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We study the continuity properties of the following function:

Q(t):= inf {cx|Ax=b, x>0}
xeR”

where
t=(c;A;; Az, ;A bY)
=(Chyenes Cas Biyeees Biniers i Amiy e ey Gouns D1y ey Bin).
Thus
t—>Q(1):RN »R=[~, +w0] with N=n+m-n+m.
Let

T={teR"|-0< Q(t) < +}

denote the set on which Q is finite. We deal exclusively with sufficient conditions
for the continuity of Q; necessary conditions are much too involved to be verifiable,
and consequently are of rather limited interest in applications. The stability—which
means continuity of some type—of the optimal value (and optimal solutions) of an
optimization problem under data perturbations is usually the key issue in the
validation of the modeling process. For example, the work of Dantzig Folkman and
Shapiro [S] was motivated by stability questions in chemical equilibria; for more
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examples one could refer to [18], and for a general discussion to [12, Section 1].
My own interest in this area stems from a variety of questions that arise in stochastic
programming [13, 14, 17]. For example, some of the parameters t = (c, A, b) of the
linear program may only be known in a statistical sense. The data available suggest
a distribution function F for the random vector r, but there is no absolute guarantee
that it actually is the (true) distribution function. We are interested in the continuity
(stability) of

E[Q(t)]=J Q(1) dF(r)

under perturbations of F. Assuming that the range T of possible values for ¢ is
compact, then the continuity of | Q(¢) dF(t) with respect to F would follow directly
from the continuity of Q on T. Recall that a sequence {F*, »=1, ...} of distribution
functions defined on R™ converges to F if

lim F*(t)=F(¢) forall te{z|F is continuous at z}

y-»00

and then for every bounded continuous function g

v->a0

fim J g()dF”(t)= J g(t) dF(¢).

Similar continuity questions would arise if F were known to be the actual distribution
function, but it became necessary to replace F by an approximation in order to
simplify the computation of E[Q(r)].

Dantzig, Folkman and Shapiro [5], Bereanu [2], Wets [17], Martin [9], Robinson
[10] and Klatte [8] have formulated a number of sufficient conditions for the
continuity of Q, and some others can be derived from general results for infimal
functions of optimization problems, such as found in Berge [3], Dinkelbach [6],
Hogan [7], Bank, Guddat, Klatte, Kummer and Tammer [1], and Rockafellar and
Wets [12], for example. One of the main purposes of this note is to exhibit the
relationship between these various conditions. As a by-product, or more exactly as
a prerequisite, we prove a number of results about the continuity of polyhedral-
valued multifunctions. The two following (convex) polyhedral-valued multifunctions

t— K(t)={x|Ax<b,x=0} and t—D(t)={y|yA<cy=0},

that correspond respectively to the set of primal and dual feasible solutions of the
linear program that defines Q, play an important role in what follows. The function
Q is finite precisely on

{teR"|K(t)#0, D(1) #¢}=7.
If K(t)#@ but D(t)=4@, then Q(t)=—c0, otherwise, i.e. when K(t)=§, then
Q(T) =00, Recall that a multifunction t—I'(t):R"3R? is upper semicontinuous at
t, if

t=1lim ¢, x"el(t") and x=limx"

v>®© V=00
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implies that xe I'(t); it is lower semicontinuous at ¢, if

t=lim¢" and xelI'(t)

implies the existence of x” e I'(¢") such that x =lim,.» x”; and I is continuous at
t if it is both upper and lower semicontinuous at . For the polyhedral-valued
multifunctions K and D we have

1. Proposition. The multifunctions K and D are upper semicontinuous on 7.

Proof. It suffices to prove the assertion for either K or D. Suppose that {t*, v =
1,...}2 7 and t=lim,.,t" Let {x*,»=1,...} be a sequence such that for all
=1,..., x" € K(1")—which implies that A’x” = b*—and lim,_., x” = x. Since

|A”-A]-0, |x*"-x[->0 and [b”-b]-~0

it follows that Ax= b and x =0 which yields x € K(t) # @. Note that any norm for
matrices and vectors will do, the most natural one to use here is

I41= sup lAx]. O

In general K and D are not continuous, or equivalently in view of Proposition
1, they are not lower semicontinuous. For example, consider t* = (¢"=»™'; A=»7";
b=v"1) and t=(0;0;0). Then K(¢)=R., but for all », K(t*)=[1, ®); the point
7€ K (1) cannot be reached by any sequence {x*, v =1,...} with x”[1, o). Also,
D(t) =R, but for all », D(+")=]0, 1], again any point p € (1, ©) cannot be reached
by any sequence {x’, »=1...} with x"€[0, 1]. Note that Q(¢)=1lim,_ Q(¢"). The
importance of having K and D (lower semi)continuous is underscored by the
following theorem.

