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A LIPSCHITZIAN CHARACTERIZATION 
OF CONVEX POLYHEDRA 

DAVID W. WALKUP AND ROGER J.-B. WETS 

1. Introduction. Consider an affine transformation r between two 
Euclidean spaces, say En and Em, taking a subset K of En onto r(K) 
in Em. For each point y in Em the set K(y) =r-1(y)C'K is the inter- 
section of K and a translate of the null space N of r in En. The 
Hausdorff distance d(K(y), K(y')) is a metric on the collection of all 
nonempty sections K(y) for given K and r. It is convenient, and con- 
sistent, to define the distance between the empty set and a nonempty 
intersection to be + oo. Then K iS a mapping from the metric space 
Em onto the metric space of sections. We shall say that K iS Lipschitz- 
ian (with constant B) if there exists a constant B, depending only on 
K and r, such that 

d(K(y), K(y')) ? BI|y - y' I 

whenever K(y) and K(y') are nonempty. 
The following definition and theorem, taken together, are the main 

results of this paper. 
DEFINITION 1. A subset K of En is said to have property Vj, if for 

every affine transformation r defined on En with null space of dimen- 
sion j, the inverse map K associated with r and K is Lipschitzian. 

THEOREM 1. Suppose K is a closed convex subset of En and 1 ?j 
< n - 1. Then K is a polyhderon if and only if K has property ?j. 

Since the identity map of any finite-dimensional linear space Rk 
with one norm onto Rk with any other norm is Lipschitzian, Theorem 
1 remains valid if r is an affine transformation from Rn with any norm 
onto Rn-i with any other norm, rather than from En onto En-i. 

This theorem supplements the characterization of convex poly- 
hedra in terms of the polyhedral properties of j-sections and j-proj ec- 
tions obtained by Klee in [1]. The first three sections of [1 ] may also 
serve as an introduction to the basic properties of polyhedra, which 
will be assumed here. We remark that the idea of analyzing the prop- 
erties of sections of convex sets in terms of a Lipschitzian property of 
the Hausdorff distance has also appeared in a paper by Klee [2 ] con- 
cerned with the existence of certain universal Banach spaces. 
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2. Polyhedra have property Vj. The Hausdorff distance between 
two nonempty subsets S and S' of En may be written as 

d(S, S') = max a(S, S'), I(S', S)} 

where 

a(S, S') = sup 8(x, S') 
xeS 

8(x, S') = inf x - x'|H| 
xi ESI 

and || denotes the Euclidean norm. In order to show that the map K 

associated with a closed convex set K and an affine transformation r 

is Lipschitzian with constant B it suffices to show that 

6(K(y), K(y')) ? Bly - y|fl 

whenever K(y) and K(y') are nonempty. 
Now assume that K is a closed convex polyhedron P, let L be the 

lineality space of some nonempty section K(y), i.e., the largest sub- 
space of En for which a translate is contained in K(y), and let L* be 
the subspace of En orthogonal to L. It is easily shown that L is in fact 
the lineality space of every nonempty section K(y) and is contained 
in the lineality space of P. Thus P is the vector sum of L and the 
polyhedron P* =PnL* and each nonempty section K(y) is the vector 
sum of L and a pointed polyhedron K*(y) = K(y)fL*. Since any two 
nonempty sections K(y) and K(y') are parallel cylinders, the distance 
between them can be realized as the distance between points of the 
sets K*(y) and K*(y'). Also, if we denote the restriction of r to L* by 
r*, then K*(y) =r-(y)nL*nP-=*-1(y)nP*. Thus for the rest of 
the proof we may restrict our attention to P*, the affine transforma- 
tion r*, and the associated map Ki*, or equivalently we may as well 
assume that each nonempty section K(y) of P is a pointed polyhedron. 

Note also that every nonempty section K(y) contains the same cone 
part C, i.e., the largest closed convex cone with apex at the origin for 
which a translate is contained in K(y). Let v(y) denote the set of ver- 
tices of K(y) and let con v(y) denote the convex hull of v(y). Since we 
have assumed that every nonempty K(y) is a pointed polyhedron, the 
cone C is also pointed, v(y) is nonempty, and K(y) =con v(y) +C. 

We now assert that 

8(K(y), K(yf)) = 8(con v(y), K(y')) 

whenever K(y) and K(y') are nonempty. Consider any point x of K(y). 
Since K(y) = con v(y) + C, there exist xbEcon v(y) and qE C such that 
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x =xb+q. The distance 5(Xb, K(y')) is achieved as the distance jXb -x'|j 
for some x' in K(y'). Since we also have that K(y') = K(y') + C, the point 
x'+q is in K(y'). Hence 6(x, K(y'))< |x-(x'+q)JJ= xb-x'JJ<H 
b(conv(y), K(y')), from which the above assertion follows easily. 

