) is attained can be relaxed, and with 
it the condition that P(p*) has a solution. It is enough to assume that the 
problem of maximizing f g(x(t), t) dp* subject to s x(t) dp* =q” has a solu- 
tion. But then the allocation process has to be slightly modified, with more 
central decisions, as follows. At each ij the center, in addition to Pi,, 
announces an sj such that sj+O. The producers that are not able to 
maximize g(x, tk) -pij * x, have to get an sj approximation of this quantity. It 
is clear that these small errors will be washed out in the limit. 

Another modification of the process is that the center, instead of announc- 
ing prices, announces choices (xj(t),ej(t)) which the producers must follow. 
This will probably allow more eased technical conditions. We did not 
examine this possibility, neither have we considered a rationing option to 
overcome the dilliculty exhibited in Examples 7.4 and 7.5 

It may seem that in the process of producing the sequence of prices pi, the 
center has to solve an infinite number of optimization problems P(N), an 
effort which we wanted to spare. Indeed, some central effort ought to be 
done by the center, but not that much. To obtain p,, it is enough to compute 

G,=n-‘(G(t,)+..-+G(t,)) 

(here A + B= {a+b: UE A, bEB}), and find a supporting vector of the form 
( -_P,,, 1) to a point (q’,r). Since G, can be recursively computed by 
G n+l =(l/(n+ l))G(t,+,)+(n/(n+ l))G,, the memory needed by the center is 
limited to two sets only. As Arrow and Radner (1979) noted, in practice, say 
when production functions are CobbDouglas, only a limited number of 
parameters is required to describe these sets. 
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