2. Theorem. Let te T < J. Suppose the multifunction K is continuous at t relative to
T. Then Q is upper semicontinuous at t relative to T, Similarly, if the multifunction D
is continuous at t relative to T, then Q is lower semicontinuous at t relative to T. Finally,
continuity of K and D at t (relative to T) implies the continuity of Q at t (relative to T).

Proof. If t=(c; A;b)e T <= 7, then both K(t) and D(¢) are nonempty, and there
exist xe T(¢) and ye D(¢) such that

yb=Q(t)=cx

as follows from the Duality Theorem for linear programs. The lower semicontinuity
of K (or D) means that for any sequence {t" = (¢”; A”; b"), v=1,...}< T converg-
ing to 1, there exist {x"e K(¢*),v=1,...} (or {y* € D(t), v=1,.. .} resp.) such that
x=lim,.o x" (or y =lim, . y; resp.). Moreover, we have that for all
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from which it follows that

Q(t)=cx=1lim ¢’x” =lim sup Q(¢")

giving us the upper semicontinuity of Q at ¢. For similar reasons, the lower semicon-
tinuity of D at ¢ yields:

Q(t)=yb=lim y'b” <lim inf Q(t*)
The assertion about continuity of Q at ¢ follows from the two preceding
inequalities. [J

The remainder of this note is devoted to obtaining sufficient conditions for the
(lower semi) continuity of the polyhedral-valued multifunctions K and D. The
conditions that we shall exhibit can never be more than sufficient conditions for
the continuity of Q, as is clearly demonstrated by the simple example that precedes
Theorem 2. There, neither K nor D is lower semicontinuous at £=(0; 0;0) but Q
itself is continuous. We go from the weakest conditions to the strongest. To simplify
the formulation of the results we shall make the assertions in terms of the giobal
continuity of functions and multifunctions on a set T< 7, although in evéry case
we could make a somewhat stronger statement in terms of local continuity at a
point ¢ relative to a set Tc< J, exactly as done in Theorem 2.

3. Proposition. The multifunction t— D(t) is continuous on T< J if and only if the
polyhedral convex-cone valued multifunction

t (A 1 0) {u
)9 =
pos c 0 1 n

={(u, 7)eR™ | u< Ax, n=cx, x =0}

u=Ax—1Is,

x=0,5=20, 20}
n=ox+p, g

is upper semicontinuous on T. Similarly t—K(t) is continuous on T< J if and only
if the convex-cone-valued multifunction

. (AT I o) {v
> E]
POS\pT o —1) 7 o

is upper semicontinuous on T.

Proof. For reason of symmetry, it really suffices to prove the assertions involving
D. We first note that

A -1 0
lr—»C(t).—pos<c 0 1)



18 Roger J.-B. Wets [ On ithe continuity of the value of a linear program
is upper semicontinuous if and only if the polar multifunction

t—pol C(1)={(y, B)|yA<Bc,y=0,8=0}

is lower semicontinuous as follows in a straightforward fashion from the definitions
of lower semicontinuity and of the map pol {13, Proposition 1]. In turn this multifunc-
tion pol C is lower semicontinuous if and only if D is lower semicontinuous as
follows from the identity

(4) pol C(1)=cl{A(y, 1)|ye D(1), A eR,}

where cl denotes closure. The inclusion > follows directly from the fact that pol C(¢f)
1is a closed cone that contains (D(t) x{1}). For the converse, let (y, 8)epol C(t).
If >0, then 8~'ye D(t) and (y, 8)=A(B 7'y, 1) with A = 8. If =0 then

yA<0 and y=0.
Take any ye D(t); recall that D(t) #0 since t€ 7. For any »=1,2,..., we have

(Ftw)A<c,  (§+w)=0,

and thus (7+wy)e D(t) for all v=1,..., and hence the sequence of points

PTG ), v=1,..}

isintheset {A(y’, 1)|y" € D(1), A €R,} which implies that (y, 0) belongs to its closure.
This completes the proof of (4).