Considered as a function of x, 8(x, K(y')) is a finite continuous con- 
vex function. It follows that it achieves a maximum over the bounded 
convex polyhedron con v(y) at one of the points of v(y). Thus 

3(K(y), K(y')) = 6(con v(y), K(y')) = 6(v(y), K(y')), 

from which it follows immediately that 

6(K(y), K(y')) ? 6(V(y), v(y')). 

To complete the proof of the "only if" part of the theorem, we will 
show that 6(v(y), v(y')) satisfies a Lipschitz condition, i.e. there exists 
a constant B independent of y?, y', and the choice of point x0Ev(yO) 
such that 

(1) 8(xO, v(y')) < B|y? - Y'l 

whenever K(yO) and K(y') are nonempty. Recall that r is an affine 
transformation of En onto En-i taking the polyhedron P onto another 
polyhedron, say Q, and x? is a vertex of the section K(y0). The Lifting 
Theorem and related propositions of [4] assert that under these con- 
ditions there is a continuous piecewise linear map r* of Q into P such 
that 

(i) r*(y) is a vertex of K(y) for every y in Q, 
(ii) r*(Q) is the union of closed faces of P which are of the same 

dimension as Q and on which r acts one-to-one, and 
(iii) r* (y?) = x? 

The line segment joining y? and any other point y' of Q is taken by 
r* into a polyhedral path on P with nodes x?, xl, . .. , xr, say. Each 
segment [Xi, xi+'] of this path is contained in some face of P on which 
r acts one-to-one. For each face Fk of P on which r acts one-to-one 
there is a constant Bk such that 

|lx - x'H < Bkjj|r((x) - i(x')|| for all x, x' in Fk. 

Since there are only finitely many faces of P, 

jjxi+' - xill ? Bjjr(xi+1) - r(x')jj 

where B is the largest of the Bk. Since 

Ijy - yoIl = E JIT(Xs+1) - r(X')jl 
i=O 

it follows that 
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|Xr - x?| _ Blly' - yoll, 

which implies (1) since xrEv(y'). 
As observed in the introduction, the validity of Theorem 1 in no 

way depends on the use of the Euclidean norm. We remark without 
proof that the distance d(K(y), c(y')) is actually piecewise linear in the 
joint variables y and y' if the l-norm (or any norm with polyhedral 
unit ball) is used in the domain of r. The Lipschitzian property of 
d(K(y), K(y')) might seem to be a trivial consequence of this observa- 
tion; but a proof of the theorem based on this idea would still require 
all the arguments used above in one disguise or another. 

3. Property 1j implies polyhedral. We start by reviewing some 
definitions and results concerning polyhedra established by Klee in 
[1]. 

DEFINITION 2. A subset K of En is said to be polyhedral at a point p 
of K if there exists a neighborhood of p relative to K which is a convex 
polytope. A subset K of En is said to be boundedly polyhedral if its 
intersection with any polytope is again a polytope. 

Note that any subset of En contained in a flat F is polyhedral at 
every point of its interior relative to F. Also, a closed convex subset 
of En is boundedly polyhedral if and only if it is polyhedral at each 
of its points. The two following theorems are slight variations of 
Theorems (4.1) and (4.7) of [1] containing the information relevant 
for our present purposes. 

THEOREM 2. Suppose K is a convex subset of En, p }K, and 2 <?jn. 
Then K is polyhedral at p if and only if for every j-dimensional fiat J 
through p and every projection r of En onto J the set rK is polyhedral 
at p. 

THEOREM 3. Suppose K is a convex subset of En, p K, and 2 <j<n. 
Then K is boundedly polyhedral (respectively polyhedral) if and only if 
every section of K by a j-dimensional flat is boundedly polyhedral 
(respectively polyhedral). 

Just as the property "polyhedral at a point" localizes the property 
"polyhedral," the property S may be localized as follows: 

DEFINITION 3. A subset K of En has property Vj at a point p of K if 
there exists a constant B such that 

(2) d[(N + p) n K, (N + q) n K] ? B|lp-qll 

for all q in K and all j-dimensional subspaces N of En. The subset K 
has property Vv at p if (2) holds for all q in K where B depends on p 
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and the particular subspace N. The subset K has property VN if (2) 
holds for all p and q in K where B depends on N only. 

PROPOSITION 1. Suppose K is a closed convex subset of En and p GK. 
Then K is polyhedral at p if and only if K is Sn-l at p. 

