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OPTIMALITY PROPERTIES OF A SPECIAL 

ASSIGNMENT PROBLEMt 

S. C. Parikh and Roger Wets 

University of California, Berkeley 

(Received January 7, 1963) 

In this paper, it is shown that if the cost matrix of an assignment problem 
has the following property c; = it-il then any basic feasible solution is 
optimal if and only if its unit components belong to two well-defined sym- 
metric regions. The matrix with above mentioned property is called the 
'reordering matrix,' because it arose for the first time in the reordering of 
nodes of a critical path and other acyclic network problems. One deals with 
similar matrices in some problems related to order statistics. 

ASSUME we want to order the nodes of a network in such a way that 
for every arc (ij), which belongs to the topology of the network, 

i <j. t In case of a large network, this may not be possible to do manually, 
as it generates a large permutation problem. An algorithm to reorder the 
nodes of the network is given in reference 1, where the number of steps 
involved is related to the magnitude of divergence of the node order of a 
network, where divergence is defined to be 

S= Ii-ail, 

where ai is the initial order of the node having final order i. 
In order to fix an upper bound to the divergence of the network, we 

have to determine the maximum value of S over all possible m-tuples a. 
We will now show that this problem is equivalent to the classical 

assignment problem. 

MATHEMATICAL FORMULATION 

LETt= {ala is an m-tuple chosen without repetition from the set (1, 2, * , 

m) e.g., a=(2,m, 10, ...,1,5)}. 

t This research was primarily supported by the Western Management Science 
Institute of the University of California, Los Angeles, with partial support from the 
Office of Naval Research, Contract Nonr-222(83) and the National Science Founda- 
tion Research Grant G-21034, with the University of California, Berkeley. 

t This problem is important because it reduces significantly the work involved 
in logical search for a critical path problem. It is impossible to perform this node 
ordering when loops are present in the network. 
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Note that t has m! nonidentical components. 
Then, the problem becomes 

Max'E S=S_ li-ail. ) 

It is now easy to see that all the components of each possible summation 
Zt:1 Ii-ail are of the form li-i! where i-1, ***, m; j=1, **, m. We 
can list all these possible values under matrix form where each entry is 
equal to the absolute difference between its row number and column 
number. 

Define cij= li-il and C= {cij}. Any possible S can be found by sum- 
ming up m entries of the matrix selected by picking one and only one 
element from each row and each column. For example 

i ias =j 

I iCl ( C13. C14 

2 C21 C22 D C24 

3 C32 C33 C34 

4 C41 C42 C43 

A possible S= c12+c23+c31+c44 corresponding to the 4-tuple 'a'- (2,3,1,4). 
Thus, the problem reduces to 

maximize S= Eij cij xi 
Subject to: 

Ej xij=, (i= 1, ,m) 

Ei xij=1, (j=l, ... , m) (2) 

xij_0) (xij are integers) 

which is the classical assignment problem formulation. 
Our aim is to prove, in this particular set-up, that this optimum for S 

can be achieved by selecting any feasible solution such that all its com- 
ponents belong to two symmetric regions of the matrix and that no optimal 
solution can be found if one or more components do not belong to these 
two regions. 

THE OPTIMAL REGION 

IN THE reordering matrix let us define the two following sets of entries. 

1* =fCij~i<Y2 (m+1),jl2 (m+l)}. 

?2*= {Cijli Y2 (M+1),J<2 (M+1)1. 
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Let O*O1*UO2* then, 

01*n02*=_0 if m is even, 
Cm+1/2,m+1/2 if m is odd. 

These two sets of entries are symmetric with respect to the principal 
diagonal: 

m odd m even 

Fig. 1. Optimal region. 

Let 
01= {xijlxii C O1 if cij E 01*} 

02-{Xijlxij EO2if cij E02*} 

Then, 0=01U02, and it is called the optimal region. 

PROPERTIES OF THE REORDERING MATRIX 

1. For all crs/lIO* 

either all crk E 0* are greater than or equal to Crs, 

or all Cks E 0* are greater than or equal to crs. 
2. For any submatrix of C of the form 

C.[1 ci,j+.s] 

-Ci+rJ Ci+r, j+S- 

such that i5-j and all its elements are either all below the principal 
diagonal or all above the principal diagonal, then 
Cij+Ci+r,j+s - Ci+r,j+Ci,j+s. 

3. For any submatrix of C of the form 

Ci~r, j Ci+r, j+.S 

such that Ci+rj is an entry below the principal diagonal of C and 
ci j+s is an entry above the principal diagonal. Then 

Cij+Ci+rj+s < Ci+r,j+Cij+S- 

It is possible to prove the optimality of any feasible solution in region 
0 by using the theory of linear programming, or more specifically the 
assignment problem algorithm. [2] We give here an alternative proof. 
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OPTIMALITY THEOREM 

THEOREM: A feasible solution x0 is optimal if and only if all its components 
lie in 0. 

Proof: Suppose x is a feasible solution but has at least one component 
that does not lie in 0, we will then show that we can improve S. 

Xj 

V k 

Figure 2 

Let us assume that &ii is such that i< fi (m+1), j<12 (m+1) and 
j>i, i.e., in Fig. 2, xij lies in U. In order to be feasible x has at least a 
component, say Mel E V, because it is impossible to 'cover' the [/Iz (m+ 1)1 t 
last rows with 'selections' only done in 1, as vI has less than [12 (m+1)] 
columns (by assumption on &ij). We can find then a new feasible solution 
by replacing &ij and &l by xi, and xMj and by property 3, S will be improved. 

We have proved that for any feasible solution that has one or more 
components outside 0, it can be improved. So, we can produce an iterative 
procedure that will increase S, as long as x has a component which does 
not lie in 0. 

If x ? C 0, it is not possible to improve the value of S because the only 
acceptable substitutions are of the form 

Xij and Xi+rj+s, 

by Xi+r,j Xi,j+s (GO), 

or repeated substitutions of that form. But by property 2 we know that 
the value of S will not change. 
COROLLARY: All the feasible solutions in region 0 are optimal. 
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t [a]= greatest integer contained in a. 
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