Now suppose that D is lower semicontinuous at t € T < . To show that pol C(¢)
is also lower semicontinuous at ¢, for any (y, 8)epol C(¢) and {t*,»=1,...} any
sequence in T we have to exhibit a sequence {(y*, 8*)epol C(t*), »=1,...} con-
verging to (y, B). First assume that 8> 0. Then 8"y € D(t) and by lower semicon-
tinuity of D at ¢ there exist {§* € D(t),»=1,... converging to 8~ 'y. The desired
sequence is obtained by setting y” = By" and B* =p for all ». Next if 8=0, the
argument above has shown that then there exist y* € D(t) such that

(#,0) = lim k™ (5", 1).
Again by lower semicontinuity of D at f, we know that for all k
y*=1lim y* with y* e D(¢*), v=1,....

The desired sequence is obtained by a standard diagonalization selection procedure.

If pol C is lower semicontinuous at te T< 7, let ye D(¢) and {t",v=1,.. .} be
any sequence of points in T. From (4) we know that (y, 1) e pol C(t) and thus there
exist a sequence {(y*,B8°)epol C(t"),»=1,...} converging to (y,1). For v
sufficiently large 8> 0, in which case ((1/8")y", 1) e pol C(¢*),i.e.,(8”) 'y e D(t")
and y=lim,.o (8*)""y". O

To pass from Proposition 3 to our next characterization of lower semicontinuity
of K and D we rely on a Theorem of Walkup and Wets that gives sufficient conditions
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for the continuity of polyhedral convex-cone valued multifunctions, it is reproduced
here for the convenience of the reader.

5. Theorem [13, Theorem 2] Suppose Z<R™" and for every matrix AEZ, with
pos A= {u|u=Ax, x=0},

(a) dim(pos An (—pos A)) is constant, ie., the dimension of the lineality space of
pos A is constant on Z,

(b) there exists a neighborhood V of A such that if any column A’ of A lies in the
lineality space of pos A, then the corresponding column A’ of any matrix A in VA Z
lies in the lineality space of pos A.

Then the restriction of A—>pos A to Z is continuous.

6. Proposition. Suppose Tc 7 and for all te T
(ia) the dimension of K(t) is constant on T,
(in) there exists a neighbourhood V of t such that whenever

K(c{x|Ax=b,iel}n{x|x=0,jeJ}

for index subsets I and J of {i=1,...,m} and {j=1,..., n} respectively, then for
ali'eTnV

K(t)c{x|Aix=bl,ie [}n{x|x=0,je J} .

Then K is continuous on T,
Similarly if, forall te Tc g,
(il,) the dimension of D(t) is constant on T,
(iiy) there exist a neighborhood W of t such that whenever

D(1)c {ylyA =q,jeJ}n{yly=0,ie I}

for J and I index subsets of {l,...,n} and {1,... m}, respectively, then, for all
reTnW,

D(r)e{yly(AY = ¢, jel}n{yly=0,iel}
Then D is continuous on T.
Proof. Again let C(t)=pos(? 3 9). If dim D is constant on T, then the dimension
of pol C is also constant on T, cf. (4), which in turn implies that the dimension of
the lineality space of C is constant on T. This is condition (a) of Theorem 5.
Condition (b) of this Theorem 5 requires that there exist a neighbourhood W of 1,
such that whenever the linear systems

~A<Ax, —g=cx, x20
for some indices je{1, ..., n}, and for fixed ke{1,..., m}
1A, 0<Ax forizk O=cx, x=0,

are consistent, then they remain consistent for all t'e¢ W T. From these relations
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we obtain condition (ii,) through a straightforward application of Farkas Lemma
(Theorem of the Alternatives for Linear Inequalities) using the fact that D is
nonempty on T'< J. The assertions involving K are proved similarly. . (O

In the particular case when K and D are of full dimension on T, we have the
following version of Proposition 6.

7. Corollary. Suppose that K has nonempty interior on T< J, ie for all te
T,int K(¢)#@, and that for all te T no row of (A, b) is identically 0.. Then K is
continuous on T. Similarly, if for all te T,int D{(¢)#0, and no column of (%) is

identically 0, then D is continuous on T.