PROOF. Suppose K is not polyhedral at p, then by Theorem 2 there 
is a projection r(K) on a 2-flat G through p which is not polyhedral 
at p. For 2-dimensional convex sets the proposition is obvious; there 
exists some one-dimensional subspace 1, I+pCG, for which r(K) is 
not V, at p. It readily follows that K is not ?H at p, where H is the 
hyperplane r-1(l). 

PROPOSITION 2. Suppose K is a closed convex subset of En and 
1 ?j ? n-1. Then K is bound edly polyhedral if K is j at p for all p in K. 

PROOF. Suppose that K has property 3j at p for each p in K. If the 
dimension k of K is almost 1, then K is in fact polyhedral. Thus 
suppose k is at least 2 and write 

j' = max{1, j-n + k} k' = j' + I 

so that 2 <k' < k. Consider any point p of K, any section K' of K 
of dimension k' through p, and any subspace J' such that J'+p is a 
flat of dimension j' contained in the affine hull of K'. The numbers 
j'land k' are so defined that there is a subspace J of dimension j 
such that 

(J' + q) r K' = (J + q) n K for all q in K'. 

Since K has property Vr at p it follows that K' has property Vkp, at 
p, i.e., if K' is considered only as a subset of its affine hull it has 
property Vj,, at p. Since k' =j'+ 1, Proposition 1 applies, and hence K' 
is polyhedral at p. Since p and K' are arbitrary it follows from 
Theorem 3 that K is boundedly polyhedral. 

NOTE ADDED IN PROOF. We remark that Proposition 1 remains valid 
if Sn-1 is replaced by Vj for arbitrary j, 1 ?j ? n -1. The proof makes 
use of slightly different arguments. 

Also, in connection with projections of simplices in vector groups, 
William R. Emerson has independently obtained a weaker version of 
Theorem 1, viz.: Suppose K is a closed bounded convex subset of 
En. Then K is a polyhedron if and only if it is Vi. 

PROOF OF THE "IF" PART OF THEOREM 1. Suppose K is a closed 
convex subset of En with property Vj for some j between 1 and n -1. 
By Proposition 2, K is boundedly polyhedral. Thus, K is the inter- 
section of a minimal set of halfspaces { H+ } in the affine hull M of K, 
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so that for each H+ there is a point pi in the interior of HinK 
relative to Hi, where H, is the hyperplane in M bounding H+. Let 
hi be the unit vector in M perpendicular to Hi. If K is not poly- 
hedral, there is a subsequence {hi(k)} of {hi} converging to, but 
never achieving, a vector ho. Let Jo be a subspace of En of dimension 
j orthogonal to ho. Then the angles between Jo+pi(k) and Hi(k) con- 
verge to, but never achieve, zero. It follows that no one Lipschitz 
constant B will work uniformly in the condition Vr0 at all points 
pi(k) of K. This contradiction completes the proof. 

4. Some extensions. In this section we examine some of the conse- 
quences of property Vj when K is not closed or not convex. In par- 
ticular, removing the closed conditions yields the following luke- 
warm generalization of Theorem 1. (A subset K of En is a wholefaced 
polyhedron [3] if it is the intersection of finitely many closed and 
open halfspaces.) 

THEOREM 4. Suppose K is a convex subset of En and 1 <?<n-1. 
Then K is a wholefaced polyhedron if and only if K has property ?j. 

The above theorem follows immediately from Theorem 1 and the 
proposition below. The proof of this proposition is omitted since it 
is an easy consequence of the continuity of the Hausdorff distance; 
however, it is not completely trivial since a nonempty section of K 
may correspond to an empty section of S. 

PROPOSITION 3. Suppose K is a closed subset of En and S is a dense 
subset of K. Then S has property 5N with associated constant B if and 
only if both the following hold: 

(i) The closure of the section (N+ p)(ThS is the section (N+ p) K for 
every p in S. 

(ii) K has property 2N with the same associated constant B. 

We take Proposition 3 as justification for restricting the remaining 
discussion to closed sets with propery ij. For any j, 1 ?j n-I, the 
following closed sets in En have property ?j: 

(i) any closed polyhedron, 
(ii) any finite set, 
(iii) any set obtained as the vector sum of a subspace of En and an 

arbitrary closed subset of a line. 

Item (i), of course, is the burden of ?2. Items (ii) and (iii) are easily 
verified directly. It can be shown that any closed set with property 
?j, <j-<n- 1, must be the intersection of sets of type (iii), and if 
it is not a set of type (i) or (ii) it must be quite peculiar. We con- 
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jecture that (i), (ii), and (iii) are the only kinds of closed sets with 
property ij, 1 <j < n-1. 
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