Proof. Let us proceed with K restricted to T. Clearly condition (i,) of Proposition
6 is satisfied since dim K () =n for all te T. Moreover if int K(T)#¢, K(t) is not
contained in any hyperplane, consequently condition (ii,) could only fail if for some
te T, there was a row (A, b;)=(0,0). [J

Another way of proving Corollary 7 is to show that the assumptions imply that
forall 1€ T, C(1): pos(s o 9)is pointed, i.e., C(T) ~ (—C(t)) ={0}. Indeed suppose
otherwise, then there exists 0# ve C(t) such that for all uepol C(r)

v-u<(0 and —-v-u<0.

This would mean that pol C(f)c{u|o-u=0} and this in turn implies that
int pol C(t) would be empty. But that cannot be since int D(t)## yields
int pol C(t) #, as follows from (4). We now appeal to Theorem 5 knowing that

(2) dim[C{)n (—=C(1))]=0, and

(b) no column of (%) is identically 0,
which in view of (a'} is enough to guarantee that Condition (b) of Theorem 5 is
satisfied.

The sufficient conditions provided by the subsequent results allow us to ascertain
whether the assumptions of Corollary 7 are satisfied.

8. Proposition. Suppose that, forall te Tc 7,
R(t)={x|Ax=0, cx<0, x=0}={0},

then D is continuous on T. Similarly, if for all te T< J,
S(1)={y|yA=<0,yb=0, y =0} ={0}

then K is continuous on T.

Proof. Again for reasons of symmetry it really suffices to prove the first part of the

Proposition. Again let

A -10

A 1):{(u,n)[uan,n$cx,x?0}-

C(t)::pos(
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We show that if R(t)={0} on T, then C(r) is pointed and no column of (%) can
be identically 0 on T. Suppose C(t) is not pointed, i.c., there exists (u, 7) # @ such
that

u<Ax', n=cx' forsomex'=0,
and

~u<Ax’, —n=cx’ forsome x*=0.
This implies that for (x,+x,)=0,

0<A(x'+x*) and 0=c(x'+x?).

But then x'+x*=0=x"=x?if t=(c, A, b) € T since R(t)={0}. This in turn yields
(u, 7) =0, which contradicts the working assumption that C(¢) is not pointed. Also,
if some column (%) is identically 0, then R(f)# {0} since then any nonnegative
multiple of the jth unit vector u (with u, = 0if 1 # j and u; = 1) satisfies the inequalities

Ax=0, ox<0, x=0.

This means that the assumption of Theorem 5 are satisfied—see above the alternate
proof of Corollary 7—which yields the upper semicontinuity of C on T and we
then appeal to Proposition 3 to obtain the continuity of D. O

There are a number of ways, all equivalent, to express the conditions of Proposition

8. For example: R(t)={0} if and only if 4

0#%e{x=0|Ax=0} implies c£>0, (9)
or still

ceint pos(A”, I) 9)
Similarly $(t)={0} if and only if

0#5e{y=0/yA<0} implies $b>0, (10)
or still

beintpos(A, -TI) (109

11. Corollary. Suppose that for all te T< I, K(1) is ‘bounded, then D is continuous
on T. Similarly if all te T< 7, D(1) is bounded then K is continuous on T.

Proof. The convex polyhedron K (t) is bounded if and only if {x| Ax = b, x = 0} = {0}.
This implies that R(f)={0} with R(t) as defined in Proposition 8. The lower
semicontinuity of D now follows from Proposition 8. One argues similarly for K
using this time the boundedness of D to conclude that S(¢)={0}. [J

12. Corollary. Suppose that for all te T< T, either ¢ >0 or all columns A of A are
nonpositive and nonzero. Then D is continuous on T. Similarly if for all te T, either
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b<0 or all rows A; of A are nonnegative and nonzero, then K is continuous on T.
Hence, if forall te T,A<0 and b<0 or A>0 and ¢>0, then Q is continuous on T.

Proof. If A’ <0 and A’ #0 then {x=>0|Ax>0}={0} and thus K(t) is bounded for
all te T. The lower semicontinuity of D then follows from Corollary 11. If ¢>0
then for every 0# xeRY, cx>0 and from (9) it follows that R(¢) ={0} and in turn
the lower semicontinuity of D follows from Proposition 8. Again, the lower semicon-
tinuity of K is obtained by arguing similarly using A;=0 and b <0. The assertions
about Q now follow from the above using, naturally, Theorem 2. O -

There is another way to prove Corollary 12, which also shows how to generalize
it. The alternative proof of Corollary 7 and the proof of Proposition 8 show that
‘many of the sufficient conditions for the lower semicontinuity of D boil down to
checking if

A -10
C(t):=pos<c 0 1)

is pointed. The last m+1 columns (3’ }) of the matrix that generate C(f) determine

an orthant and thus C(f) will certainly be pointed if the remaining columns
{(#),j=1,...,n} belong to this orthant or are such that when added to (' ?) they
keep the cone pointed. Sufficient conditions of this type are provided by Corollary
12, but they clearly do not exhaust the realm of possibilities. For example, if there
exists a vector 7€ R™ with ;>0 for all i=1,..., m such that w#A<c then C(¢)
is pointed, since then all the columns of (£ 3’ 9) have strictly positive inner product
with the vector (—, 1)eR™"". Here we are naturally very close to the conditions
of Corollary 7 and Proposition 8.

The diagram of Table 1 summarizes the results about the continuity of D. There
is of course a mirror image diagram for the multifunction K.

As indicated in the beginning of this short note one of our goals was to exhibit
the connections between the various conditions that have appeared in the literature.
We conclude with the pertinent references as well as some comments about the
general continuity results for infimal functions of optimization problems depending
on parameters.

Theorem 2 and Proposition 3 are taken from Wets [17]. Proposition 6 and Corollary
7 are due to Dantzig, Folkman and Shapiro [5], here they are obtained as application
of a theorem in Walkup and Wets [13], see the Appendix for further comments.
Klatte [8] rewords this result by replacing the conditions t€ 7, i.e., K(t)#0, and

K(t)c{x|Ax=b,ieI}n{x|x=0,jeJ}
with
rint K(t) e {x|Ax=b, ie I}n{x|x=0,je J}n{x|Ax>b, ig I}

N{x|x>0,j2J},
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Table 1

Summary of results

[ D continuous]
Prop. 1

A -I10
[Dlowersc] e—— C= pos( ) u.s.c.:l

Prop. 3 L 0 0 1
] Thm. 5
dim D = constant, dim €~ (~C) = L=const.
‘stability’ of | ————» " AU
active constraints Prop. 6 ‘stability’ of columns ) @ L

1 Sp. case, Thm. 5

Al [ Ai
intD#(b,( ) #0 —_— Cpoimed,( ) #0]
4 Cor. 7 L (4

Prop. 8
[e>0] ~{x>0,Ax>0,cxs0}=(0}]
_—
© L (equiv. ceint pos(A”, I))

Prop. 11

[A<0,A'#0] ———— [K bounded]

Prop. 12

where rint stands for relative interior. Klatte'’s condition clearly implies the other
one since cl rint K () = K(t) and for convex sets, cl(C n D) =c¢l C ncl D whenever
rint D nrint C#@. Bereanu [2, Theorem 2.2] proves the continuity of Q under
conditions (9) and (10). Version (9') and (10') of these conditions are those of
Robinson [10], when applied to linear programs of the type considered here. He
also shows that they are equivalent to having the sets of optimal solutions of the
primal and dual programs bounded and these are the conditions used by Martin
[9] to obtain the continuity of Q. This can be argued as follows. Since te J, Q(t)
is finite. Thus the set of optimal solutions is determined by the inequalities

argmin Q(t) ={x|Ax=b,x=0, cx< Q(1)},

and this polyhedral set is bounded if and only if R(t)={0}, with R(t) as defined
in Proposition 8, or equivalently if (9) or (9') holds.

As far as general continuity results for the infimal functions of parameterized
optimization problems, the theory of epi-convergence [12, Theorem 3.37] when
applied to this case, provides us with the next result that sharpens results of Hogan
[7] and Bank, Guddat, Klatte, Kummer and Tammer [1, Theorem 4.3.4].
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13. Theorem. Let T< J. Suppose K is lower semicontinuous on T, then Q is upper
semicontinuous on T. If there exists a compact set C < R" such that forall te T

C nargmin Q(1) # 4,

then Q is lower semicontinuous.

The first hypothesis is exactly that used in Theorem 2. The second one¢ means
that we could, for theoretical purposes, replace the definition of Q by

Q(1) =inf{ex| Ax=b, x=0, xe P}

where P is a bounded polyhedron containing C. Thus the set of feasible solutions
of this modified problem

K'(1)={x| Ax=b,x>0,x¢e P}

is (uniformly) bounded on T. And this is stronger than necessary since to prove
lower semicontinuity of D, which in turn yields the lower semicontinuity of Q (cf.
Theorem 2), all that is needed is to have K bounded on T, see Corollary 11. Note
that Theorem 3.37 of [12] actually makes a stronger assertion involving e-optimal
solutions, that are of limited interest in linear programming. ‘

We could also rephrase our results in terms of variational systems [ 12] that provide
a general framework for the study of parametric optimization problems. We would
work with the variational system

ex ifAx=h,x=0,
+00 otherwise,

ﬁ(X)i=[

and we would be concerned with the epi-semicontinuity of this variational system
and its dual

yb  ifyAs<c,y=0,
+00  otherwise.

g,(y)i=[

By upper epi-semicontinuity of the variational system {f,, teR"}, one means that
the multifunction

t—epif, ={(x, a)|a=cx, Ax=b x>0}

from R™ into R™' is upper semicontinuous; lower episemicontinuity is defined
similarly. We could then use the results of [12, Section 3] to obtain conditions for
the continuity of Q, since

Q(t)=inff,=sup g.

In general, there is much to be gained from such an approach because perturbations
of the constraints and the objective are blended together. However, here we would
reproduce the earlier results since upper and lower epi-semicontinuity of f; corre-
sponds to upper and lower semicontinuity of K as can easily be checked.
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If the entries of A do not vary, then Q is always continuous. In particular we obtain:

14. Theorem. Suppose that for all 1€ Tc T the matrix A is constant. Then Q is
continuous on T.

Proof. In this case, the multifunctions K and D are not only continuous on T but
in fact Lipschitz continuous on T. Indeed, with A fixed (constant}, let

P={{x, b)eR"XR"|Ax ~Ib=0, x=0}.
This is a polyhedral cone. Then
K(t)={x|(x, b)e P}=m[Prm;'(b)]

with ar, and , the canonical projections from R” XR™ to R” and R™ respectively.
We now appeal to [15, Theorem 1] that guarantees the Lipschitz continuity of

brs> Py t(b).

(A similar argument was used in [11, Proposition 1] to obtain the local upper
Lipschitz continuity of polyhedral multifunctions.) Of course the same applies to
D (with A fixed). The continuity of Q results again from Theorem2. [

In fact in this case Q possesses stronger continuity properties. It is well-known
[16, Basis Decomposition Theorem] that Q is a piecewise linear convex function
of b for all fixed (¢, A), and that Q is a piecewise concave function of ¢ for fixed
(A, bT). Thus in each one of these two cases Q is actually Lipschitz. This implies
that with A constant but ¢ and b varying, Q is Lipschitzian on compact subsets of
J. In general, however, it is not Lipschitz on 9. For example, with A = I (constant)
consider the function

Q(t) =inf{cx| Ix= b, x = 0}.
Then, with m = n,
7:{(6, A, b)ICER:’A:L bERm}’

and for te J.
Q(t) = Z Cj max(o» bj),
j=1
which of course is not Lipschitz since for beRY, Q takes the form

Q(t)y=ch.

-To conclude these paranthetical remarks, let us also record that if only b varies,
then not only is Q Lipschitz continuous but there exists a continuous function

tx*(1):T->R". ..



26 Roger J.-B. Wets / On the continuity of the value of a linear program

such that for all £, x*(¢) € K(t) and ox*(t) = Q(T) [14, Theorem], [4]. If only ¢ varies
a similar statement can be made, viz., there exists y*(:): 7> R™, continuous such
that y*(t)e D(¢) and y*(t)b = Q(t).

Remarks. 1. Robinson [10] formulates his pair of dual linear programs to take into
account problems involving both equalities and constraints. For such cases there
are also appropriate versions of Theorem 2 and Propositions 1 and 3. For example,
if o Co
Q(1)= inf [ex] Ax=b,x>0]
xeR”

then we should study the continuity of the maps

. (A 0) 4 (AT -AT I o)

> and f—pos

PS\e 1 POS\BT b7 0 -1
2. The proof of Theorem 5, and by implication that of Proposition 6, relies on

long and subtle arguments from the theory of linear inequalities. An aiternate proof,
that relies on arguments from the theory of multifunctions (using the concepts of
strong lower semicontinuity [1, Lemma 2.2.5.] and of index stability sets for linear
systems [8]), appears in D. Klatte thesis: “Untersuchungen zut lokalen Stabilitit

konvexer parametrischer Optimierungsprobleme”, Humbold-Universitdt zu Berlin,
1977. In [8] this proof has been adopted to polyhedral-valued multifunctions.

Appendix

Dantzig, Folkman and Shapiro actually prove a sharper result than Proposition
6 that does not fit neatly in the pattern laid out in the summary of the results. For
the sake of completeness we state and prove this result. They key step for this new
(and simple) proof is due to Dr. Duncan Martin, CSIR National Research Institute
for Mathematical Sciences, Pretoria, South Africa.

Theorem [5, Theorem I1.2.2]. Let {t" =(A”, b")}~, be a sequence converging to
t=(A, b) with
K(t"y={x]A’x=b"}
and
K(t)={x|Ax=b}
and let
I'={ilAx=b, for all xe K(T)}.
Suppose that
lim sup rank(A;, ie I} <rank(A; i€ I).

v
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Then either

lim K(t*)=K(t)

r->00

ie., K is lower semicontinuous on T={¢', *, ..t} att, or lim inf, ., K(1*) is empty.
Proof. It really suffices to prove the theorem in the case when
A.L liminf K(¢") is nonempty.
y—a@

A2. I={1,...,m}.
To see that it suffices to work with A.2, observe that

K=K (t)n Ky (1)
where
K (t)={x]Ax=b,iel} and Kn/(f)={x|Ax=b,iz]}.

Then int Ky, () # @ and, from the definition of I, it follows that ((A;, b;) #0, i ¢ I).
This implies that for » sufficiently large, int Ky;(t") is nonempty; note that ¥e
int Ky, (f) implies that £eint Ky, (¢*) for ¢* sufficiently close to + Hence by
Corollary 7, Ky, is lower semicontinuous at ¢ on T={t' ..., 1}, ie.,
liminf, . Knr(t") = Kn; (£). Moreover since ’

and the sets K\;(¢") and K, (t*) are convex, we have

limglf(KN,(tv) N K; (")) =1lim ‘ixx)lf Kne (") lim inf K, (£")

=K ()0 K (1),
provided we can show that
K, (t)=liminf K, (¢*)

when liminf, . K;(t*) is nonempty.
So, we now also accept A.2. From the hypotheses, in particular:

" lim Sup, ., rank A” < p = rank 4, it follows for v sufficiently large rank that A" = p.

We may as well assume that the first p rows of A—and thus also of the A” for v
sufficiently large—are linearly independent. Without loss of generality assume that
this holds for all », and that the columns of A and of the A” have been reordered
so that the matrices can be partitioned in the form: -

L ¢ L
A: y: v v
RIS

with L and L, invertible p X p-matrices. Since A=1im A”, it follows that

L=lim L, and C=lim C,,

PEY: ) v—00
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which implies that

L'C=lim(L,)"'C..
Now consider any

z= (?) such that zeker A, z,eR?, z,eR"™.

2

This means that

2,=~L"'Cz,.
Then, with

v [h— L:l Cvzz]
= ,
2
we have that A*z* =0 and lim,., z" =2z Hence z€lim inf, . ker A”. Thus so far
we have shown that
AJ3. kerAclim E’?fker A’
To complete the proof note that by A.1 there exists a convergent sequence {z"}o

to some z, with z* in K(¢”). Then by Proposition 1, z is in K(t) and by A.2 we have
Az = b, Consider any point x in K(r), again by A.2; it follows that

v=x—zeker A
By A.3, there exists a sequence {v"}}., converging to v with v” € ker A”. Hence with
Yoy
we have A’x” = A’z" = b”, so that x” € K(1") while
limx"=z+v=x
which shows that x € lim inf,.. K(t"). O
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